JPS62199425A - Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container - Google Patents

Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container

Info

Publication number
JPS62199425A
JPS62199425A JP61041952A JP4195286A JPS62199425A JP S62199425 A JPS62199425 A JP S62199425A JP 61041952 A JP61041952 A JP 61041952A JP 4195286 A JP4195286 A JP 4195286A JP S62199425 A JPS62199425 A JP S62199425A
Authority
JP
Japan
Prior art keywords
mold
preform
heat
temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61041952A
Other languages
Japanese (ja)
Other versions
JPH0443499B2 (en
Inventor
Shunsaku Hirata
平田 俊策
Sadao Hirata
平田 貞夫
Shigezo Nohara
野原 繁三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP61041952A priority Critical patent/JPS62199425A/en
Priority to GB8704602A priority patent/GB2188272B/en
Priority to SE8700844A priority patent/SE504354C2/en
Priority to FR878702790A priority patent/FR2595067B1/en
Priority to US07/020,998 priority patent/US4818575A/en
Publication of JPS62199425A publication Critical patent/JPS62199425A/en
Priority to GB8912902A priority patent/GB2218395B/en
Publication of JPH0443499B2 publication Critical patent/JPH0443499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6604Thermal conditioning of the blown article
    • B29C49/6605Heating the article, e.g. for hot fill

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To perform rapid molding processing by enhancing heating and cooling efficiency at the time of molding to a large extent, by interposing an intermediate layer having a heat insulating property and a gas barrier property between inner and outer layers comprising a polyester resin. CONSTITUTION:An intermediate layer 4 (e.g., a nylon 6/nylon 66 copolymer layer) having a heat insulating property and a gas barrier property is interposed between inner and outer layer 2, 3 comprising a polyester resin and bottom neck parts 12, 13, 14 are further formed to obtain a multilayered preform 11. After this preform 11 was preheated, the heated preform 11 is stretched by a stretching rod 25 in a blow mold of which the cavity surface is heated to 145 deg.C and, at the same time, compressed gas is blown in the preform from a fluid passage 27 to perform blow molding. After molding, a cooling fluid (e.g., cooling nitrogen gas) is made to flow into a molded body 29 from the fluid passage 27. The inner layer 2 is rapidly cooled because of the presence of the intermediate layer 4 and shape holdability necessary for taking-out is immediately obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱性多層延伸ポリエステル容器の製造法に
関するもので、より詳細には、ポリエチレンテレフタレ
ート等の熱可塑性ポリエステルからなる層とがスパリャ
ー性樹脂からなる層とを含む多層の耐熱性、耐熱収縮性
に優れた延伸ポリエステル容器を、一種の金型のみを使
用して効率良く製造する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a heat-resistant multilayer stretched polyester container, and more specifically, a layer made of a thermoplastic polyester such as polyethylene terephthalate has a sparring property. The present invention relates to a method for efficiently manufacturing a multilayer stretched polyester container having excellent heat resistance and heat shrinkage resistance, including a layer made of resin, using only one type of mold.

(従来の技術) ポリエチレンテレフタレート(PET)から成る延伸ボ
トルは、透明性、耐衝撃性(耐落下強度)、軽量性、衛
生性、酸素・炭酸ガス等の適度のガスバリヤ−性及び耐
圧性等に優れており、醤油、ソース、ドレッシング、食
用油、ビール、コーラ、サイダー等の炭酸飲料、果汁飲
料、ミネラルウォーター、シャンプー、洗剤、化粧品、
ワイン、カラ7、エアゾール製品等の包装容器として広
く使用されている。
(Prior art) Stretched bottles made of polyethylene terephthalate (PET) have advantages such as transparency, impact resistance (drop resistance), lightness, hygiene, appropriate gas barrier properties such as oxygen and carbon dioxide, and pressure resistance. Excellent for use in soy sauce, sauces, dressings, cooking oil, beer, cola, carbonated drinks such as cider, fruit juice drinks, mineral water, shampoo, detergents, cosmetics,
Widely used as packaging containers for wine, Kara 7, aerosol products, etc.

