JPH0514066Y2 - - Google Patents

Info

Publication number
JPH0514066Y2
JPH0514066Y2 JP1985087857U JP8785785U JPH0514066Y2 JP H0514066 Y2 JPH0514066 Y2 JP H0514066Y2 JP 1985087857 U JP1985087857 U JP 1985087857U JP 8785785 U JP8785785 U JP 8785785U JP H0514066 Y2 JPH0514066 Y2 JP H0514066Y2
Authority
JP
Japan
Prior art keywords
temperature
valve
bias spring
responsive element
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985087857U
Other languages
Japanese (ja)
Other versions
JPS61202775U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985087857U priority Critical patent/JPH0514066Y2/ja
Publication of JPS61202775U publication Critical patent/JPS61202775U/ja
Application granted granted Critical
Publication of JPH0514066Y2 publication Critical patent/JPH0514066Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、温度応動素子に形状記憶合金を用い
てその熱変形を利用して弁を駆動し、流体配管系
から所定温度以下の流体を自動的に排出する温度
応動弁に関する。暖房用ラジエータから復水を排
出したり、油輸送管等を蒸気や温水で保温するト
レース管から低温水を排出したり、蒸気や温水を
用いる装置が凍結しない様に所定温度以下の水を
排出したりする場合に用いる。
[Detailed description of the invention] Industrial application field This invention uses a shape memory alloy as a temperature-responsive element and utilizes its thermal deformation to drive a valve, thereby automatically discharging fluid below a predetermined temperature from a fluid piping system. This invention relates to a temperature-sensitive valve that discharges water. Discharges condensate from heating radiators, discharges low-temperature water from trace pipes that keep oil transport pipes warm with steam or hot water, and discharges water below a specified temperature to prevent equipment that uses steam or hot water from freezing. Used when doing something.

従来の技術 従来の形状記憶合金を用いた温度応動弁を第4
図ないし第6図を参照して説明する。
Conventional technology The fourth temperature-responsive valve using a conventional shape memory alloy
This will be explained with reference to FIGS. 6 to 6.

ケーシング部材71,72で流体通路73,7
4と弁室75を形成する。弁室75はケーシング
部材71の案内壁76に形成した通孔77とケー
シング部材72にねじ結合した弁座部材78の弁
口79を通して流体通路73,74に連通してい
る。弁室75内に弁口に対向して弁体80を配置
する。弁体80には鍔部分81を介して弁棒82
を一体に形成し、案内壁76で摺動案内する。案
内壁76と鍔部分81の間にコイル状に形成した
形状記憶合金製の温度応動素子83を配置する。
弁座部材78と鍔部分81の間にコイル状のバイ
アスバネ84を配置する。
Fluid passages 73, 7 in casing members 71, 72
4 and form a valve chamber 75. The valve chamber 75 communicates with the fluid passages 73 and 74 through a through hole 77 formed in a guide wall 76 of the casing member 71 and a valve port 79 of a valve seat member 78 screwed to the casing member 72 . A valve body 80 is disposed within the valve chamber 75 facing the valve port. A valve stem 82 is attached to the valve body 80 via a collar portion 81.
are integrally formed and guided by a guide wall 76 in a sliding manner. A temperature-responsive element 83 made of a shape memory alloy and formed into a coil is disposed between the guide wall 76 and the collar portion 81.
A coiled bias spring 84 is disposed between the valve seat member 78 and the collar portion 81.

