JPS6141500Y2 - - Google Patents

Info

Publication number
JPS6141500Y2
JPS6141500Y2 JP15836182U JP15836182U JPS6141500Y2 JP S6141500 Y2 JPS6141500 Y2 JP S6141500Y2 JP 15836182 U JP15836182 U JP 15836182U JP 15836182 U JP15836182 U JP 15836182U JP S6141500 Y2 JPS6141500 Y2 JP S6141500Y2
Authority
JP
Japan
Prior art keywords
temperature
valve
fluid
fluid passage
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15836182U
Other languages
Japanese (ja)
Other versions
JPS5962370U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15836182U priority Critical patent/JPS5962370U/en
Publication of JPS5962370U publication Critical patent/JPS5962370U/en
Application granted granted Critical
Publication of JPS6141500Y2 publication Critical patent/JPS6141500Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Control Of Temperature (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、例えば給湯用配管系統において、送
給される湯の温度が設定温度を超える高温であつ
たときに、流体通路を自動的に遮断して高温度の
湯の送給を停止せしめる熱応動弁に関し、特に温
度を感知して弁体を作動せしめる部分に形状記憶
合金製部材が用いられたものに関する。但し、配
管系に送給される流体は湯に限定されるものでは
ない。
[Detailed description of the invention] [Industrial field of application] The present invention automatically closes the fluid passage when the temperature of the hot water exceeds the set temperature in, for example, a hot water supply piping system. The present invention relates to a heat-responsive valve that shuts off and stops the supply of high-temperature hot water, and particularly relates to one in which a shape-memory alloy member is used in the part that senses temperature and operates the valve body. However, the fluid supplied to the piping system is not limited to hot water.

〔従来技術とその問題点〕[Prior art and its problems]

従来、流体通路を流れる流体の温度が設定温度
から逸脱したときに、その温度を感知して弁体を
作動せしめる部分に形状記憶合金製の部材が用い
られた熱応動弁には、実開昭56−56969号公報等
によつて既に公知である。同公報に記憶された熱
応動弁の内部を略示すれば第5図の如くである。
即ち、図示の熱応動弁V0は、流体の流入口12
aのある流入側分体11aに流出口12bのある
流出側分体11bを螺着して中央部に連通空所1
2を備えた弁本体11と、連通空所12の内部を
摺動することにより流通口12cを開閉する弁体
14と、流体の温度が設定温度を超える異常高温
になつたことを感知して弁体14を閉作動させる
形状記憶合金製のコイル状感温伸縮体15と、流
体の温度が定常使用温度になつたとき弁体14を
閉鎖状態から解放状態に復帰させるバツクスプリ
ング17とにより構成されている。なお、13は
弁体14のフランジ部であつてその周囲に通孔が
設けてある。また16は弁本体11の螺着状態が
緩まないように設けた止めねじである。
Conventionally, when the temperature of the fluid flowing through the fluid passage deviates from the set temperature, a heat-responsive valve uses a member made of a shape memory alloy in the part that senses the temperature and operates the valve body. This method is already known from Publication No. 56-56969. The inside of the thermally-responsive valve recorded in the publication is schematically shown in FIG. 5.
That is, the illustrated thermally responsive valve V 0 is connected to the fluid inlet 12
The outflow side separation body 11b having the outlet 12b is screwed onto the inflow side separation body 11a having the outlet a, thereby creating a communication space 1 in the center.
2, a valve body 14 that opens and closes the flow port 12c by sliding inside the communication space 12, and a valve body 14 that opens and closes the flow port 12c by sliding inside the communication space 12; Consists of a coiled temperature-sensitive expandable body 15 made of a shape memory alloy that closes the valve body 14, and a back spring 17 that returns the valve body 14 from the closed state to the open state when the temperature of the fluid reaches the steady operating temperature. has been done. Note that 13 is a flange portion of the valve body 14, and a through hole is provided around the flange portion. Further, 16 is a set screw provided to prevent the valve body 11 from loosening.