しかし延伸ポリエステルボトルもプラスチック製なるが
故にガラスびん、金属缶等の完全に密封されたものにあ
ってはガスの透過性はゼロに等しいとみてよいのに対し
延伸ポリエステルがトルは酸素、炭酸ガスなどに対し僅
かではあるが透過性を有しており、かん、ガラスびんよ
り食品の充填保存性に劣り、炭酸ガス入り飲料にあって
は炭酸ガスの損失を生み、ビール、コーラ、サイダーな
どにおいては明瞭々保存期間の限度をもっており、また
果汁入シ飲料にありては外部よりの酸素の透過の故にこ
れも非保存期間の制限を受ける。
However, since stretched polyester bottles are also made of plastic, gas permeability can be considered to be equal to zero in completely sealed items such as glass bottles and metal cans, whereas stretched polyester bottles have a high gas permeability of oxygen and carbon dioxide. It has a slight permeability to substances such as beer, cola, cider, etc., and is inferior to cans and glass bottles in terms of food filling and storage stability. There is a clear limit on the shelf life, and fruit juice-containing beverages also have a limited shelf life due to the permeation of oxygen from the outside.

また、延伸ポリエステルがトルは、透明性、ガスバリヤ
−性と共にガス入り飲料に対する耐圧性において、他の
プラスチック製がトルに較べて著しく優れているが、延
伸成形温度が比較的低温(80〜110℃)であり、か
つ非延伸部分乃至低延伸部分があるために耐熱性がない
ので、ホラトノダックする場合、充填温度は65℃以下
でないと実用に供し得す、その形状保持性がなくなると
いう欠点がある。
In addition, stretched polyester is significantly superior to other plastics in terms of transparency, gas barrier properties, and pressure resistance against gas-filled beverages, but the stretching and forming temperature is relatively low (80 to 110°C). ) and has no heat resistance due to the presence of non-stretched or low-stretched regions, so when it is filled with holatonoduck, the filling temperature must be 65°C or lower for practical use, which has the disadvantage of losing its shape retention. .

この欠点を除去するために、既に提案されているものと
して、ポリエステルボトルの非延伸部分(例えば口頚部
)と延伸部分(例えば胴部)の熱処理(ヒートセット)
を行なう方法がある。この熱処理法には、延伸ブロー成
形を行う金型を熱処理すべき高温に維持し、延伸ブロー
成形に続いてこの金型内で熱処理を行ない、この金型内
で冷却して取出す所謂ワン・モールド法(例えば特公昭
59−6216号公報)と、延伸ブロー成形を行う金型
を熱処理すべき高温に維持し、延伸ブロー成形に続いて
この金型内で熱処理を行ない、ブロー成形品を取出次い
で冷却金型にこれを入れて、膨張下に二次金型内で冷却
を行う所謂ツーモールド法(例えば特開昭57−533
26号公報)とが知られている。
In order to eliminate this drawback, heat treatment (heat setting) of the non-stretched parts (e.g. neck and neck) and stretched parts (e.g. body) of polyester bottles has already been proposed.
There is a way to do this. This heat treatment method involves a so-called one-mold process in which a mold for stretch blow molding is maintained at a high temperature for heat treatment, heat treatment is performed within this mold following stretch blow molding, and the mold is cooled and removed from the mold. According to the method (for example, Japanese Patent Publication No. 59-6216), a mold for stretch blow molding is maintained at a high temperature for heat treatment, heat treatment is performed in this mold following stretch blow molding, and the blow molded product is taken out and then The so-called two-mold method (for example, Japanese Patent Application Laid-Open No. 57-533
No. 26) is known.

(発明が解決しようとする問題点) しかしながら、従来の単層PET & )ルは、適度の
ガスバリヤ−性を有するが、現時点での技術水準からみ
てかつ経済性を考慮に入れると内容物の種類、流通形態
によシ未だ充分に満足し得るものではない。ポリエステ
ルのガスバリヤ−性を改善するために多層化する方法が
提案されているが。
(Problems to be Solved by the Invention) However, although the conventional single-layer PET & ) film has moderate gas barrier properties, considering the current state of the art and taking economic efficiency into account, the type of content is limited. However, the distribution format is still not completely satisfactory. In order to improve the gas barrier properties of polyester, a method of forming multiple layers has been proposed.

未だ実用に供されておらず、況んやガスバリヤ−性に優
れかつ耐熱性、熱変形性の改善されたものは提案されて
いない。
It has not yet been put to practical use, and no material with excellent gas barrier properties, improved heat resistance, and heat deformability has been proposed.

