JPH0127311B2 - - Google Patents

Info

Publication number
JPH0127311B2
JPH0127311B2 JP55081951A JP8195180A JPH0127311B2 JP H0127311 B2 JPH0127311 B2 JP H0127311B2 JP 55081951 A JP55081951 A JP 55081951A JP 8195180 A JP8195180 A JP 8195180A JP H0127311 B2 JPH0127311 B2 JP H0127311B2
Authority
JP
Japan
Prior art keywords
valve
temperature
shape
valve body
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55081951A
Other languages
Japanese (ja)
Other versions
JPS579373A (en
Inventor
Katsuji Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP8195180A priority Critical patent/JPS579373A/en
Publication of JPS579373A publication Critical patent/JPS579373A/en
Publication of JPH0127311B2 publication Critical patent/JPH0127311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 本発明は感温応動素子を有し流体の温度変化に
より開閉する温度応動弁に関する。弁体が弁口を
開閉する作用を生ぜしめる感温応動素子として、
従来、バイメタルが用いられていた。バイメタル
は温度に応じて変型量が比例的に変化するため、
弁手段の開閉操作には大きな温度差が必要である
とともに、弁手段が微小開弁の状態で長時間維持
され弁体や弁座が侵食される危険性があつた。ま
た、バイメタルは、変形する際の操作力が小さい
ため大きな弁手段の開閉に不適であり、自己崩壊
を起こすので耐久性がなく、コスト的にも高くつ
く。さらに、弁体が弁口を開閉する作用を生ぜし
める感温応動素子を、該素子を筐体内に接合する
ための接合部材を用いて筐体内に接合すると、筐
体内の構造が複雑になりそれだけ故障も多くな
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature-responsive valve that has a temperature-sensitive element and opens and closes according to changes in the temperature of a fluid. As a temperature-sensitive element that causes the valve body to open and close the valve port,
Conventionally, bimetal was used. Since the amount of deformation of bimetals changes proportionally depending on the temperature,
Opening and closing operations of the valve means require a large temperature difference, and the valve means is maintained in a slightly opened state for a long time, which poses a risk of erosion of the valve body and valve seat. Furthermore, bimetals require a small operating force when deformed, making them unsuitable for opening and closing large valve means, and self-collapse, resulting in poor durability and high cost. Furthermore, if the temperature-sensitive element that causes the valve body to open and close the valve opening is joined into the housing using a joining member for joining the element into the housing, the structure inside the housing becomes complicated. There will also be more breakdowns.

上記事情に鑑みて、本発明は、温度応動弁の感
温応動素子として形状記憶合金を用いることによ
り、該応動素子が変態温度を境に小さな温度差で
瞬間的に形状変化し侵食の危険がなく、変形する
際の操作力が大きく、大きい弁手段にでも適用で
き、耐久性があり、コスト的にも安い温度応動弁
を得るとともに、さらに、感温応動素子を筐体と
弁座のあいだに挟み込むことにより、構造が簡単
で故障のない温度応動弁を得ることを目的とす
る。
In view of the above circumstances, the present invention uses a shape memory alloy as a temperature-sensitive element of a temperature-responsive valve, so that the shape of the element changes instantaneously with a small temperature difference beyond the transformation temperature, thereby reducing the risk of corrosion. It is possible to obtain a temperature-responsive valve that requires a large operating force when deformed, can be applied to large valve means, is durable, and is inexpensive in terms of cost. The purpose is to obtain a temperature-responsive valve with a simple structure and no failures by sandwiching the valve between the two.

次に図示の実施例に基づいて詳細に説明する。 Next, a detailed explanation will be given based on the illustrated embodiment.