ところで、前記の如き構造の熱応動弁V0は連
通空所12の内部に、内蔵部材としては比較的大
型の弁体14を内蔵するから、連通空所12の内
径と内容積が流入口12aや流出口12bに比較
して極端に大きくなる。このように、連通空所1
2が急に大きくなつたものにおいては、内蔵部材
が乱流によつて障碍を受けるばかりでなく、配管
系中に水槌現象をもたらす原因となる。水槌現象
は必然的に感温伸縮体15に反復振動を与えるこ
ととなるが、この反復振動は長期使用による蓄積
によつて感温伸縮体15の形状記憶効果を減衰さ
せる。また流体の流れは、、感温伸縮体15の伸
長方向と一致しているので、その流動圧が感温伸
縮体15及び弁体14の閉作動に対して増幅干渉
するように作用する。従つて熱応動弁V0は流体
の温度が設定温度に達しないのに誤作動をするお
それがある。更に、流体が異常高温から定常使用
温度に低下したときは、感温伸縮体15の縮小と
バツクスプリング17の反発力とによつて弁体1
4が開放状態に復帰する必要があるが、この場合
の復帰作動は流体の流れ方向に逆行するから、復
帰作動の確実性が阻害される。しかも、弁本体1
1は、流入口側分体11aと流出口側分体11b
との結合構造になるものであるから、製作上余分
の工数を必要とする。
By the way, since the thermally responsive valve V 0 having the above structure has a relatively large valve body 14 as a built-in member inside the communication space 12, the inner diameter and internal volume of the communication space 12 are equal to the inlet 12a. It becomes extremely large compared to the outlet port 12b. In this way, the communication space 1
2 suddenly increases in size, the built-in members are not only disturbed by the turbulent flow, but also cause a water hammer phenomenon in the piping system. The water hammer phenomenon inevitably imparts repetitive vibrations to the temperature-sensitive stretchable body 15, but this repetitive vibration attenuates the shape memory effect of the temperature-sensitive stretchable body 15 due to accumulation due to long-term use. Further, since the flow of the fluid coincides with the direction of extension of the temperature-sensitive elastic body 15, the flow pressure acts to amplify and interfere with the closing operations of the temperature-sensitive elastic body 15 and the valve body 14. Therefore, there is a possibility that the thermally-responsive valve V 0 may malfunction even though the temperature of the fluid does not reach the set temperature. Furthermore, when the fluid drops from an abnormally high temperature to a normal operating temperature, the valve body 1 is compressed by the contraction of the temperature-sensitive expandable body 15 and the repulsive force of the back spring 17.
4 needs to return to the open state, but in this case the return operation is against the flow direction of the fluid, which impairs the reliability of the return operation. Moreover, the valve body 1
1 is an inlet side segment 11a and an outlet side segment 11b.
This requires extra man-hours to manufacture.

なお、形状記憶合金製の部材を用いた熱応動弁
には、前記の他に特開昭56−150680号公報に記載
されたものがあるが、これは弁本体の流入側と流
出側に、弁本体の内径より小内径の入口端部材と
出口端部材を螺着した点が異なるだけで、技術構
成の基本において前記実開昭56−56969号公報の
ものとそれ程のの差異はなく、従つてまた前記と
同様の問題を有している。
In addition to the above-mentioned heat-responsive valves using shape-memory alloy members, there is also one described in Japanese Patent Application Laid-Open No. 150680/1983, which has a valve body with a valve body on the inflow side and the outflow side. The only difference is that the inlet end member and the outlet end member, which have an inner diameter smaller than the inner diameter of the valve body, are screwed together, but the basic technical structure is not that different from that of the above-mentioned Utility Model Application Publication No. 56-56969. However, it also has the same problem as above.

〔解決手段とその作用〕[Means of solution and their effects]

前記従来の問題を解決するために、本考案にお
いて講じられた手段は、弁本体の流入口及び流出
口を含めて全長がほぼ同一内径となるように形成
された流体通路と、流体通路の側部に流体の流れ
方向とほぼ直角に設置された弁収納室と、流体通
路に対して進出退入し得る如く弁収納室に収納さ
れた弁体と、弁収納室の設置方向と一致して流体
通路の対壁側と弁体との間に係着された形状記憶
合金製の感温伸縮体とよりなり、流体の温度が設
定温度を超えたときの感温伸縮体の変位により弁
体が流体の流れに対して横断進出して流体通路を
遮断する構造の熱応動弁とした点にある。
In order to solve the above-mentioned conventional problems, the measures taken in the present invention include a fluid passage formed so that the entire length including the inlet and outlet of the valve body has approximately the same inner diameter, and a fluid passage on the side of the fluid passage. A valve storage chamber installed in the section substantially perpendicular to the fluid flow direction, a valve body stored in the valve storage chamber so as to be able to move in and out of the fluid passage, and a valve body installed in the valve storage chamber in a manner that corresponds to the installation direction of the valve storage chamber. It consists of a temperature-sensitive expandable body made of a shape memory alloy that is connected between the opposite wall side of the fluid passage and the valve body, and when the temperature of the fluid exceeds the set temperature, the valve body is displaced by the temperature-sensitive stretchable body. The thermally-responsive valve has a structure that extends across the flow of fluid and blocks the fluid passage.

