JPS609739A - Multilayer oriented polyester bottle and manufacture thereof - Google Patents

Multilayer oriented polyester bottle and manufacture thereof

Info

Publication number
JPS609739A
JPS609739A JP58117089A JP11708983A JPS609739A JP S609739 A JPS609739 A JP S609739A JP 58117089 A JP58117089 A JP 58117089A JP 11708983 A JP11708983 A JP 11708983A JP S609739 A JPS609739 A JP S609739A
Authority
JP
Japan
Prior art keywords
pipe
resin
tube
layer
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58117089A
Other languages
Japanese (ja)
Inventor
野原 繁三
平田 俊策
毅 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP58117089A priority Critical patent/JPS609739A/en
Publication of JPS609739A publication Critical patent/JPS609739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、多層延伸ポリエステルボトル及びその製造法
に関するもので、より詳細には、熱可塑性ニトリル樹脂
のガスバリヤ一層及び熱可塑性ポリエステルの基体層か
ら成り、器壁が延伸により二軸方向に分子配向され、優
れたガスバリヤ−性と透明性との組合せを有するプラス
チックボトル及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multilayer stretched polyester bottle and a method for manufacturing the same, and more specifically, the present invention relates to a multilayer stretched polyester bottle and a method for manufacturing the same. The present invention relates to a plastic bottle with biaxial molecular orientation and a combination of excellent gas barrier properties and transparency, and a method for producing the same.

延伸ポリエステルボトルの成形は今日では一般的で、そ
の得られた成形容器はその優れた透明性と適当なガスバ
リヤ−性によって液体洗剤、シャンプー、化粧品、醤油
、ソースなどの液体商品の容器の他、近年ビール、コー
ラ、サイダーなどの炭酸飲料や果汁、ミネラルウォータ
ーなどの清涼飲料用容器に広く用いられるに至っている
Molding of stretched polyester bottles is common today, and the resulting molded containers are used for containers for liquid products such as liquid detergents, shampoos, cosmetics, soy sauce, sauces, etc. due to their excellent transparency and suitable gas barrier properties. In recent years, it has come to be widely used in containers for carbonated drinks such as beer, cola, and cider, as well as soft drinks such as fruit juice and mineral water.

しかし延伸ポリエステルボトルもプラスチックなるが故
にガラスびん、金属かん等の完全に密封されたものにあ
ってはガスの透過性はゼロに等しいとみてよいのに対し
、延伸ポリエステルボトルは酸素、炭酸ガスなどに対し
僅かではあるが透過性を有しており、かん、ガラスびん
より食品の充填保存性に劣り、とくに炭酸ガス入り飲料
にあっては炭酸ガス損失を生み、ビール、コーラ、サイ
ダーなどにおいては明瞭な保存期間の限度をもっている
However, since stretched polyester bottles are also made of plastic, gas permeability can be considered to be zero for completely sealed items such as glass bottles and metal cans, whereas stretched polyester bottles are free from oxygen, carbon dioxide, etc. It has a slight permeability to carbon dioxide, making it inferior to cans and glass bottles in terms of food filling and storage stability, especially in the case of carbonated beverages, and in the case of beer, cola, cider, etc. It has clear storage period limits.

延伸ポリエステルボトルのガスバリヤ−性の改善の方法
としてすでに延伸ポリエステルボトルに対するポリ塩化
ビニリデン樹脂の塗布による改善が実用に供せられてい
るが、もとより適当なガスバリヤ−性を有する延伸ポリ
エステルボトルに対する改質改善のためにはポリエステ
ルより劣るガスバリヤ−性樹脂とのラミネーII’塗布
では意味がないわけでポリエステルより優れたガスバリ
ヤ−性樹脂がその対象とならなければならない。従って
挙げられるガスバリヤ−性樹脂としては塩化ビニリデン
系樹脂、アクリロニトリル系樹脂、ビニルアルコール系
樹脂などに於ける熱可塑性樹脂がその候補となるがいづ
れにしても夫々の樹脂のもつ性質と加工性との関連にお
いて選択されねばならない。
As a method for improving the gas barrier properties of stretched polyester bottles, coating polyvinylidene chloride resin on stretched polyester bottles has already been put into practical use, but it is of course possible to improve the gas barrier properties of stretched polyester bottles that have appropriate gas barrier properties. For this reason, it is meaningless to apply laminate II' with a resin with gas barrier properties inferior to polyester, and a resin with gas barrier properties superior to polyester must be used. Therefore, thermoplastic resins such as vinylidene chloride resins, acrylonitrile resins, and vinyl alcohol resins are candidates for gas barrier resins, but in any case, the properties and processability of each resin are different. Must be selected in relation.

本発明者は、ポリエステルを基体とし、熱成形性ニトリ
ル樹脂をガスバリヤ一層として、多層延伸ポリエステル
ボトルを製造するに際し、共押出によるパイプ成形法、
パイプの切断及び底部の熱成形法及び次いで二軸延伸ブ
ロー成形法をこの順序に組合せると、層間接着性、ガス
バリヤ−性、透明性及び高度の分子配向性に優れた多層
延伸ポリエステルボトルが得られることを見出した。
The present inventor has developed a pipe forming method using coextrusion when manufacturing a multilayer stretched polyester bottle using polyester as a base and a thermoformable nitrile resin as a gas barrier layer.
By combining the pipe cutting and bottom thermoforming method and then the biaxial stretch blow molding method in this order, a multilayer stretched polyester bottle with excellent interlayer adhesion, gas barrier properties, transparency, and high molecular orientation can be obtained. I found out that it can be done.

本発明によれば、上端に開口部及び外周に嵌合部或いは
螺合部を有する口頚部と、パイプ或いはチューブの融着
閉塞により形成された底部と、パイプ或いはチューブの
延伸ブローにより二軸方向に分子配向された胴部とを有
し、該パイプ或いはチューフハ、エチレンテレフタレー
ト単位を主体とするポリエステルから成る内表面及び/
又は外表面基体層とアクリロニトリル単位含有量が50
重量%以上で且つ酸素透過係数が2x1Q”ce・cr
n/cWL” ・see −cmHy (37℃、0%
RH)よりも小さい熱成形性二) IJル樹脂のバリヤ
一層との共押出物から成ることを特徴とする多層延伸ポ
リエステルボトルが提供される。
According to the present invention, the neck part has an opening at the upper end and a fitting part or a threaded part on the outer periphery, a bottom part formed by fusing and closing the pipe or tube, and a biaxial direction by stretching and blowing the pipe or tube. The pipe or tube has an inner surface made of polyester mainly composed of ethylene terephthalate units, and/or a body with molecular orientation.
or the outer surface base layer and the acrylonitrile unit content are 50
% by weight or more and the oxygen permeability coefficient is 2x1Q"ce・cr
n/cWL" ・see -cmHy (37℃, 0%
A multilayer oriented polyester bottle is provided, characterized in that it consists of a coextrudate with a barrier layer of IJ resin.