温度応動素子83は第6図の点線で示すように
所定温度以下に冷却されるとオーステナイト相か
らマルテンサイト相に熱弾性型マルテンサイト変
態をし、所定温度以上に加熱されるとその逆変態
をする。そして、オーステナイト相に於いて伸長
し、マルテンサイト相に於いて収縮するように作
つてある。バイアスバネ84は第5図に示すよう
に荷重と変位置が正比例の関係にある。第4図は
被制御流体の温度が低く、温度応動素子83が収
縮してバイアスバネ84の力で弁体80が弁口7
9を開いている状態を示している。この状態から
被制御流体の温度が高くなると、温度応動素子8
3がバイアスバネ84の力に抗して伸長し、弁体
80が弁口79を閉じる。再び被制御流体の温度
が低くなると温度応動素子83が収縮して第4図
に示す状態になる。このバイアスバネ84の荷重
を受けた状態での温度応動素子83の変態を第6
図の実線で示している。
As shown by the dotted line in FIG. 6, the temperature-responsive element 83 undergoes thermoelastic martensitic transformation from an austenite phase to a martensite phase when cooled below a predetermined temperature, and undergoes the reverse transformation when heated above a predetermined temperature. do. It is made to elongate in the austenite phase and contract in the martensite phase. As shown in FIG. 5, the bias spring 84 has a load and displacement in a directly proportional relationship. FIG. 4 shows that the temperature of the fluid to be controlled is low, and the temperature-responsive element 83 contracts and the valve body 80 is moved to the valve port 7 by the force of the bias spring 84.
9 is shown open. When the temperature of the controlled fluid increases from this state, the temperature-responsive element 8
3 expands against the force of the bias spring 84, and the valve body 80 closes the valve port 79. When the temperature of the fluid to be controlled becomes low again, the temperature responsive element 83 contracts and enters the state shown in FIG. 4. The transformation of the temperature-responsive element 83 under the load of the bias spring 84 is described in the sixth example.
It is shown by the solid line in the figure.

本考案が解決しようとする課題 この場合、温度応動素子の性能が早期に劣化
し、正常な開閉作動がおこなえなくなる問題があ
る。
Problems to be Solved by the Present Invention In this case, there is a problem that the performance of the temperature-responsive element deteriorates early and normal opening/closing operations cannot be performed.

すなわち、温度応動素子83はバイアスバネ8
4の荷重を受けて、第6図の実線で示すように変
態し、被制御流体の温度が高くなつて、マルテン
サイト相からオーステナイト相に変態する過程
で、バイアスバネ84の荷重を受ける。この変態
過程でのバイアスバネ84の荷重が性能を劣化さ
せるためである。
That is, the temperature responsive element 83 is connected to the bias spring 8
4, the fluid undergoes transformation as shown by the solid line in FIG. 6, and as the temperature of the controlled fluid increases and the fluid undergoes transformation from the martensite phase to the austenite phase, it is subjected to the load of the bias spring 84. This is because the load on the bias spring 84 during this transformation process deteriorates performance.

従つて、本考案の技術的課題は、温度応動素子
がマルテンサイト相からオーステナイト相へ変態
を完了する直前まで、バイアスバネの荷重を受け
ないようにすることである。
Therefore, the technical problem of the present invention is to prevent the temperature-responsive element from receiving the load of the bias spring until just before the transformation from the martensite phase to the austenite phase is completed.

課題を解決するための手段 上記の技術的課題を解決するために講じた本考
案の技術的手段は、ケーシングで流体通路と弁口
を形成し、温度変化に応じてオーステナイト相と
マルテンサイト相間を可逆変態する形状記憶合金
で作つた温度応動素子を弁口の上流側の流体通路
に配置し、温度応動素子が被制御流体で加熱され
て伸長する力でバイアスバネの力に抗して弁手段
を駆動して弁口を閉じ、温度応動素子が被制御流
体で冷却されて収縮しバイアスバネの力で弁手段
を駆動して弁口を開く温度応動弁において、弁手
段が弁口を閉じる直前で当接し弁口方向に変位せ
しめられるスライドリングを設けると共に、バイ
アスバネをスライドリングと弁口側の固定壁の間
に配置して、温度応動素子のマルテンサイト相か
らオーステナイト相への変態完了点近くでバイア
スバネの荷重が作用するようにした、ものであ
る。
Means for Solving the Problems The technical means of the present invention taken to solve the above technical problems is to form a fluid passage and a valve port in a casing, and to change between the austenite phase and the martensite phase according to temperature changes. A temperature-responsive element made of a shape-memory alloy that undergoes reversible transformation is arranged in the fluid passage upstream of the valve port, and the temperature-responsive element is heated by the fluid to be controlled and expands, resisting the force of the bias spring to open the valve means. In a temperature-responsive valve, the temperature-responsive element is cooled by the controlled fluid, contracts, and drives the valve means with the force of a bias spring to open the valve port. Immediately before the valve means closes the valve port A slide ring that comes into contact with the valve and is displaced toward the valve port is provided, and a bias spring is placed between the slide ring and the fixed wall on the valve port side to determine the point at which the transformation of the temperature-responsive element from the martensitic phase to the austenite phase is completed. It is designed so that the load of a bias spring acts nearby.