本考案に係る熱応動弁(以下、本案熱応動弁と
いう)は、弁本体内の流体通路が流入口及び流出
口を含めて全長がほぼ同一内径となるように形成
されているから、乱流や反復振動の水槌現象によ
つて感温伸縮体の形状記憶効果が衰退するような
ことがないと共に、流体の乱流や水槌現象による
騒音を伴うこともない。また、定常温度の流体が
流れているときには、弁体は弁収納室に退入して
おり、流体通路内にあるのはコイル状の感温伸縮
体のみである。そして感温伸縮体の変位による作
動方向は流体の流れ方向と直交し、流体は感温伸
縮体のコイル螺間を抵抗なく流れるから、流体の
流動圧が感温伸縮体及び弁体の閉作動に対して増
幅干渉することはない。従つて熱応動弁は誤作動
をするようなことはなく、その作動も極めて円滑
である。更には、弁体が遮断状態から開通状態に
復帰させるときの作動も流体の流れに対して逆行
しない構造であるから、その作動が阻害されるこ
とはない。
The heat-responsive valve according to the present invention (hereinafter referred to as the heat-responsive valve of the present invention) is formed so that the entire length of the fluid passage within the valve body including the inlet and outlet has approximately the same inner diameter. The shape memory effect of the temperature-sensitive stretchable body does not deteriorate due to the water hammer phenomenon of repeated vibrations, and there is no noise caused by fluid turbulence or the water hammer phenomenon. Further, when a fluid at a steady temperature is flowing, the valve body is retracted into the valve storage chamber, and only the coiled temperature-sensitive expandable body is present in the fluid passage. The operating direction due to the displacement of the temperature-sensitive elastic body is perpendicular to the flow direction of the fluid, and since the fluid flows between the coil threads of the temperature-sensitive elastic body without resistance, the fluid flow pressure causes the temperature-sensitive elastic body and the valve body to close. There will be no amplification interference. Therefore, the thermally responsive valve does not malfunction and its operation is extremely smooth. Furthermore, since the structure is such that the operation of the valve body when returning from the shut-off state to the open state does not go against the flow of fluid, the operation is not hindered.

〔実施例〕〔Example〕

以下、本案熱応動弁を図面に基づいて説明す
る。
Hereinafter, the heat-responsive valve of the present invention will be explained based on the drawings.