本発明によれば更に、多層延伸ポリエステルボトルの製
造法であって、ガスバリヤ−樹脂層にアクリロニトリル
単位含有量が50重量%以上で且つ酸素透過係数が2×
10″−1lcL−cIrL/儂2・8eC・5− cmHy (37℃、0%RH)よりも小さい熱成形性
二) IJル樹脂を、基体となるべき内層及び/又は外
層にエチレンテレフタレート単位を主体とするポリエス
テル樹脂を夫々使用し、必要に応じ両横脂層の間に接着
剤層を介在させて、共押出し法によりパイプ或いはチュ
ーブを形成し、 該パイプ或いはチューブを適当な長さに切断し、このパ
イプ或いはチューブの一端を融着閉塞して底部に成形す
ると共に、他端を上端に開口部及び外周に嵌合部或いは
螺合部を有する口頭部に成形し、 得られる予備成形品を85乃至120℃の延伸適正温度
に予備加熱し、ブロー成型金型内で軸方向と周方向に2
軸延伸ブロー成形することを特徴とする多層延伸ポリエ
ステルボトルの製造法が提供される。
According to the present invention, there is further provided a method for producing a multilayer stretched polyester bottle, wherein the gas barrier resin layer has an acrylonitrile unit content of 50% by weight or more and an oxygen permeability coefficient of 2×
Thermoformability smaller than 10"-1lcL-cIrL/儂2.8eC.5-cmHy (37℃, 0%RH) A pipe or tube is formed by co-extrusion using polyester resin as the main material, with an adhesive layer interposed between both side resin layers if necessary, and the pipe or tube is cut to an appropriate length. Then, one end of this pipe or tube is fused and closed to form a bottom part, and the other end is formed into a mouth part having an opening at the top and a fitting part or a threaded part on the outer periphery, to obtain a preformed product. The material is preheated to an appropriate stretching temperature of 85 to 120°C, and then heated in the axial and circumferential directions in a blow molding mold.
A method for producing a multilayer stretched polyester bottle is provided, which comprises axial stretch blow molding.

既に述べた如く、本発明は、延伸ポリエステルボトルの
ガスバリヤ−性の向上改善を目的とするもので、種々の
ガスバリヤ−性樹脂の内でも、アクリロニ) IJル単
位含有量が50′M量%以上で且6一 つ酸素透過係数が2×1O−11cc−・cIIL/c
rrL2・8eC・anHt (37℃、0%RH)よ
りも小さい熱成形性ニトリル樹脂を用いる。公知の如く
、ポリアクリロニ? IJル(PA7V)は、熱成形の
困難な樹脂であり、一般に溶液の形での成形法が採用さ
れている。
As already mentioned, the purpose of the present invention is to improve the gas barrier properties of stretched polyester bottles. And the oxygen permeability coefficient is 2×1O-11cc-・cIIL/c
A thermoformable nitrile resin smaller than rrL2.8eC.anHt (37° C., 0% RH) is used. As is known, polyacryloni? IJru (PA7V) is a resin that is difficult to thermoform, and a molding method in the form of a solution is generally employed.

このアクリロニトリルを、ゴム的性質を示す樹脂成分と
共重合させ或いはブレンドさせると、これら成分の増加
に伴って、融点の低下と熱成形性の向上がもたらされる
。このニトリル系樹脂は、ポリエステル樹脂と共に延伸
ブローされるものであるから、融点が低くしかも延伸可
能な温度が低いものがよいと考えられるが、本発明にお
いては、アクリロニ) IJル単位の含有量が50重量
%以上で、しかも熱成形性を有するニトリル樹脂を用い
る。即ち、アクリロニトリル単位の含有量が50重量%
よりも低くなると、酸素や炭酸ガスに対するガスバリヤ
−性が急激に低下するようになり、本発明の初期の目的
が達成しにくくなる。内容物保存性の点では、このニト
リル樹脂は2 X 10−”ct−・cm/crIL”
 5ttc−cIrLH1以下、特に1×10−”cc
:。
When this acrylonitrile is copolymerized or blended with resin components exhibiting rubbery properties, the melting point is lowered and thermoformability is improved as the amount of these components increases. Since this nitrile resin is stretch blown together with the polyester resin, it is thought that it is better to have a low melting point and a low temperature at which it can be stretched. A nitrile resin containing 50% by weight or more and having thermoformability is used. That is, the content of acrylonitrile units is 50% by weight.
If the temperature is lower than that, the gas barrier properties against oxygen and carbon dioxide gas will rapidly decrease, making it difficult to achieve the initial objective of the present invention. In terms of content preservation, this nitrile resin has a rating of 2 x 10-"ct-cm/crIL"
5ttc-cIrLH1 or less, especially 1×10-”cc
:.

crn/cm” ・s e c−cmHy以下の酸素透
過係数を有するべきであり、また炭酸ガス充填飲料容器
の用途に対しては、4 x 10−”cc−cm/cm
2・s ec−anHy以下、特に2 X I Q−”
ce I cIrL/cyn’ ・s e c ・ar
tHy以下の炭酸ガス透過係数を有することが望ましい
should have an oxygen permeability coefficient of less than or equal to 4 x 10-”cc-cm/cm for carbonated beverage container applications.
2・sec-anHy or less, especially 2 X I Q-”
ce I cIrL/cyn' ・sec ・ar
It is desirable to have a carbon dioxide permeability coefficient of tHy or less.

このような熱成形性ニトリル樹脂は、アクリロニトリル
及び該アクリロニトリルと共重合可能なエチレン系乃至
はジオレフィン系単量体の少なくとも1種の共重合体、
グラフト重合体或いはポリマーブレンドから成っており
、それ自体公知の技術で展進されるものである。
Such a thermoformable nitrile resin includes at least one copolymer of acrylonitrile and an ethylene or diolefin monomer copolymerizable with the acrylonitrile,
It consists of a graft polymer or a polymer blend and is developed using techniques known per se.