また、延伸ブロ一工程で熱処理を行なう場合、金型内に
冷却水を通してブロー金型を冷却することによって成形
品の冷却を行ない、成形品の品温をブロー金型よシ取り
出し可能な温度にまで冷却して取シ出すことによって所
定の熱処理されたポリエステルボトルが得られる。
In addition, when heat treatment is performed in one stretch blowing step, the molded product is cooled by passing cooling water into the mold to cool the blow mold, and the temperature of the molded product is brought to a temperature at which it can be removed from the blow mold. By cooling the bottle to a certain temperature and taking it out, a predetermined heat-treated polyester bottle is obtained.

しかしながら、前者の熱処理方法では、熱処理、  と
内部冷却とが同一のブロー金型内で行なわれるため、そ
れぞれの必要な処理時間を有しているので、一つの金型
内での占有時間が長くなシ、通常の/ IJエステルM
トルの延伸ブロー成形に較べて2〜4倍の成形時間を要
するため、生産効率が著しく低下し、製造コストが高く
なるのである。さらに、熱処理温度を高くすると、成形
品を金型から取シ出し可能温度まで冷却する時間が長く
かかるので、自然熱処理温度を低くする傾向があり、耐
熱性、耐熱収縮性の低いがトルしか得られないことにな
る。
However, in the former heat treatment method, heat treatment, and internal cooling are performed in the same blow mold, and each has its own processing time, so the time occupied in one mold is long. Nasi, normal / IJ Esther M
Since the molding time is 2 to 4 times longer than that of stretch blow molding, production efficiency is significantly lowered and manufacturing costs are increased. Furthermore, when the heat treatment temperature is increased, it takes a longer time to cool down the molded product to a temperature at which it can be removed from the mold, so there is a tendency to lower the natural heat treatment temperature. You will not be able to do so.

また、後者の熱処理法では、2稲類の金型と2段のブロ
ー操作とを必要とし、工程数が多く、設備コストも高く
なると共に、熱処理後に取出される一次ブロー成形品を
二次金型内に確実に入るようにするためには、−次ブロ
ー成形品の寸法を最終成形品の寸法よシも、安全率を見
込んで小さいものとしなければならず、このため二次ブ
ローによる膨張延伸を成程度行わなければならないこと
から、この二段目の膨張延伸に対応する熱収縮を発生し
鳥い。更に、このツー・モールド法では、二次ブロ一時
において型キャピテイ光面の形状を忠実に、ブロー成形
物表面に再現させることが困難であるという問題もある
In addition, the latter heat treatment method requires two molds and a two-stage blowing operation, which increases the number of steps and equipment costs. In order to ensure that it enters the mold, the dimensions of the secondary blow-molded product must be smaller than those of the final molded product, taking into account the safety factor. Since stretching must be carried out to a certain degree, thermal contraction corresponding to this second stage expansion stretching occurs. Furthermore, this two-mold method has the problem that it is difficult to faithfully reproduce the shape of the mold cavity light surface on the surface of the blow-molded product during the secondary blowing process.

従って1本発明の技術的課題は、従来の熱固定ポリエス
テルニ軸延伸容器の製法における上記欠点を解消し、一
種の金製のみを使用し且つ該金型内におけるプロー成形
品の占有時間を可及的に短かくして、耐熱収縮性とガス
バリヤ−性との組合せに優れた二軸延伸ポリエステル容
器を高生産速度で製造する方法を提供するにある@ (問題点を解決するための手段) 本発明によれば、エチレンテレフタレート単位を主体と
するポリエステルからなる内外層とガスバリヤ−性樹脂
からなる少くとも1個の中間層とを含み多層予備成形品
を延伸適正温度に予熱または調温し、その予備成形品を
熱固定温度範囲に維持された金型内にて二軸延伸プロー
成形を行うと共にブロー成形体の熱処理を行い、しかる
後プロー成形用加圧流体を内部冷却用流体に切換て、尚
プロー成形体を前記金をキャピテイ表面に接触せしめな
がら、ブロー成形体を型から取出しても形崩れしない温
度迄冷却し、次いで成形体を型から取出すことによシ、
耐熱収縮性とガスバリヤ−性との組合せに優れた二軸延
伸ポリエステル容器を高生産速度でしかも少ない工程数
で製造することができる。
Therefore, the technical problem of the present invention is to solve the above-mentioned drawbacks in the conventional method for manufacturing a heat-set polyester biaxially stretched container, use only one type of metal, and reduce the time occupied by the blow molded product in the mold. To provide a method for manufacturing a biaxially oriented polyester container having an excellent combination of heat shrinkage resistance and gas barrier properties at a high production rate in a shortened time frame. (Means for solving the problems) The present invention According to the above, a multilayer preformed product comprising inner and outer layers made of polyester mainly composed of ethylene terephthalate units and at least one intermediate layer made of a gas barrier resin is preheated or controlled to an appropriate temperature for stretching, and the preform is The molded product is subjected to biaxial stretch blow molding in a mold maintained at a heat-fixing temperature range, and the blow molded body is also heat treated, after which the pressurized fluid for blow molding is switched to an internal cooling fluid, and By cooling the blow-molded body while bringing the gold into contact with the cavity surface to a temperature at which the blow-molded body does not lose its shape even if the blow-molded body is taken out of the mold, and then taking out the molded body from the mold,
A biaxially oriented polyester container with an excellent combination of heat shrinkage resistance and gas barrier properties can be manufactured at a high production rate and with a reduced number of steps.