第1図は、第1実施例になる本案熱応動弁V1
の断面図であつて、同図イは流体通路2が開通状
態にあるところを示し、同図ロは流体通路2が遮
断状態にあるところを示したものである。弁本体
1内には、同図において左側から右側へ流体通路
2が一直線状に貫通されており、該流体通路2は
左側の流入口2a及び右側の流出口2bを含めて
全長がほぼ同一内径である。また弁本体1内に
は、左右間の中央部に、流体通路2に対して直角
に交わる弁収納室3が穿設されている。弁収納室
3はその内径が流体通路2の内径より僅かに大き
な円筒形とした。弁収納室3内には、その穿設方
向に摺動して進出・退入する弁体4が収納されて
いる。弁体4は、有底中空のシリンダ状とした。
流体通路2の弁収納室3と対向する壁側には、閉
止蓋6aが着設されており、該閉止蓋6aと弁体
4の底部との間にはコイル状の感温伸縮体5が係
着されている。感温伸縮体5は、ニツケル・チタ
ン合金、銅・亜鉛合金その他の形状記憶合金製よ
りなり、流体通路2中を流れる流体の温度が設定
温度以下であるときには伸長状態を維持し、設定
温度(例えば50℃)を超える高温となよたときに
は、縮小するように金属相変態処理が施されてい
る。感温伸縮体5が伸長状態にあるときは、弁体
4は弁収納室3に退入して流体通路2は開通状態
(第1図イ参照)におかれ、感温伸縮体5が縮小
するときには、弁体4は弁収納室3から進出して
流体通路2を遮断する(第1図ロ参照)。第1図
イ,ロにおいて7は、弁体4と弁収納室3の盲蓋
6bとの間に係着されたバツクスプリングであ
り、流体通路2を流れる高温流体が遮断されて設
定温度以下になつたときに、弁体4が弁収納室3
内へ退入するように付勢されてい。また、9a,
9bは弁本体1の左右両端部に刻設された雄ねじ
と雌ねじである。このようしておけば、熱応動弁
V1は既設の配管系に対しても簡単に取付けるこ
とができる。
Figure 1 shows the heat-responsive valve V1 according to the first embodiment.
FIG. 2 is a sectional view of FIG. 1, in which A shows the fluid passage 2 in an open state, and B shows the fluid passage 2 in a closed state. A fluid passage 2 passes through the valve body 1 in a straight line from the left side to the right side in the same figure, and the entire length of the fluid passage 2 including the left inlet 2a and the right outlet 2b has approximately the same inner diameter. It is. Further, in the valve body 1, a valve storage chamber 3 is bored in the center between the left and right sides and intersects the fluid passage 2 at right angles. The valve storage chamber 3 has a cylindrical shape whose inner diameter is slightly larger than the inner diameter of the fluid passage 2. A valve body 4 that slides in and out of the valve housing chamber 3 is housed in the valve housing chamber 3 . The valve body 4 was shaped like a hollow cylinder with a bottom.
A closing lid 6a is installed on the wall side of the fluid passage 2 facing the valve storage chamber 3, and a coiled temperature-sensitive expandable body 5 is disposed between the closing lid 6a and the bottom of the valve body 4. It is attached. The temperature-sensitive expandable body 5 is made of a shape memory alloy such as a nickel-titanium alloy, a copper-zinc alloy, and maintains an expanded state when the temperature of the fluid flowing through the fluid passage 2 is below the set temperature, and reaches the set temperature ( For example, when exposed to high temperatures (over 50°C), metal phase transformation treatment is applied to shrink the size. When the temperature-sensitive elastic body 5 is in the extended state, the valve body 4 is retracted into the valve storage chamber 3, the fluid passage 2 is placed in the open state (see Fig. 1A), and the temperature-sensitive elastic body 5 is contracted. At this time, the valve body 4 advances from the valve storage chamber 3 and blocks the fluid passage 2 (see FIG. 1B). In FIGS. 1A and 1B, 7 is a back spring that is engaged between the valve body 4 and the blind cover 6b of the valve storage chamber 3, and the high temperature fluid flowing through the fluid passage 2 is blocked and the temperature drops below the set temperature. When worn out, the valve body 4 is placed in the valve storage chamber 3.
energized to move in and out. Also, 9a,
9b is a male thread and a female thread carved on both left and right ends of the valve body 1. If you do this, the heat-responsive valve
V1 can be easily installed into existing piping systems.