上述したアクリロニトリルと共重合可能なエチレン系或
いはジオレフィン系不飽和コモノマーは数多く知られて
おり、その適当な例は次の通りである。
Many ethylenically or diolefinically unsaturated comonomers copolymerizable with the above-mentioned acrylonitrile are known, and suitable examples thereof are as follows.

式 式中、R,、R,及びR,の各々は水素原子、炭素数4
迄のアルキル基又はハロゲン原子である、 のジオレフィン類、例えばブタジェン、インプレン、ク
ロプレン等。
In the formula, each of R, , R, and R is a hydrogen atom and has 4 carbon atoms.
diolefins, such as butadiene, imprene, cloprene, etc., which are an alkyl group or a halogen atom.

式 %式%(2) 式中、R1及びR6の各々は水素原子又は炭素数4迄の
アルキル基である、 のモノオレフィン、例えばエチレン、プロピレン、イン
フチレン、フテンー1、ペンテン−1,4−メチルペン
テン−1等。
Formula % Formula % (2) In the formula, each of R1 and R6 is a hydrogen atom or an alkyl group having up to 4 carbon atoms, monoolefins such as ethylene, propylene, inphthylene, phthene-1, pentene-1,4-methyl Penten-1 etc.

式 式中、R,は水素原子、炭素数4迄のアルキル基、又は
ハロゲン原子であり、R8は水素原子、炭素数4迄のア
ルキル基、ハロゲン原子、アルコキシ基、アミノ基、ニ
トロ基、カルボキシル基でアル、 ノモノヒニル芳香族炭化水素、例えばスチレン、9− α−メチルスチレン、ビニルトルエン、α−クロルスチ
レン、o−2m−1p−クロルスチレン、p−エチルス
チレン等。
In the formula, R is a hydrogen atom, an alkyl group having up to 4 carbon atoms, or a halogen atom, and R8 is a hydrogen atom, an alkyl group having up to 4 carbon atoms, a halogen atom, an alkoxy group, an amino group, a nitro group, a carboxyl group. Al, nomonohinyl aromatic hydrocarbons such as styrene, 9-α-methylstyrene, vinyltoluene, α-chlorostyrene, o-2m-1p-chlorostyrene, p-ethylstyrene, and the like.

式 %式%(4) 式中、Roは水素原子又は炭素数4迄のアルキル基、R
,、は水素原子、炭素数12迄の炭化水素基又はヒドロ
キシアルキル基である、 のアクリル系単量体、例えばアクリル酸、メタクリル酸
、アクリル酸メチル、アクリル酸エチル、アクリル酸ブ
チル、アクリル酸−2−エチルヘキシル、アクリル酸シ
クロヘキシル、アクリル酸フェニル、メタクリル酸メチ
ル、メタクリル酸ヘキシル、メタクリル酸−2−エチル
ヘキシル、β−ヒドロキシアクリル酸エチル、γ−ヒト
四キシアクリル酸プロピル、δ−ヒドロキシアクリル酸
ブチル、β−ヒドロキシメタクリル酸エチル等。
Formula % Formula % (4) In the formula, Ro is a hydrogen atom or an alkyl group having up to 4 carbon atoms, R
, is a hydrogen atom, a hydrocarbon group having up to 12 carbon atoms, or a hydroxyalkyl group; Acrylic monomers such as acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl, cyclohexyl acrylate, phenyl acrylate, methyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, ethyl β-hydroxyacrylate, propyl γ-human tetraxyacrylate, butyl δ-hydroxyacrylate, β-hydroxyethyl methacrylate, etc.

式 CH2=CH 」 OC#tt ・・・・・・(5) 1 式中、R11は水素原子又は炭素数4以下のアルキル基
である、 のビニルエステル、例えばギ酸ビニル、酢酸ビニル、フ
ロピオン酸ビニル等。
A vinyl ester of the formula CH2=CH"OC#tt (5) 1, where R11 is a hydrogen atom or an alkyl group having 4 or less carbon atoms, such as vinyl formate, vinyl acetate, vinyl propionate etc.

式 式中、R1,は炭素数12迄の1価炭化水素基である、 のビニルエーテル、例、tばビニルメチルエーテル、ビ
ニルエチルエーテル、ビニル−n−ブチルエーテル、ビ
ニルフェニルエーテル、ビニルシクロヘキシルエーテル
等。
In the formula, R1 is a monovalent hydrocarbon group having up to 12 carbon atoms, vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl-n-butyl ether, vinyl phenyl ether, vinyl cyclohexyl ether, etc.

本発明に好適に使用し得る熱成形性ニトリル樹脂は、ア
クリロニトリル50〜90重量%、特に60乃至80重
量%、及びこれと共重合可能なコモノマー、好適には共
役ジエン系炭化水素、エチレン系不飽和カルボン酸のエ
ステル、ビニルエーテル及びモノビニル芳香族炭化水素
から成る群より選択されたコモノマーの少なくとも1種
10乃至50重量%、特に20乃至40重量%とを、重
合させ不ことにより得られる。
Thermoformable nitrile resins that can be suitably used in the present invention include 50 to 90% by weight, particularly 60 to 80% by weight of acrylonitrile, and comonomers copolymerizable therewith, preferably conjugated diene hydrocarbons and ethylene non-hydrocarbons. It is obtained by polymerizing 10 to 50% by weight, especially 20 to 40% by weight of at least one comonomer selected from the group consisting of esters of saturated carboxylic acids, vinyl ethers and monovinyl aromatic hydrocarbons.

このニトリ、ル系熱可塑性樹脂は、所謂ランダム共重合
体の外に、グラフト重合体の形であってもよく、例えば
ポリブタジェン、ポリイソプレン、ブチルゴム、エチレ
ン−プロピレン共重合体、エチレン−プロピレン−非共
役ジエン共重合体、アクリロニトリル−ブタジェン共重
合体、スチレン−ブタジェン共重合体、アクリロニトリ
ル−スチレン−ブタジェン共重合体等の幹ポリマーに、
アクリロニトリル単量体、或いは該アクリロニトリル単
量体と他のエチレン系不飽和コモノマーとの組合せを、
最終組成物中のアクリロニトリル単量体の含有量が60
重量%以上となるようにグラフト重合させることによっ
ても得ることができる。
In addition to so-called random copolymers, the nitride-based thermoplastic resins may be in the form of graft polymers, such as polybutadiene, polyisoprene, butyl rubber, ethylene-propylene copolymers, ethylene-propylene-nonpolymer, etc. For backbone polymers such as conjugated diene copolymer, acrylonitrile-butadiene copolymer, styrene-butadiene copolymer, acrylonitrile-styrene-butadiene copolymer,
an acrylonitrile monomer or a combination of the acrylonitrile monomer and other ethylenically unsaturated comonomers,
The content of acrylonitrile monomer in the final composition is 60
It can also be obtained by graft polymerization in such a manner that the amount is at least % by weight.