本体1と蓋体2がガスケツト4を介して螺着し
筐体が形成される。筐体内には弁室9が形成され
る。本体1には流体を弁室9に導く流入口8が開
口し、蓋体2には流体を外部へ流出する流出口1
1が開口する。弁室9と流出口11を連通する弁
口10を形成する弁座3が蓋体2と螺着する。弁
室9内には、形状記憶合金を用いてほぼコの字型
に形成した感温応動素子6がその一端で蓋体2と
弁室3のあいだに挟み込まれる。弁室6内には、
球形の弁体5が自由状態で収容される。弁体5と
感温応動素子6とは接合されていない。感温応動
素子6は弁室9内の流体の温度により変形する。
弁体5は流体圧力により、弁座3に着座し弁室9
と弁口10を閉塞したり、感温応動素子6の変形
により、弁座3より離れた弁室9内に応動したり
する。
A main body 1 and a lid 2 are screwed together via a gasket 4 to form a housing. A valve chamber 9 is formed within the housing. The main body 1 has an inlet 8 that leads the fluid to the valve chamber 9, and the lid 2 has an outlet 1 that allows the fluid to flow out.
1 opens. A valve seat 3 forming a valve port 10 that communicates the valve chamber 9 and the outlet 11 is screwed onto the lid body 2. Inside the valve chamber 9, a temperature-sensitive response element 6 formed in a substantially U-shape using a shape memory alloy is sandwiched between the lid body 2 and the valve chamber 3 at one end thereof. Inside the valve chamber 6,
A spherical valve body 5 is accommodated in a free state. The valve body 5 and the temperature sensitive response element 6 are not joined. The temperature sensitive response element 6 deforms depending on the temperature of the fluid within the valve chamber 9.
The valve body 5 is seated on the valve seat 3 due to fluid pressure, and the valve chamber 9
The valve port 10 may be closed, or the temperature-sensitive response element 6 may be deformed to respond to the inside of the valve chamber 9 located away from the valve seat 3.

感温応動素子6に用いた形状記憶合金は、チタ
ン―ニツケル合金、銅―アルミ―ニツケル合金等
で、加熱冷却されて温度が変化すると、母相とマ
ルテンサイト相の間を可逆的に変態し、母相で記
憶された形状に変形する。そして、本実施例で
は、加熱されて母相に変態した時に実線で示す形
状に変形し、冷却されてマルテンサイト相に変態
した時に二点鎖線で示す形状に可逆的に形状変化
する板状の素子を用いる。弁体5は弁口10を完
全に閉塞できる様に高精度に加工する。
The shape memory alloy used for the temperature-sensitive element 6 is a titanium-nickel alloy, a copper-aluminum-nickel alloy, etc., and when heated and cooled and the temperature changes, it undergoes a reversible transformation between the matrix phase and the martensitic phase. , deforms into the shape memorized in the matrix. In this example, when heated and transformed into a matrix phase, the plate shape deforms into the shape shown by the solid line, and when cooled and transformed into the martensitic phase, the shape reversibly changes into the shape shown by the two-dot chain line. using elements. The valve body 5 is machined with high precision so as to completely close the valve port 10.

次に、上記実施例の作用を説明する。流入口8
から弁室9内に流入する流体が所定温度、即ち変
態温度以下の場合、素子6は冷却されて二点鎖線
で示す如く変形し、弁体5が弁室9内に流入する
流体の圧力により弁口10を閉塞しようとするの
を妨げ、開弁状態を維持する。弁室9内に流入す
る流体が所定温度以上の場合、素子6は加熱され
て実線で示す如く変形し、弁体5は弁室9内に流
入する流体の圧力により弁口10を閉塞する。
Next, the operation of the above embodiment will be explained. Inflow port 8
When the fluid flowing into the valve chamber 9 is at a predetermined temperature, that is, below the transformation temperature, the element 6 is cooled and deforms as shown by the two-dot chain line, and the valve body 5 is deformed by the pressure of the fluid flowing into the valve chamber 9. This prevents attempts to close the valve port 10 and maintains the valve open state. When the temperature of the fluid flowing into the valve chamber 9 is higher than a predetermined temperature, the element 6 is heated and deforms as shown by the solid line, and the valve body 5 closes the valve port 10 due to the pressure of the fluid flowing into the valve chamber 9.

素子6の実線で示す如く形状と二点鎖線で示す
如く形状との変形は、所定温度、即ち変態温度を
境に小さな温度差で瞬間的に形状変化するため、
弁体5と弁座3が微小開弁の状態で長時間維持さ
れ弁体5や弁座3が流体により侵食されるという
危険性がない。また、形状変化の際の操作力が大
きいので、弁体5が大きい場合にも利用できる。
The shape of the element 6 is deformed between the shape shown by the solid line and the shape shown by the two-dot chain line because the shape changes instantaneously with a small temperature difference between a predetermined temperature, that is, the transformation temperature.
The valve body 5 and the valve seat 3 are maintained in a slightly open state for a long time, and there is no risk that the valve body 5 or the valve seat 3 will be eroded by the fluid. Furthermore, since the operating force required to change the shape is large, it can be used even when the valve body 5 is large.