次に、第1実施例になる熱応動弁V1の作動状
態について説明する。熱応動弁V1を流通する流
体の温度が設定温度以下であるときは、感温伸縮
体5は、第1図イに示す如く伸長した状態にある
ため、流体は流体通路2の流入口2aから流出口
2bへスムーズに流通する。しかし、何らかの原
因により設定温度を超える高温流体が流入されて
ときは、感温伸縮体5がその温度を感知し、金属
相変態を起こして縮小する。その結果、弁収納室
3内に収納されていた弁体4は、第1図ロに示す
如く流体の流れ方向を直角に横切るように流体通
路2へ進出し、該流体通路2を遮断する。その
後、遮断された流体通路2を開通させるには、弁
本体1を冷却してやるか、弁体4より上流側に滞
留している高温流体を排出すればよい。そうする
と、流体通路2内に温度降下し、感温伸縮体5の
収縮力はバツクスプリング7の引張力以下に弱化
し、弁体4は弁収納室3へ退入して第1図イの状
態に復帰する。上述の如く、弁体4の作動方向は
流体通路2中の流体の流れ方向とほぼ直角となる
ようになされているから、弁体4の作動時におけ
る抵抗は該弁体4と弁収納室3内壁との滑り抵抗
のみであると言つてもよく、しかも感温伸縮体5
の材料たる形状記憶合金はその金属相変態時には
瞬間的に強い力を出して変形するので、弁体4は
流体通路2を敏速に遮断し、不時の高温流体によ
つて惹起される事故を防止する。
Next, the operating state of the thermally responsive valve V1 according to the first embodiment will be explained. When the temperature of the fluid flowing through the thermally responsive valve V1 is below the set temperature, the temperature-sensitive expandable body 5 is in an expanded state as shown in FIG. It flows smoothly to the outlet 2b. However, when a high-temperature fluid exceeding the set temperature is introduced for some reason, the temperature-sensitive expandable body 5 senses the temperature, undergoes metal phase transformation, and shrinks. As a result, the valve body 4 housed in the valve housing chamber 3 advances into the fluid passage 2 at right angles to the fluid flow direction, as shown in FIG. 1B, and blocks the fluid passage 2. After that, in order to open the blocked fluid passage 2, the valve body 1 may be cooled, or the high-temperature fluid remaining upstream of the valve body 4 may be discharged. Then, the temperature in the fluid passage 2 drops, the contractile force of the temperature-sensitive elastic body 5 weakens below the tensile force of the back spring 7, and the valve body 4 retreats into the valve housing chamber 3, resulting in the state shown in FIG. 1A. to return to. As mentioned above, since the operating direction of the valve body 4 is made to be approximately perpendicular to the flow direction of the fluid in the fluid passage 2, the resistance when the valve body 4 is operated is due to the resistance between the valve body 4 and the valve storage chamber 3. It can be said that it only provides slip resistance against the inner wall, and moreover, the temperature-sensitive elastic body 5
The shape memory alloy used as the material deforms by instantaneously exerting a strong force during its metallic phase transformation, so the valve body 4 quickly blocks the fluid passage 2 and prevents accidents caused by unexpected high-temperature fluid. To prevent.

第2図は第2実施例になる本案熱応動弁V2の
断面図であり、同図イは流体通路2が開通状態に
あるところを示し、同図ロは流体通路2が遮断状
態にあるところを示したものである。第2実施例
の熱応動弁V2が前述した第1実施例の熱応動弁
V1と最も異なる点は、感温伸縮体5を可逆的に
金属相変態するよう処理された形状記憶合金製
(二方向性形状記憶合金)で形成したところにあ
る。この場合の感温伸縮体5は、設定温度以下の
温度における伸長状態と設定温度を超える温度で
の縮小状態との間で正逆いずれの方向にも形状変
化するから、第1実施例の熱応動弁V1に用いら
れていたバツクスプリング7は不要である。これ
に伴つて弁収納室3は有底円筒形とし、バツクス
プリング7を係着していた盲蓋6bも省略した。
その他の構成や作動については、第1実施例のも
のと変るところはないので、それらの説明は省略
する。
FIG. 2 is a cross-sectional view of the heat-responsive valve V2 according to the second embodiment of the present invention, where A shows the fluid passage 2 in the open state, and B shows the fluid passage 2 in the closed state. This is what is shown. The thermally responsive valve V2 of the second embodiment is the thermally responsive valve of the first embodiment described above.
The biggest difference from V1 is that the temperature-sensitive stretchable body 5 is made of a shape memory alloy (bidirectional shape memory alloy) treated to undergo reversible metal phase transformation. In this case, the temperature-sensitive stretchable body 5 changes shape in either the forward or reverse direction between an expanded state at a temperature below the set temperature and a contracted state at a temperature exceeding the set temperature. The back spring 7 used in the response valve V1 is unnecessary. In accordance with this, the valve storage chamber 3 is made into a cylindrical shape with a bottom, and the blind lid 6b to which the back spring 7 is attached is also omitted.
Since the other configurations and operations are the same as those of the first embodiment, their explanations will be omitted.