更に、本発明に使用するニトリル系熱可塑性樹脂は、所
謂ポリマーブレンドの形であってもよく、例えばアクリ
ロニトリル−ブタジェン共重合体(NBR)、或いはア
クリロニトリル−ブタジェン−スチレン共重合体CAB
S)等と、アクリロニトリル−メチルメタクリレート共
重合体等とを、最終組成物中にアクリロニ) IJルが
60重量%以上含有されるような量比で配合したポリマ
ーブレンド物であってよい。勿論、この場合、複数種の
重合体をブレンドするに際して、熱或いはラジカル開始
剤等の作用によって複数種の重合体の間に架橋乃至グラ
フト重合が生じるようにしても何等差支えない。
Furthermore, the nitrile thermoplastic resin used in the present invention may be in the form of a so-called polymer blend, such as acrylonitrile-butadiene copolymer (NBR) or acrylonitrile-butadiene-styrene copolymer CAB.
It may be a polymer blend in which acrylonitrile (S), etc. and an acrylonitrile-methyl methacrylate copolymer, etc. are blended in a quantitative ratio such that the final composition contains 60% by weight or more of acrylonitrile (IJ). Of course, in this case, when blending multiple types of polymers, there is no problem even if crosslinking or graft polymerization occurs between the multiple types of polymers by heat or the action of a radical initiator.

ポリエステルとしては、ポリエチレンテレフタレートや
、エチレンテレフタレート単位を主体とし、他にそれ自
体公知の改質用エステル単位の少量を含むコポリエステ
ル等が本発明の目的に使用される。このポリエステルも
フィルムを形成し得るに足る分子量8−有していればよ
い。このポリエステルは、共押出法での多層チューブの
形成に用いることに関連して、射出成形法によるプリフ
ォームの製造に用いるポリエステルよりも高い分子13
− 量を有するべきである。即ち、射出成形法に用いるポリ
エステルの極限粘度〔η〕が0.6乃至0.7であるの
に対して、本発明においては0.8以上の極限粘度を有
すべきである。ここで極限粘度とはで定義される値であ
り、Cはg/100mノで表わされる濃度である。この
極限粘度が上記値よりも小さいと、共押出に際してドロ
ーダウン等による偏肉を生じ易くなる。
As polyesters, polyethylene terephthalate, copolyesters mainly composed of ethylene terephthalate units, and also containing a small amount of modifying ester units known per se are used for the purpose of the present invention. This polyester may also have a molecular weight of 8-enough to form a film. In connection with its use in the formation of multilayer tubes by coextrusion, this polyester has a higher molecular weight of 13
- Should have a quantity. That is, while the intrinsic viscosity [η] of polyester used in injection molding is 0.6 to 0.7, in the present invention it should have an intrinsic viscosity of 0.8 or more. Here, the intrinsic viscosity is a value defined by , and C is the concentration expressed in g/100m. If this limiting viscosity is smaller than the above value, uneven thickness will likely occur due to drawdown or the like during coextrusion.

必らずしも必要でないが、ポリエステル層とニトリル樹
脂層との接着性を増強させるために、それ自体公知の接
着剤を用いることができる。このような接着剤としては
、コポリエステル系接着剤、ポリエステル1−エーテル
系接着剤、エポキシ変性熱可塑性樹脂、無水マレイン酸
変性ポリオレフィン、アクリル酸変性ポリオレフィン等
を用いることができる。
Although not necessary, adhesives known per se can be used to enhance the adhesion between the polyester layer and the nitrile resin layer. As such an adhesive, a copolyester adhesive, a polyester 1-ether adhesive, an epoxy-modified thermoplastic resin, a maleic anhydride-modified polyolefin, an acrylic acid-modified polyolefin, etc. can be used.

ポリエステル基体(PET)、熱成形性ニトリル樹脂(
TAN)、接着剤層(AD)は、種々の層構成=14− で用いることができ、例えば外層を左側、内層を右側と
して、 PET/TAN、TAN/PET PET/AD/TAN、TAN/AD/PET。
Polyester base (PET), thermoformable nitrile resin (
TAN), the adhesive layer (AD) can be used in various layer configurations = 14-, for example with the outer layer on the left and the inner layer on the right: PET/TAN, TAN/PET PET/AD/TAN, TAN/AD /PET.

PET/TAN/PET、PET/AD/TANAD/
PET 等の層構成で用いることができる。
PET/TAN/PET, PET/AD/TANAD/
It can be used in a layered structure such as PET.

層の厚みは、種々変化させ得るが、一般に、PET:T
AN=2 : 1乃至60:1、特に4:1乃至15:
1の範囲の厚み比とするのがよく、接着剤層を用いる場
合にはPET:AD=5 : 1乃至100:1、特に
10:1乃至50:1の範囲の厚み比とするのがよい。
The thickness of the layer can vary, but generally PET:T
AN=2: 1 to 60:1, especially 4:1 to 15:
The thickness ratio is preferably in the range of 1, and when an adhesive layer is used, the thickness ratio is preferably in the range of PET:AD=5:1 to 100:1, particularly 10:1 to 50:1. .

従来、ポリエステル等のプラスチックの延伸ブロー成形
には、プラスチックを射出して有底パリソン(プリフォ
ーム)を形成し、これを延伸棒で軸延伸しつつブロー延
伸する方法や、プラスチックをパイプの形に押出し、こ
れを一対のクランプで挟持して軸方向に延伸し次いで流
体を吹込んでブロー延伸する方法等の各種の方法が知ら
れている。
Traditionally, stretch blow molding of plastics such as polyester involves injecting the plastic to form a bottomed parison (preform), then blow-stretching it while axially stretching it with a stretching rod, or shaping the plastic into a pipe shape. Various methods are known, such as extrusion, holding the material between a pair of clamps and stretching it in the axial direction, and then blow-stretching it by blowing fluid into it.