また、形状記憶合金を用いた素子6は、板状の
ものを用いて、図に示す如くコの字型にし、一端
を蓋体2と弁座3の間に挟み込んで固定すること
により、素子6を弁室9内に固定する接合部材が
不必要になり、また、弁体5と素子6を接合しな
いことにより、弁体5を素子6に固定する接合部
材が不要になり、構造が簡単でそれだけ故障のな
いものになる。
In addition, the element 6 using a shape memory alloy is formed into a U-shape as shown in the figure using a plate-like element, and is fixed by sandwiching one end between the lid body 2 and the valve seat 3. 6 into the valve chamber 9 is no longer necessary, and by not joining the valve body 5 and the element 6, there is no need for a joint member to fix the valve body 5 to the element 6, and the structure is simplified. This will make it more trouble-free.

また、形状記憶合金を用いた素子6はその他端
で、弁口10の軸に対してほぼ直角方向から弁体
5を開弁するので、開弁に要する操作力は小さな
もので好く、弁体5がより大きな場合にも利用で
きる。
In addition, since the element 6 using a shape memory alloy opens the valve body 5 at the other end from a direction substantially perpendicular to the axis of the valve port 10, it is preferable that the operating force required to open the valve is small. It can also be used when the body 5 is larger.

弁室9内に自由状態で収容した球形の弁体5で
弁口10を開閉するので、弁体5の外表面の全部
を弁口10とのシール面として利用でき、弁体5
の摩耗による寿命の低下を防止できる。
Since the valve port 10 is opened and closed by the spherical valve body 5 accommodated in the valve chamber 9 in a free state, the entire outer surface of the valve body 5 can be used as a sealing surface with the valve port 10.
This prevents the lifespan from decreasing due to wear.

上記第1図の実施例は、流体が所定温度以下の
時に開弁してこの流体を排出し、所定温度以上の
時に閉弁する、例えばスチームトラツプの如き用
途に用いたものである。また、この開閉弁を逆に
し、流体が所定温度以上の時にこの流体を排出す
る温度応動弁に適用してもよい。この場合、感温
応動素子を形成する形状記憶合金には、流体が高
温時に第1図に於いて二点鎖線で示す如く変形
し、低温時に実線で示す如く変形するものを用い
る。
The embodiment shown in FIG. 1 is used in applications such as steam traps, in which the valve is opened to discharge the fluid when the temperature is below a predetermined temperature, and closed when the temperature is above a predetermined temperature. Moreover, this on-off valve may be reversed and applied to a temperature-responsive valve that discharges fluid when the fluid is at a predetermined temperature or higher. In this case, the shape memory alloy forming the temperature-sensitive element is one that deforms as shown by the chain double-dashed line in FIG. 1 when the fluid is at high temperature, and deforms as shown by the solid line when the fluid is at low temperature.

このように本発明の温度応動弁は、弁体が弁口
を開閉する作用を生ぜしめる感温応動素子として
形状記憶合金を用いることにより、流体の小さな
温度差で瞬間的に形状変化し、侵食の危険がな
く、大きい弁手段にも適用でき、耐久性があり、
コスト的にも安い温度応動弁を得ることができ
る。
In this way, the temperature-responsive valve of the present invention uses a shape-memory alloy as a temperature-responsive element that causes the valve body to open and close the valve opening, so that the shape changes instantaneously with a small temperature difference in the fluid, preventing erosion. No risk of damage, applicable to large valve means, durable,
It is possible to obtain a temperature-responsive valve that is inexpensive in terms of cost.

また、温度応動素子を筐体と弁座のあいだに挟
み込むことにより、また、温度応動素子と弁体と
を接合しないことにより、構造が簡単で故障のな
い温度応動弁を得ることができる。
Moreover, by sandwiching the temperature-responsive element between the housing and the valve seat, and by not joining the temperature-responsive element and the valve body, a temperature-responsive valve with a simple structure and no failure can be obtained.

また、温度応動素子は弁口の軸に対してほぼ直
角方向から弁体を開弁することにより、小さな操
作力で開弁でき、より大きい弁手段にも適用する
ことができる。
Moreover, the temperature responsive element can open the valve with a small operating force by opening the valve body from a direction substantially perpendicular to the axis of the valve port, and can be applied to larger valve means.