第3図は第3実施例になる本案熱応動弁V3の
断面図であり、同図イは流体通路2が開通状態に
あるところを示し、同図ロは流体通路2が遮断状
態にあるところを示したものである。第3実施例
の熱応動弁V3に用いられた感温伸縮体5は、第
1実施例の場合と同様に、設定温度を超える高温
流体を感知したときに縮小する不可逆的形状記憶
合金(一方向性形状記憶合金)で形成されてい
る。そして、弁体4を流体通路2の遮断状態から
開通状態に復帰させるバツクスプリング7の代り
にリセツト棒8を用いた。リセツト棒8は、その
下端を弁体4の底部へ螺着するなどして立設し、
その上端は閉止蓋6aを水密的に貫通させて弁本
体1の外部に突出させている。感温伸縮体5が高
温の流体を感知して弁体4が流体通路2を遮断す
る状態にあるときには、リセツト棒8の上端が弁
本体1の外部に長く突出している(第3図ロ参
照)ので温度降下後に弁体4を弁収納室3へ退入
復帰させるには該リセツト棒8を押し込めばよ
い。そうすると弁体4は第3図イに示す如く弁収
納室3内に収納される。その他の構成や作動につ
いては、第1実施例及び第2実施例のものと同様
であるので、それらの説明は省略する。
FIG. 3 is a cross-sectional view of the heat-responsive valve V3 according to the third embodiment of the present invention, where A shows the fluid passage 2 in the open state, and B shows the fluid passage 2 in the closed state. This is what is shown. As in the case of the first embodiment, the temperature-sensitive elastic body 5 used in the thermally responsive valve V3 of the third embodiment is an irreversible shape-memory alloy (one-piece) that contracts when it senses a high-temperature fluid exceeding the set temperature. oriented shape memory alloy). A reset rod 8 is used in place of the back spring 7 that returns the valve body 4 from the closed state to the open state of the fluid passage 2. The reset rod 8 is erected by screwing its lower end to the bottom of the valve body 4,
Its upper end penetrates the closing lid 6a in a watertight manner and projects to the outside of the valve body 1. When the temperature-sensitive expandable body 5 senses high-temperature fluid and the valve body 4 is in a state of blocking the fluid passage 2, the upper end of the reset rod 8 protrudes to the outside of the valve body 1 (see FIG. 3B). ) Therefore, in order to move the valve body 4 back into and out of the valve storage chamber 3 after the temperature has fallen, the reset rod 8 can be pushed in. Then, the valve body 4 is housed in the valve housing chamber 3 as shown in FIG. 3A. The other configurations and operations are the same as those of the first and second embodiments, so their explanations will be omitted.

第4図は第4実施例になる本熱応動弁V4の断
面図であり、同図イは流体通路2が開通状態にあ
るところを示し、同図ロは流体通路2が遮断状態
にあるところを示したものである。第4実施例の
熱応動弁V4が第1乃第3実施例の熱応動弁に比
して一見明瞭な相違点は、流体通路2を屈曲して
設け、弁本体1の外観形状を対称膨出させたとこ
ろである。第1乃至第3実施例の弁本体1の外観
形状は、いずれも弁収納室3を設けた側に偏して
膨出している。ところが、配管系中の設置場所に
よつては、このような一方側に偏して膨出する形
状の熱応動弁を設置するのが憚られることがあ
る。そこで、第4実施例の熱応動弁V4は、その
ような設置場所に用いることができるように、弁
本体1の外観形状を改変したものである。流体通
路2が屈曲していても、その内径が流入口2a及
び流出口2bを含めて全長にわたりほぼ同一であ
り、また弁体4の作動方向が流体の流れ方向に対
してほぼ直角であることに変りはなく、その他の
構成や作動状態は第1実施例の熱応動弁V1と殆
ど変るところはない。従つて煩雑を避けるためそ
れらについては説明を省略する。
FIG. 4 is a cross-sectional view of the thermally responsive valve V4 according to the fourth embodiment, where A shows the fluid passage 2 in the open state, and B shows the fluid passage 2 in the closed state. This is what is shown. The apparent difference between the thermally responsive valve V4 of the fourth embodiment and the thermally responsive valves of the first to third embodiments is that the fluid passage 2 is bent and the external shape of the valve body 1 is symmetrically expanded. I just let it out. The external shape of the valve body 1 of the first to third embodiments all bulges toward the side where the valve storage chamber 3 is provided. However, depending on the installation location in the piping system, it may be difficult to install such a heat-responsive valve that bulges out to one side. Therefore, the thermally responsive valve V4 of the fourth embodiment has a modified external shape of the valve body 1 so that it can be used in such an installation location. Even if the fluid passage 2 is bent, its inner diameter is approximately the same over its entire length including the inlet 2a and outlet 2b, and the operating direction of the valve body 4 is approximately perpendicular to the fluid flow direction. There is no difference in other configurations and operating conditions from the thermally responsive valve V1 of the first embodiment. Therefore, to avoid complexity, descriptions of them will be omitted.