しかしながら、これらの方法は、ポリエステルと熱成形
性ニトリル樹脂との多層パリノンに適用するときには、
延伸性、層間接着性の点で成る種の欠点を生ずることが
認められた。
However, these methods, when applied to multilayer parinone of polyester and thermoformable nitrile resin,
It has been found that certain drawbacks arise in terms of stretchability and interlayer adhesion.

先ず、第一に、ポリエステルは、成る一定の温度、例え
ば140℃の温度を越えると、容易に結晶化し、延伸が
困難になると共に、白化して容器自体が不透明化する傾
向がある。射出による多層パリノンを製造するためには
、ポリエステルを射出成形し、次いでポリエステル一段
成形物上にニトリル樹脂を射出成形することが必要とな
るが、ポリエステルの一段成形物を前記温度よりもかな
り低い温度に抑制しなければならないために、界面にお
ける両樹脂の熱接着の程度が不完全のものとなり、延伸
ブロー成形の際やこの多層ボトルに炭酸ガス飲料を密封
する時など、層間剥離を生じたり、或いはこの剥離部分
でニトリル樹脂層の破断を生じる傾向がある。
First, above a certain temperature, for example 140° C., polyester easily crystallizes, making it difficult to stretch, and tends to whiten and make the container itself opaque. In order to produce multilayer parinone by injection, it is necessary to injection mold the polyester and then injection mold the nitrile resin onto the polyester single mold, but the polyester single mold is heated at a temperature significantly lower than the above temperature. As a result, the degree of thermal adhesion between the two resins at the interface is incomplete, and delamination may occur during stretch blow molding or when sealing carbonated beverages in this multilayer bottle. Alternatively, the nitrile resin layer tends to break at this peeled portion.

のみならず、二) IJル樹脂は水素結合の程度が強い
樹脂であり、しかもこのニトリル樹脂はアクリロニトリ
ル含有量が高いことに関連して、ニトリル樹脂はポリエ
ステルの結晶化温度よりもかなり高い融点乃至軟化点ヲ
有し、このためニトリル樹脂の成形時にポリエステルが
結晶化により白化し、それによりポリエステル層自体が
不透明化したり或いはその層間接着性が低下するという
欠点を生ずる。
2) IJ resin is a resin with a strong degree of hydrogen bonding, and this nitrile resin has a high acrylonitrile content, so nitrile resin has a melting point considerably higher than the crystallization temperature of polyester. It has a softening point, and therefore, during molding of the nitrile resin, the polyester whitens due to crystallization, resulting in the disadvantage that the polyester layer itself becomes opaque or its interlayer adhesion decreases.

また後者の方法では、ポリエステルやニトリル樹脂の融
点と延伸成形温度との間に大きな隔りがあるため、金型
のピンチオフにより底の融着部やビン口部を形成させる
ことは列置困難であり、この方法は融点と延伸温度とが
近接したポリオレフィン等にしか適用できないという問
題がある。
In addition, in the latter method, there is a large difference between the melting point of the polyester or nitrile resin and the stretching temperature, so it is difficult to form the fused part at the bottom or the bottle opening by pinching off the mold. However, there is a problem in that this method can only be applied to polyolefins whose melting points and stretching temperatures are close to each other.

本発明においては、先ずポリエステルと熱成形性ニトリ
ル樹脂とを、パイプ乃至はチューブに共押出すことに第
一の特徴がある。即ち、この共押出は、溶融ポリエステ
ルと溶融ニトリル樹脂をダイス内で合流させ、リング状
オリフィスを通して押出すことにより行われるが、この
2種類の樹脂17− は双方が溶融状態で成る時間接触するため、両者の界面
では樹脂同志の混じり合いが良く生じ、両者の熱接着が
多層射出成形の場合とは比較にならない程強固に行われ
るものである。これは、ポリエステルとニトリル樹脂と
の間に接着性樹脂を介在させた場合でも全く同様である
The first feature of the present invention is that polyester and thermoformable nitrile resin are first coextruded into a pipe or tube. That is, this coextrusion is carried out by combining the molten polyester and the molten nitrile resin in a die and extruding them through a ring-shaped orifice. The resins are well mixed at the interface between the two, and the thermal adhesion between the two is stronger than in the case of multilayer injection molding. This is exactly the same even when an adhesive resin is interposed between the polyester and the nitrile resin.

次に、この共押出多層パイプ乃至はチューブを一定の長
さに切断した後、その一端部を融着閉塞して底部に成形
することが第二の特徴である。即ち、この有底プリフォ
ームとすることにより、予備加熱後のプリフォームに延
伸棒を押し当てながら、軸方向延伸と同時乃至は殆んど
同時にブロー延伸を行うことが可能となり、逐次延伸の
場合に生じ易いニトリル樹脂層のクラックや潜在的クラ
ックの発生が解消される□ 第1図は、本発明の目的に特に好適な多層パイプを示す
ものであり、この多層パイプ1は、ポリエステルの内層
2及び外層6、熱成形性二) IJル樹脂の中間ガスバ
リヤ一層4及びこれらの間に介在する接着剤層5α、5
bから成っている。
Next, the second feature is that this coextruded multilayer pipe or tube is cut to a certain length, and one end thereof is fused and closed to form a bottom part. That is, by using this bottomed preform, blow stretching can be performed simultaneously or almost simultaneously with axial stretching while pressing a stretching rod against the preheated preform, and in the case of sequential stretching. □ Fig. 1 shows a multilayer pipe particularly suitable for the purpose of the present invention, and this multilayer pipe 1 has a polyester inner layer 2. and an outer layer 6, thermoformable 2) an intermediate gas barrier layer 4 of IJ resin, and an adhesive layer 5α, 5 interposed between them;
It consists of b.

−18= パイプ乃至チューブは共押出により製造することが重要
であることは既に指摘したが、押出されたパイプは、ポ
リエステルの結晶化(白化)を防止するために、水に浸
漬する等して急冷することが重要である。
-18= It has already been pointed out that it is important to manufacture pipes and tubes by coextrusion, but in order to prevent polyester crystallization (whitening), extruded pipes should be immersed in water, etc. It is important to cool down quickly.

このパイプを一定の寸法に切断した後、この一端部を加
熱溶融して、例えば半円球状等の任意の底形状に対応す
るキャピテイ及び突起部を有する雌雄金型で押圧し、第
2図に示す如く底部6を形成する。
After cutting this pipe to a certain size, one end of the pipe is heated and melted, and then pressed with a male and female mold having a capity and a protrusion corresponding to an arbitrary bottom shape, such as a semi-circular shape, as shown in Fig. 2. A bottom portion 6 is formed as shown.