作 用 上記の技術的手段の作用は下記の通りである。Effect The operation of the above technical means is as follows.

形状記憶合金で作つた温度応動素子は、液体通
路の被制御流体で加熱冷却され、温度変化に応じ
てオーステナイト相とマルテンサイト相間を可逆
的に変態し伸縮する。この伸縮作用とバイアスバ
ネの力とで弁手段を駆動して弁口を開閉し、所定
温度以下の流体を自動的に排出する。
A temperature-responsive element made of a shape memory alloy is heated and cooled by a controlled fluid in a liquid passage, and expands and contracts by reversibly transforming between an austenite phase and a martensite phase in response to temperature changes. This expansion and contraction action and the force of the bias spring drive the valve means to open and close the valve port, thereby automatically discharging the fluid below a predetermined temperature.

温度応動素子はマルテンサイト相からオーステ
ナイト相へ変態する過程において、弁手段が弁口
を閉じる直前までバイアスバネの荷重を受けず、
ほぼ変態を完了し弁手段がスライドリングに当接
した状態からバイアスバネの荷重を受けるので、
性能が劣化しにくくなる。
During the process of transformation from the martensitic phase to the austenite phase, the temperature-responsive element is not subjected to the load of the bias spring until just before the valve means closes the valve port.
Since the valve means receives the load of the bias spring from the state where the transformation is almost completed and the valve means is in contact with the slide ring,
Performance is less likely to deteriorate.

考案の効果 本考案は下記の特有の効果を生じる。Effect of invention The present invention produces the following specific effects.

温度応動素子の性能が劣化しにくいので、初期
の性能を長期間維持することができ、高温流体の
制御系に使用することができる。また、高精度な
温度制御を必要とする箇所にも使用することがで
きる。
Since the performance of the temperature-responsive element does not easily deteriorate, the initial performance can be maintained for a long period of time, and it can be used in a high-temperature fluid control system. It can also be used in locations that require highly accurate temperature control.

実施例 上記の技術的手段の具体例を示す実施例を説明
する(第1図ないし第3図参照)。
Embodiment An embodiment illustrating a specific example of the above technical means will be described (see FIGS. 1 to 3).

ケーシング部材1,2で流体通路3,4と弁室
5を形成する。ケーシング部材1に流体通路3を
横断する案内壁6を形成する。案内壁6には中央
に下記の弁棒7を摺動自在に嵌め合せる孔、その
周囲に多数の通孔8を形成する。ケーシング部材
2に弁口9を形成する弁座部材10をねじ結合す
る。従つて、弁室内5は通孔8と弁口9を通して
流体通路3,4に連通する。
The casing members 1 and 2 form fluid passages 3 and 4 and a valve chamber 5. A guide wall 6 is formed in the casing member 1 to cross the fluid passage 3. The guide wall 6 has a hole in the center into which a valve rod 7 described below is slidably fitted, and a large number of through holes 8 around the hole. A valve seat member 10 forming a valve port 9 is screwed to the casing member 2 . Therefore, the valve chamber 5 communicates with the fluid passages 3 and 4 through the through hole 8 and the valve port 9.

弁室5内に弁口9を開閉する弁手段を配置す
る。弁手段は円錐形状の弁体11と鍔部分12と
弁棒13からなり、弁体11は弁口9に対向して
位置し、弁棒13は案内壁6に嵌まり合う。案内
壁6と鍔部分12の間にコイル状の形状記憶合金
で作つた温度応動素子14を配置する。ケーシン
グ部材1に段部分15を形成してスライドリング
16を配置し、スライドリング16とケーシング
部材2の間にコイル状のバイアスバネ17を配置
する。スライドリング16には流体を通す孔が開
けてある。
Valve means for opening and closing the valve port 9 is arranged within the valve chamber 5. The valve means includes a conical valve body 11, a flange portion 12, and a valve stem 13. The valve body 11 is located opposite the valve port 9, and the valve stem 13 is fitted into the guide wall 6. A temperature responsive element 14 made of a coiled shape memory alloy is disposed between the guide wall 6 and the collar portion 12. A step portion 15 is formed in the casing member 1 and a slide ring 16 is disposed therein, and a coiled bias spring 17 is disposed between the slide ring 16 and the casing member 2. The slide ring 16 has holes through which fluid passes.