〔考案の効果〕[Effect of idea]

本案熱応動弁は、前記の如き構成になるもので
あるから、次の如き優れた効果を奏する。従つ
て、例えば、シヤワーホースとシヤワーヘツドと
の接合部や、シヤワーホースと湯水混合栓との接
合部等に取付けることになり、シヤワーへ誤つて
熱湯が流入するような際に、即座に熱湯を遮断で
きる安全装置付きシヤワー構造を得ることができ
る等実用価値が極めて大である。
Since the heat-responsive valve of the present invention has the above-mentioned configuration, it exhibits the following excellent effects. Therefore, it must be installed, for example, at the joint between the shower hose and the shower head, or the joint between the shower hose and the hot water mixer faucet, so that if hot water accidentally flows into the shower, the hot water can be immediately shut off. The practical value is extremely great, such as being able to obtain a shower structure with a safety device.

弁本体内の流体通路は、流入口及び流出口を
含めて全長がほぼ同一内径となるように形成さ
れているので、流体の乱流や水槌現象を誘発す
るおそれがない。従つて形状記憶合金で形成さ
れた感温伸縮体の形状記憶効果は衰退すること
がないので、耐用年数が長いばかりでなく、ま
た流体の乱流や水槌現象による騒音を伴うこと
もない。
Since the fluid passage within the valve body is formed so that its entire length including the inlet and outlet has approximately the same inner diameter, there is no risk of inducing fluid turbulence or water hammer phenomenon. Therefore, the shape memory effect of the temperature-sensitive stretchable body made of a shape memory alloy does not deteriorate, so that it not only has a long service life, but also does not generate noise due to fluid turbulence or water hammer phenomenon.

流体通路に定常温度の流体が流れているとき
は、弁体は弁収納室に退入しており、流体通路
内にあるのは流体抵抗の小さなコイル状の感温
伸縮体のみである。しかも感温伸縮体の変位に
よる作動方向及び弁体の作動方向は流体の流れ
方向と直交しているので、流体の流動圧が感温
伸縮体及び弁体の閉方向作動に対して増幅干渉
することもない。従つて熱応動弁は誤作動する
おそれがなく、その作動も極めて円滑であり、
かつ信頼性が高い。
When a fluid at a steady temperature is flowing through the fluid passage, the valve body is retracted into the valve storage chamber, and only the coil-shaped temperature-sensitive expandable body with small fluid resistance is present in the fluid passage. Moreover, since the operating direction due to the displacement of the thermosensitive elastic body and the operating direction of the valve body are perpendicular to the fluid flow direction, the flow pressure of the fluid amplifies and interferes with the closing direction operation of the thermosensitive elastic body and the valve body. Not at all. Therefore, there is no risk of thermally activated valves malfunctioning, and their operation is extremely smooth.
and highly reliable.

弁体が流体通路の遮断状態から開通状態に復
帰するときも、流体の流れに対して逆行しない
から、復帰作動も円滑正確である。
Even when the valve body returns from the closed state to the open state of the fluid passage, the return operation is smooth and accurate because it does not move against the fluid flow.