次いで、このパイプ1の他端部も加熱し、プレス、延伸
、吹込成形等を所望の金型内で行って、第3図に示す通
り、上端に開ロアを有し、周囲にネジ8’Pネツクリン
グ(サポートリング)9等の蓋との嵌合部、螺合部及び
係止部とを有する予備成形物(プリフォーム)10に成
形スル。
Next, the other end of this pipe 1 is also heated and subjected to pressing, stretching, blow molding, etc. in a desired mold, and as shown in FIG. A preform 10 having a fitting part, a screwing part, and a locking part with a lid such as a P neck ring (support ring) 9 is molded.

これらのプリフォームの成形加工は、その順序を問わな
いものであり、上記順に或いは逆の順に行うことができ
るし、また同時に行ってもよい。
The order of forming these preforms does not matter, and they may be carried out in the above order or in the reverse order, or may be carried out simultaneously.

上記方法によるときは多層パイプないしチューブより予
備成形品を得るに当って余分な樹脂部分を発生せしめな
い特徴がある。
The method described above has the characteristic that no excess resin is generated when a preformed product is obtained from a multilayer pipe or tube.

次に第3の工程では上記予備成形品を熱風、赤外線ヒー
ター、高周波誘電加熱等で多層プリフォームの延伸適正
温度まで予備加熱する。この場合温度範囲は85〜12
0℃望ましくは95℃〜110℃の間のポリエステル樹
脂の延伸温度まで予備加熱する。
Next, in the third step, the preform is preheated using hot air, an infrared heater, high frequency dielectric heating, etc. to a temperature appropriate for stretching the multilayer preform. In this case the temperature range is 85-12
The polyester resin is preheated to a stretching temperature of 0°C, preferably between 95°C and 110°C.

延伸ブロー成形操作を説明するための第4図及び第5図
において、予備成形物10の口部にマンドレル11を挿
入すると共に、その口部を一対の割金型12α、12b
で挟持する。マンドレル11と同軸に垂直移動可能な延
伸棒13が設けられており、この延伸棒16とマンドレ
ル11との間には、流体吹込用の環状通路14がある。
4 and 5 for explaining the stretch blow molding operation, a mandrel 11 is inserted into the mouth of a preform 10, and the mouth is inserted into a pair of split molds 12α, 12b.
Hold it between the two. A vertically movable stretching rod 13 is provided coaxially with the mandrel 11, and between this stretching rod 16 and the mandrel 11 there is an annular channel 14 for the injection of fluid.

本発明においては、この延伸棒16の先端15をプリフ
ォーム10の底部6の内側に当てがい、この延伸棒16
を下方に移動させることにより軸方向に延伸すると共に
、前記通路14を経てプリフォーム10内に流体を吹込
み、この流体圧によりプリフォームを周方向に膨張延伸
させる。
In the present invention, the tip 15 of this stretching rod 16 is applied to the inside of the bottom part 6 of the preform 10, and this stretching rod 16
is moved downward to stretch it in the axial direction, and at the same time, fluid is blown into the preform 10 through the passage 14, and the fluid pressure causes the preform to expand and stretch in the circumferential direction.

本発明によれば、このように軸方向延伸と周方向延伸と
を同時に乃至は殆んど同時に行うことにより、ニトリル
単位が高含有のニトリル樹脂層にあっても比較的低い温
度で延伸可能なることが発見されたのである。
According to the present invention, by performing axial stretching and circumferential stretching at the same time or almost simultaneously, even if the nitrile resin layer has a high content of nitrile units, it can be stretched at a relatively low temperature. This was discovered.

この理由は、ポリエステル層にニトリル樹脂層が載せら
れた状態で共延伸が行われ、しかも共延伸時に両相脂層
の層間剥離が抑制されること及び二軸延伸が同時にしか
もバランスよく行われることにあるものと推定される。
The reason for this is that co-stretching is performed with the nitrile resin layer placed on the polyester layer, and that delamination of both phase resin layers is suppressed during co-stretching, and that biaxial stretching is performed simultaneously and in a well-balanced manner. It is estimated that the

かくして得られた第6図に示す多層延伸ポリエステルボ
トル16はすぐれた透明性の他、他のプラスチックボト
ルよりすぐれるポリエステル(延伸PET)単体ボトル
よりなお非常に高いガスバリヤ−性を有し、かつ必要に
応じそのガスバリヤ−性は調整可能で、さらにこのボト
ルは耐圧性をも具備し、炭酸ガス入りの飲料、すなわち
ビール、コーラ、サイダーの充填保存も極めて容易であ
り容器は衛生的であり、ガラスびんに匹敵する透明21
− 性、ガス遮断性耐圧性をもちながらも軽量かつ耐波びん
性のある理想的な容器が提供される。
The thus obtained multilayer stretched polyester bottle 16 shown in FIG. 6 has not only excellent transparency but also extremely high gas barrier properties compared to a single polyester (stretched PET) bottle, which is superior to other plastic bottles. The gas barrier properties can be adjusted according to the needs, and the bottle is also pressure resistant, making it extremely easy to fill and store carbonated beverages, such as beer, cola, and cider.The container is hygienic, and is made of glass. Transparent 21 comparable to a bottle
- Provides an ideal container that is lightweight and wave resistant while having excellent gas barrier properties and pressure resistance.