さらに、弁体はその外表面の全部を、弁口を開
閉するシール面とすることができるので寿命が長
くなる。
Furthermore, since the entire outer surface of the valve body can be used as a sealing surface for opening and closing the valve port, its lifespan is extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の温度応動弁の断面図
である。 1:本体、2:蓋体、3:弁座、5:弁体、
6:感温応動素子、8:流入口、9:弁室、1
0:弁口、11:流出口。
FIG. 1 is a sectional view of a temperature-responsive valve according to an embodiment of the present invention. 1: Main body, 2: Lid body, 3: Valve seat, 5: Valve body,
6: Temperature sensitive element, 8: Inlet, 9: Valve chamber, 1
0: Valve port, 11: Outlet port.

Claims (1)

【特許請求の範囲】[Claims] 1 流入口、弁室、および流出口を形成する筐
体、弁室と流出口を連通する弁口を形成する弁
座、弁室内に自由状態で収容され弁口を開閉する
球形の弁体、および弁体が弁口を開弁する作用を
生ぜしめる感温応動素子であつて、ほぼコの字型
に形成された形状記憶合金から成り一端が筐体と
弁座のあいだに挟み込まれ他端が弁口の軸に対し
てほぼ直角方向から弁体を開弁するものから成る
ことを特長とする温度応動弁。
1. A casing that forms an inlet, a valve chamber, and an outlet; a valve seat that forms a valve that communicates the valve chamber and the outlet; a spherical valve body that is freely accommodated in the valve chamber and opens and closes the valve; and a temperature-sensitive response element that causes the valve body to open the valve port, and is made of a shape memory alloy formed in a substantially U-shape, with one end sandwiched between the housing and the valve seat, and the other end. A temperature-responsive valve characterized in that the valve element is opened in a direction substantially perpendicular to the axis of the valve port.
JP8195180A 1980-06-16 1980-06-16 Heatsensitive valve Granted JPS579373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8195180A JPS579373A (en) 1980-06-16 1980-06-16 Heatsensitive valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8195180A JPS579373A (en) 1980-06-16 1980-06-16 Heatsensitive valve

Publications (2)

Publication Number Publication Date
JPS579373A JPS579373A (en) 1982-01-18
JPH0127311B2 true JPH0127311B2 (en) 1989-05-29

Family

ID=13760799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8195180A Granted JPS579373A (en) 1980-06-16 1980-06-16 Heatsensitive valve

Country Status (1)

Country Link
JP (1) JPS579373A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181177U (en) * 1985-05-01 1986-11-12
KR20060002655A (en) * 2004-07-03 2006-01-09 곽시연 Automatic valve
JP2006112441A (en) * 2004-10-12 2006-04-27 Motoyama Eng Works Ltd Valve mechanism using bimetal and air vent valve of steam trap device
JP5269730B2 (en) * 2009-09-15 2013-08-21 株式会社テイエルブイ Thermally responsive steam trap
JP5269738B2 (en) * 2009-10-15 2013-08-21 株式会社テイエルブイ Thermally responsive steam trap
CN105805402B (en) * 2016-05-12 2018-05-15 内蒙古科技大学 A kind of Automatic temp. adjusting valve
CN108916428B (en) * 2018-08-10 2019-08-02 长沙开尔文能源技术工程有限公司 A kind of intelligent valve and its working method of residual neat recovering system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824692Y2 (en) * 1979-10-11 1983-05-27 エヌオーケー株式会社 thermo valve

Also Published As

Publication number Publication date
JPS579373A (en) 1982-01-18

Similar Documents

Publication Publication Date Title
US5738276A (en) Valve
US3428251A (en) Temperature and pressure responsive valve
US3973729A (en) Vent valve arrangement
JPH0127311B2 (en)
US4068820A (en) Valve
JPS5824692Y2 (en) thermo valve
US3662949A (en) Pressure temperature relief valve
US2816711A (en) Temperature control of coolant circulation
JPS6364612B2 (en)
JPH0217755B2 (en)
JP4711602B2 (en) Mechanical seal related equipment
US2098252A (en) Thermostat controlled valve
JP2709533B2 (en) Steam trap
JPS58121378A (en) Thermostat for engine cooling water
US2300299A (en) Thermostat controlled valve
US4059881A (en) Vent valve arrangement and method of making the same
JPH0314111B2 (en)
JPS60155072A (en) Freezing preventive valve
SU1417882A1 (en) Automatic valve for fire-fighting system
JPS6141500Y2 (en)
US1371060A (en) Thermostatic valve
JP2592983Y2 (en) Bimetallic oil switching valve
JP2741319B2 (en) Thermo-responsive steam trap
JPS595261Y2 (en) thermo valve
JPS5845543B2 (en) antifreeze valve