温度応動素子14は所定温度以下に冷却される
とオーステナイト相からマルテンサイト相に熱弾
性型マルテンサイト変態をし、所定温度以上に加
熱されるとその逆変態をする。そして、オーステ
ナイト相に於いて伸長し、マルテンサイト相に於
いて収縮する。バイアスバネ17は圧縮した状態
で配置され、また、ケーシング部材1の段部分1
5で変位を規制されているので、第2図に示すよ
うな荷重と変位量の関係にある。
When the temperature-responsive element 14 is cooled to a predetermined temperature or lower, it undergoes thermoelastic martensitic transformation from an austenite phase to a martensite phase, and when heated to a predetermined temperature or higher, it undergoes the reverse transformation. Then, it expands in the austenite phase and contracts in the martensite phase. The bias spring 17 is arranged in a compressed state and also
Since the displacement is regulated by 5, the relationship between the load and the amount of displacement is as shown in FIG.

第1図は被制御流体の温度が低く、温度応動素
子14が収縮して弁体11が弁口9を開いている
状態を示している。この状態から被制御流体の温
度が高くなると、温度応動素子14が伸長し、鍔
部分12がスライドリング16に当たる。そして
さらに伸長して弁体11が弁口9を閉じる。再び
被制御流体の温度が低くなると温度応動素子83
が収縮して第1図に示す状態になる。従つて、温
度応動素子14はスライドリング16に当たる位
置まで伸長した後バイアスバネの荷重を受け、第
3図の実線で示すように変態する。なお、第3図
の点線は温度応動素子14がバイアスバネ17の
荷重を全く受けない状態での変態を示すものであ
る。
FIG. 1 shows a state in which the temperature of the fluid to be controlled is low, the temperature-responsive element 14 contracts, and the valve body 11 opens the valve port 9. When the temperature of the controlled fluid increases from this state, the temperature responsive element 14 expands and the collar portion 12 hits the slide ring 16. Then, the valve body 11 expands further and closes the valve port 9. When the temperature of the controlled fluid becomes low again, the temperature responsive element 83
is contracted to the state shown in FIG. Therefore, after the temperature-responsive element 14 extends to a position where it touches the slide ring 16, it receives the load of the bias spring and transforms as shown by the solid line in FIG. 3. Note that the dotted line in FIG. 3 shows the transformation in a state where the temperature-responsive element 14 receives no load from the bias spring 17.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例の温度応動弁の断面
図、第2図は第1図のバイアスバネの特性を示す
図、第3図は第1図の温度応動素子の特性を示す
図、第4図は従来の温度応動弁の断面図、第5図
は第4図のバイアスバネの特性を示す図、第6図
は第4図の温度応動素子の特性を示す図である。 3,4……流体通路、9……弁口、11……弁
体、14……温度応動素子、17……バイアスバ
ネ。
FIG. 1 is a sectional view of a temperature-responsive valve according to an embodiment of the present invention, FIG. 2 is a diagram showing the characteristics of the bias spring shown in FIG. 1, and FIG. 3 is a diagram showing the characteristics of the temperature-responsive element shown in FIG. 1. FIG. 4 is a sectional view of a conventional temperature-responsive valve, FIG. 5 is a diagram showing the characteristics of the bias spring shown in FIG. 4, and FIG. 6 is a diagram showing the characteristics of the temperature-responsive element shown in FIG. 4. 3, 4...Fluid passage, 9...Valve port, 11...Valve body, 14...Temperature responsive element, 17...Bias spring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ケーシングで流体通路と弁口を形成し、温度変
化に応じてオーステナイト相とマルテンサイト相
間を可逆変態する形状記憶合金で作つた温度応動
素子を弁口の上流側の流体通路に配置し、温度応
動素子が被制御流体で加熱されて伸長する力でバ
イアスバネの力に抗して弁手段を駆動して弁口を
閉じ、温度応動素子が被制御流体で冷却されて収
縮しバイアスバネの力で弁手段を駆動して弁口を
開く温度応動弁において、弁手段が弁口を閉じる
直前で当接し弁口方向に変位せしめられるスライ
ドリングを設けると共に、バイアスバネをスライ
ドリングと弁口側の固定壁の間に配置して、温度
応動素子のマルテンサイト相からオーステナイト
相への変態完了点近くでバイアスバネの荷重が作
用するようにした温度応動弁。
A fluid passage and a valve opening are formed in the casing, and a temperature-responsive element made of a shape memory alloy that reversibly transforms between an austenite phase and a martensite phase in response to temperature changes is placed in the fluid passage upstream of the valve opening. The element is heated by the fluid to be controlled and expands, driving the valve means against the force of the bias spring to close the valve port, and the temperature-responsive element is cooled by the fluid to be controlled and contracts, causing the force of the bias spring to cause the element to expand. In a temperature-responsive valve that drives the valve means to open the valve port, a slide ring that comes into contact with the valve means just before closing the valve port and is displaced toward the valve port is provided, and a bias spring is fixed between the slide ring and the valve port side. A temperature-responsive valve arranged between walls so that the load of a bias spring acts on the temperature-responsive element near the point at which the transformation from martensite phase to austenite phase is completed.
JP1985087857U 1985-06-10 1985-06-10 Expired - Lifetime JPH0514066Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985087857U JPH0514066Y2 (en) 1985-06-10 1985-06-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985087857U JPH0514066Y2 (en) 1985-06-10 1985-06-10