実施例1゜ 直径が651!ll、有効長さが1 t 430 mm
のフルフライト型スクリューを内蔵した内外層用押出機
、直径が50 mus有効長さが1.100mmのフル
フライト型スクリューを内蔵した中間層用押出機及び接
着剤層用押出機、5雇用リング状ダイを用いて、内外層
が極限粘度1,0のポリエチレンテレフタレート、中間
層がアクリロニトリルが70重量%のアクリロニトリル
−スチレン共重合体、並びに接着剤層がエポキシ化オレ
イン酸オクチルio、oo。
Example 1 Diameter is 651! ll, effective length is 1 t 430 mm
An extruder for the inner and outer layers with a built-in full-flight screw of 50 mus in diameter and an extruder for the adhesive layer with a built-in full-flight screw with an effective length of 1.100 mm, 5-ring type Using a die, the inner and outer layers were polyethylene terephthalate with an intrinsic viscosity of 1.0, the middle layer was an acrylonitrile-styrene copolymer containing 70% by weight of acrylonitrile, and the adhesive layer was epoxidized octyl oleate io, oo.

p声配合のマレイン酸無水物グラフト変性高密度ポリエ
チレン(グラフト率0.9重量%)である6m5層の積
層パイプをグイより水中に押出して冷却する。このパイ
プの外径は30勧、内径が22鰭で、かつ各層の厚さは
、内層が1.4顛、外層が2.0m、接着剤層がそれぞ
れ0.05gm及び中間層が0.5龍であり、このパイ
プを一定す法(長さ126翻、重さ56g)に切断し、
パイプの一端22− を約220℃に加熱し半円球状の底部を閉塞形成し、他
端を150℃ネック結晶化促進のために加熱しネジ部及
びネックリングを成形して全高145能の予備成形品(
プリフォーム)ヲ得た。
A laminated pipe of 6 m and 5 layers made of maleic anhydride-grafted modified high-density polyethylene (grafting rate: 0.9% by weight) containing p-tone is extruded through a gouer into water and cooled. The outer diameter of this pipe is 30 mm, the inner diameter is 22 mm, and the thickness of each layer is 1.4 gm for the inner layer, 2.0 gm for the outer layer, 0.05 gm each for the adhesive layer, and 0.5 gm for the middle layer. It is a dragon, and this pipe is cut into a certain length (length 126, weight 56 g),
One end of the pipe 22- is heated to about 220°C to form a closed semi-spherical bottom, and the other end is heated to 150°C to promote neck crystallization to form a threaded part and neck ring to form a preliminary pipe with a total height of 145mm. Molding(
Preform) was obtained.

この予備成形品を105℃に加熱温調し、ブロー金型内
で縦軸方向に伸長しながら、横軸方向にブローする2軸
延伸ブロー成形法により内容積1500ccの多層延伸
ボトルを成形した〇このボトルの酸素透過度は約2.5
 QC/ m ”・24H−atm(57℃)であり、
高さ120αよりコンクリート上への落下で破損もなく
、各層間の剥離も生じなかった。また、このボトルのネ
ック部におけるポリエチレンテレフタレートは40%以
上結晶化しており、96℃の液体を充填密封してもネッ
ク部の変形は生じなかった。
This preform was heated to 105°C, and a multilayer stretched bottle with an internal volume of 1500 cc was molded using a biaxial stretch blow molding method in which it was stretched in the vertical axis direction and blown in the horizontal axis direction in a blow mold. The oxygen permeability of this bottle is approximately 2.5
QC/m”・24H-atm (57℃),
There was no damage when it was dropped onto concrete from a height of 120α, and no peeling occurred between the layers. Further, more than 40% of the polyethylene terephthalate in the neck of this bottle was crystallized, and the neck did not deform even when filled with liquid at 96° C. and sealed.

実施例2゜ 実施例1と同じ装置を用いて、内外層が極限粘度0.9
のポリエチレンテレフタレート、中間層がアクリロニト
リルが75重量%アクリロニトリル−ブタジェン−メチ
ルアクリレート共重合体を中間層、接着剤層として無水
マレイン酸グラフト変性リニア低密度ポリエチレン(グ
ラフ)il、0重量%)である6種5層の積層パイプを
押出して水中冷却する。このパイプは、内径が16詣で
、厚さが61Iであり、かつ内層:接着剤層:中間層:
接着剤層:外層の割合が10 : 0.5 : 2 :
 0.5 :15であった。このパイプを一定寸法(長
さ85詣1重量20g)に切断し、パイプの一端を約2
30℃に加熱温調し、半円球状の底部を閉塞形成しネッ
ク結晶化防止のため、他端を約110℃に予熱、ネジ及
びネックリングを形成して予備成形品を得た。
Example 2゜Using the same equipment as Example 1, the inner and outer layers had an intrinsic viscosity of 0.9.
polyethylene terephthalate, the middle layer is 75% by weight acrylonitrile, the middle layer is acrylonitrile-butadiene-methyl acrylate copolymer, and the adhesive layer is maleic anhydride-grafted modified linear low-density polyethylene (graph il, 0% by weight) 6 A five-layer laminated pipe is extruded and cooled in water. This pipe has an inner diameter of 16 mm, a thickness of 61 mm, and has an inner layer: an adhesive layer: an intermediate layer:
Adhesive layer: outer layer ratio is 10:0.5:2:
It was 0.5:15. Cut this pipe into a certain size (length: 85 mm, weight: 20 g), and cut one end of the pipe into approximately 2.
The temperature was controlled to 30°C, the bottom of the semicircular sphere was closed and the other end was preheated to about 110°C to prevent neck crystallization, and a screw and neck ring were formed to obtain a preformed product.

この予備成形品を100℃に加熱温調し、縦横両方向の
略同時2軸延伸ブロー成形して、内容積5[IQcr−
の多層延伸ボトルを得た。
This preformed product was heated to 100°C and subjected to almost simultaneous biaxial stretching blow molding in both the vertical and horizontal directions.
A multilayer stretched bottle was obtained.