弁本体は一体形成され、かつ内部の流体通路
と弁収納室とは、それぞれ全長にわたつて同一
内径に設けられていり、かつ弁収納室は流体の
流れに対して直交するという単純形状であるの
で、弁本体の形成加工は簡単かつ少ない工数で
行うことができ、製作能率の向上に寄与する。
The valve body is integrally formed, and the internal fluid passage and valve storage chamber have the same inner diameter over the entire length, and the valve storage chamber has a simple shape that is perpendicular to the flow of fluid. Therefore, forming the valve body can be performed easily and with fewer man-hours, contributing to improved manufacturing efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本考案に係る熱応動弁の断
面図であつて、第1図は第1実施例、第2図は第
2実施例、第3図は第3実施例、第4図は第4実
施例であり、それら各図のイはいずれも流体通路
が開通状態にあるところを示し、各図のロはいず
れも流体通路が遮断状態にあるところを示すもの
である。第5図は従来公知となつている熱応動弁
の断面図である。 1……弁本体、2……流体通路、2a……流入
口、2b……流出口、3……弁収納室、4……弁
体、5……感温伸縮体、6a……閉止蓋、6ab
……盲蓋、7……バツクスプリング、8……リセ
ツト棒、9a……雄ねじ、9b……雌ねじ。
1 to 4 are cross-sectional views of the thermally responsive valve according to the present invention, in which FIG. 1 shows the first embodiment, FIG. 2 shows the second embodiment, and FIG. 3 shows the third embodiment, and FIG. Figure 4 shows the fourth embodiment, and in each of these figures A shows the fluid passage in an open state, and in each figure B shows the fluid passage in a blocked state. FIG. 5 is a sectional view of a conventionally known thermally responsive valve. DESCRIPTION OF SYMBOLS 1...Valve body, 2...Fluid passage, 2a...Inflow port, 2b...Outflow port, 3...Valve storage chamber, 4...Valve body, 5...Temperature sensitive elastic body, 6a...Closing lid ,6ab
...Blind lid, 7...Back spring, 8...Reset rod, 9a...Male thread, 9b...Female thread.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 弁本体の流入口及び流出口を含めて全長がほぼ
同一内径となるように形成された流体通路と、流
体通路の側部に流体の流れ方向とほぼ直角に設置
された弁収納室と、流体通路に対して進出退入し
得る如く弁収納室に収納された弁体と、弁収納室
の設置方向と一致して流体通路の対壁側と弁体と
の間に係着された形状記憶合金製の感温伸縮体と
よりなり、流体の温度が設定温度を超えたときの
感温伸縮体の変位により弁体が流体の流れに対し
て横断進出して流体通路を遮断する如くなされて
いることを特徴とする熱応動弁。
a valve housing chamber installed on the side of the fluid passage at a position substantially perpendicular to the direction of fluid flow; a valve element housed in the valve housing chamber so as to be able to advance and retreat from the fluid passage; and a temperature-sensitive expandable body made of a shape memory alloy and fitted between the valve element and an opposite wall of the fluid passage in the same direction as the valve housing chamber, wherein when the temperature of the fluid exceeds a set temperature, the temperature-sensitive expandable body is displaced so that the valve element advances and advances across the flow of the fluid to close the fluid passage.
JP15836182U 1982-10-19 1982-10-19 thermally actuated valve Granted JPS5962370U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15836182U JPS5962370U (en) 1982-10-19 1982-10-19 thermally actuated valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15836182U JPS5962370U (en) 1982-10-19 1982-10-19 thermally actuated valve

Publications (2)

Publication Number Publication Date
JPS5962370U JPS5962370U (en) 1984-04-24
JPS6141500Y2 true JPS6141500Y2 (en) 1986-11-26

Family

ID=30348886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15836182U Granted JPS5962370U (en) 1982-10-19 1982-10-19 thermally actuated valve

Country Status (1)

Country Link
JP (1) JPS5962370U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071066B2 (en) * 1988-09-05 1995-01-11 宇部興産株式会社 Hot water prevention device
CA2034974A1 (en) * 1990-02-20 1991-08-21 Ronald E. Jeffress Energy conservation and anti-scald/burn single handle valve construction

Also Published As

Publication number Publication date
JPS5962370U (en) 1984-04-24

Similar Documents

Publication Publication Date Title
US4917294A (en) Shut-off valve for scald prevention
US4778104A (en) Temperature responsive line valve
AU2006204678B2 (en) Temperature-controlled valve
AU684734B2 (en) Temperature responsive, pilot operated line valve with shapememory alloy actuator
JPH01320388A (en) Temperature responding valve
EP1421309B1 (en) Temperature actuated valve
JP2005127499A (en) Flow channel switching valve and shower device
JPS6141500Y2 (en)
US5397053A (en) Temperature responsive, pilot operated line valve with shape memory alloy actuator
US20230183953A1 (en) Anti-scald device with shape memory spring
US4402455A (en) Automatic fluid control assembly
US5516077A (en) Relief valve with integral drain line coupling
JPS6135246Y2 (en)
JPH0127311B2 (en)
JPH039354B2 (en)
US9292020B2 (en) Fail safe engine coolant thermostat
KR100742656B1 (en) Automatic valve for adjustale temperature
US20100282191A1 (en) Fail safe engine coolant thermostat
US4948041A (en) Thermostatic garden hose protection device
JP2017172276A (en) Antifreezing device for faucet
US5642859A (en) Temperature-sensitive safety valve assembly
CN113614343A (en) Constant temperature device
CA2175790C (en) Temperature responsive, pilot operated line valve with shape memory alloy actuator
JP2004108410A (en) Check valve
JPH0514066Y2 (en)