Publications (2)

Publication Number Publication Date
JPS61202775U JPS61202775U (en) 1986-12-19
JPH0514066Y2 true JPH0514066Y2 (en) 1993-04-14

Family

ID=30640459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985087857U Expired - Lifetime JPH0514066Y2 (en) 1985-06-10 1985-06-10

Country Status (1)

Country Link
JP (1) JPH0514066Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566186Y2 (en) * 1992-03-18 1998-03-25 石川島播磨重工業株式会社 Drain valve for liquefied gas
KR20010035860A (en) * 1999-10-04 2001-05-07 이계안 Flow control valve
KR100742656B1 (en) 2005-08-22 2007-07-30 주식회사 대한비철금속 Automatic valve for adjustale temperature

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899575A (en) * 1981-12-08 1983-06-13 Sharp Corp Valve
JPS594871B2 (en) * 1978-02-23 1984-02-01 松下電器産業株式会社 Lead wire connection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107070U (en) * 1980-12-23 1982-07-01
JPS594871U (en) * 1982-07-02 1984-01-12 株式会社日立製作所 flow control valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594871B2 (en) * 1978-02-23 1984-02-01 松下電器産業株式会社 Lead wire connection method
JPS5899575A (en) * 1981-12-08 1983-06-13 Sharp Corp Valve

Also Published As

Publication number Publication date
JPS61202775U (en) 1986-12-19

Similar Documents

Publication Publication Date Title
JPS59197683A (en) Thermo-sensitive valve
WO2007040130A1 (en) Thermostat device
RU2082890C1 (en) Automobile engine cooling system
JPH0514066Y2 (en)
US6595165B2 (en) Electronically controlled thermostat
JPS59206682A (en) Temperature sensing driving body
JPH0198788A (en) Passage closing gear
US1347689A (en) Thermostatic control device
JPH0198787A (en) Passage closing gear
WO1993022591A1 (en) A method and a device for driving a remote temperature adjusting valve
US2352203A (en) Thermostatic valve
JPS6141500Y2 (en)
JPH0328225Y2 (en)
JPH0625750Y2 (en) Bypass valve
JPS58102877A (en) Heat-responsive valve for use in cooling liquid circulating passage of internal-combustion engine
JPH073108Y2 (en) Temperature control valve for constant temperature bath
JPS6179085A (en) Freezing preventing valve
JPH0224039Y2 (en)
RU2011859C1 (en) Thermostat
RU2039876C1 (en) Thermostat for liquid cooling system of internal combustion engine
JPS6123987Y2 (en)
RU2112886C1 (en) Cooling system thermostat for internal combustion engine
JPS5911239Y2 (en) thermo valve
JPS58207588A (en) Automatic temperature control valve
JPS61197868A (en) Temperature responsive valve