このボトルの酸素透過度は2.8cc−7m2・24H
・atm(37℃)であり、高さ120cmよりコンク
リート上への落下で破損は生じなかった。
The oxygen permeability of this bottle is 2.8cc-7m2・24H
- ATM (37°C), and no damage occurred when it was dropped onto concrete from a height of 120 cm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる多層パイプの断面図、第2
図及び第6図は底部及びネック部を形成した予備成形品
の断面図、第4図及び第5図は予備成形品をブロー金型
内に保持し、ブロー成形前の断面図及びブロー成形後の
一断面図、第6図は本発明により成形された多層延伸ボ
トルである。 1・・・パイプ、6・・・底部、7・・・開口端部、1
0・・・予備成形品、16・・・多層延伸ボトル。 特許出願人 東洋製罐株式会社 25− 第1図
Figure 1 is a sectional view of a multilayer pipe used in the present invention, Figure 2 is a cross-sectional view of a multilayer pipe used in the present invention;
Figures 4 and 6 are cross-sectional views of the preform with the bottom and neck formed, and Figures 4 and 5 are cross-sectional views of the preform held in the blow mold before blow molding and after blow molding. A cross-sectional view of FIG. 6 shows a multilayer stretched bottle molded according to the present invention. 1... Pipe, 6... Bottom, 7... Open end, 1
0...Preformed product, 16...Multilayer stretched bottle. Patent applicant: Toyo Seikan Co., Ltd. 25- Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)上端に開口部及び外周に嵌合部或いは螺合部を有
する口頚部と、パイプ或いはチューブの融着閉塞により
形成された底部と、パイプ或いはチューブの延伸ブロー
により二軸方向に分子配向された胴部とを有し、該パイ
プ或いはチューブは、エチレンテレフタレート単位を主
体とするポリエステルから成る内表面及び/又は外表面
基体層とアクリロニドIJル単位含有量が50重量%以
上で且つ酸素透過係数が2 x 1Q−”cc ・cR
/ate” saa・caHt (57℃、0%RH)
よりも小さい熱成形性ニトリル樹脂のバリヤ一層との共
押出物から成ることを特徴とする多層延伸ポリエステル
ボトル。
(1) A neck part with an opening at the upper end and a fitting part or threaded part on the outer periphery, a bottom part formed by fusion closure of the pipe or tube, and molecular orientation in biaxial directions by stretching and blowing the pipe or tube. The pipe or tube has an inner and/or outer surface base layer made of polyester mainly containing ethylene terephthalate units, an acrylonide IJ unit content of 50% by weight or more, and an oxygen permeable material. The coefficient is 2 x 1Q-”cc ・cR
/ate” saa・caHt (57℃, 0%RH)
A multilayer oriented polyester bottle characterized in that it consists of a coextrusion with a barrier layer of a thermoformable nitrile resin smaller than .
(2)多層延伸ポリエステルボトルの製造法であって、
ガスバリヤ−樹脂層にアクリルニトリル単位含有量が5
0重量%以上で且つ酸素透過係数が2 X 10−”c
c 6 crrL/cm” sec ・cmHy (3
7℃、0%RH)よりも小さい熱成形性二) IJル樹
脂を、基体となるべき内層及び/又は外層にエチレンテ
レフタレート単位を主体とするポリエステル樹脂を夫々
使用し、必要に応じ両樹脂層の間に接着剤層を介在させ
て、共押出し法によりパイプ或いはチューブを形成し、 該パイプ或いはチューブを適当な長さに切断し、このパ
イプ或いはチューブの一端を融着閉塞して底部に成形す
ると共に、他端を上端に開口部及び外周に嵌合部或いは
螺合部を有する口頚部に成形し、 得られる予備成形品を85乃至120℃の延伸適正温度
に予備加熱し、ブロー成形金型内で軸方向と周方向に2
軸延伸ブp−成形することを特徴とする多層延伸ポリエ
ステルボトルの製造法。
(2) A method for manufacturing a multilayer stretched polyester bottle, comprising:
Acrylic nitrile unit content in gas barrier resin layer is 5
0% by weight or more and an oxygen permeability coefficient of 2 x 10-”c
c 6 crrL/cm" sec ・cmHy (3
7°C, 0% RH) 2) Use polyester resin mainly composed of ethylene terephthalate units for the inner layer and/or outer layer of the IJ resin to form the base, and if necessary, combine both resin layers. A pipe or tube is formed by coextrusion with an adhesive layer interposed between the two, the pipe or tube is cut to an appropriate length, one end of the pipe or tube is fused and closed, and the bottom is formed. At the same time, the other end is molded into a neck part having an opening at the upper end and a fitting part or a threaded part on the outer periphery, and the obtained preformed product is preheated to a suitable stretching temperature of 85 to 120°C, and then molded into a blow molded metal. 2 in the axial and circumferential directions within the mold.
A method for producing a multilayer stretched polyester bottle, which comprises axially stretched polyester bottle p-molding.
JP58117089A 1983-06-30 1983-06-30 Multilayer oriented polyester bottle and manufacture thereof Pending JPS609739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117089A JPS609739A (en) 1983-06-30 1983-06-30 Multilayer oriented polyester bottle and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117089A JPS609739A (en) 1983-06-30 1983-06-30 Multilayer oriented polyester bottle and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS609739A true JPS609739A (en) 1985-01-18

Family

ID=14703118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117089A Pending JPS609739A (en) 1983-06-30 1983-06-30 Multilayer oriented polyester bottle and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS609739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128826A (en) * 1988-11-10 1990-05-17 Nissei Ee S B Kikai Kk Pressure-resistant thin synthetic resin container and method of molding the same
US7025918B1 (en) * 1997-12-12 2006-04-11 Institute Of Textile Technology Multilayer structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128826A (en) * 1988-11-10 1990-05-17 Nissei Ee S B Kikai Kk Pressure-resistant thin synthetic resin container and method of molding the same
US7025918B1 (en) * 1997-12-12 2006-04-11 Institute Of Textile Technology Multilayer structures

Similar Documents

Publication Publication Date Title
US6312772B1 (en) Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-polyester thermoplastic polymer
JPH0471698B2 (en)
GB2153739A (en) Process for production of multi-layer polyethylene terephthalate pipes for (stretch) blow moulding
JPS5938103B2 (en) container
GB2141970A (en) Multi-layer drawn polyester bottle
JP2606645B2 (en) Blow molded multilayer plastic container with excellent surface gloss
JPS5949896B2 (en) Method for manufacturing multilayer stretched hollow containers
JPS62164504A (en) Manufacture of preform for oriented polyester vessel
JPS609739A (en) Multilayer oriented polyester bottle and manufacture thereof
JPS60201909A (en) Manufacture of multilayer stretch blown bottle
JPS6251423A (en) Manufacture of oriented polyester container
JPS60147317A (en) Manufacture of multilayer orientation polypropylene bottle
JPS60157826A (en) Manufacture of multilayer drawn bottle
JPH0431286B2 (en)
JPS61146521A (en) Preparation of multi-layered stretched polyester container
JPS61197205A (en) Orientation blow molding preform
JPS62270315A (en) Manufacture of oriented polyester vessel
JPS5933113B2 (en) Container and its manufacturing method
JPS61219644A (en) Oriented multilayer plastic vessel and manufacture thereof
JPS61173924A (en) Oriented multilayer plastic vessel and manufacture thereof
JPS61259943A (en) Gas barriering multilayer polyester vessel and manufacture thereof
JPS62199425A (en) Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container
JPS61259942A (en) Draw-formed multilayer vessel and blank used for said vessel
JPH0367483B2 (en)
JPS60147306A (en) Manufacture of multilayer pipe for forming orientation molding