(作用) 本発明は、多層プロー成形体中のがスパリャー性樹脂中
間層がブロー成形体の熱処理及び冷却取出に際して断熱
層として作用し、このブロー成形体を内部側から冷却用
流体により冷却することにより、取出しに必要な保形性
が迅速に得られるという新規知見に基づくものである。
(Function) The present invention is characterized in that the intermediate layer of the sparring resin in the multilayer blow molded product acts as a heat insulating layer during heat treatment and cooling removal of the blow molded product, and the blow molded product is cooled from the inside with a cooling fluid. This is based on the new finding that the shape retention required for removal can be quickly obtained.

本発明の詳細な説明するための第1図において、多層プ
ロー成形体lはポリエステル内層2及びプリエステル外
層3並びにこれらの中間に位置するガスハIJヤー性樹
脂中間層4から成っている。熱処理後冷却の段階では、
4リ工ステル外層3は熱固定温度に加熱された金型5と
接触して加熱されておシ、一方/ IJエステル内層2
は冷却用流体6と接触して冷却された状態にある。本発
明においては、ガスバリヤ−性樹脂中間114が伝熱バ
リヤ一層として作用するため、ポリエステル内12が形
崩れなしに金型外に取出し得る温度、一般に60℃以下
の温度に迅速に冷却される一方、ポリエステル外層3及
びこれと接触する金型5の温度はこの内層冷却操作によ
ってあまり低下しないという利点が得られる。
In FIG. 1 for explaining the present invention in detail, a multilayer blow-molded body 1 is comprised of a polyester inner layer 2, a preester outer layer 3, and a gas-carrying resin intermediate layer 4 located between these layers. At the cooling stage after heat treatment,
4 The outer layer 3 of the reprocessed ester is heated by contacting the mold 5 heated to the heat setting temperature, while the inner layer 2 of the IJ ester is heated.
is in a cooled state in contact with the cooling fluid 6. In the present invention, since the gas barrier resin intermediate 114 acts as a heat transfer barrier layer, the polyester interior 12 is rapidly cooled to a temperature that is generally 60° C. or lower and can be taken out of the mold without losing its shape. An advantage is obtained that the temperature of the polyester outer layer 3 and the mold 5 in contact with it is not significantly lowered by this inner layer cooling operation.

下記第1表は種々の樹脂の温度伝導率を示す。Table 1 below shows the thermal conductivity of various resins.

第1我 塩化ビニリデン樹脂   2.50〜2.65EVOH
2,00〜2.55 延伸PET     6.40〜7.80未延伸 PE
T         4.90〜5.5この結果から、
エチレン−ビニルアルコール共重合体(l1lVOH)
の如きガスバリヤ−性樹脂は熱伝導性が低く、特にポリ
エチレンテレフタレー)(PET)のA乃至猶の熱伝導
性しか示さないことが明らかとなる。即チ、エチレン−
ビニルアルコール共重合体は、ガスバリヤ−性であるば
かりではなく、熱伝導のバリヤーとしても作用するので
ある。
No.1 vinylidene chloride resin 2.50~2.65EVOH
2,00-2.55 Stretched PET 6.40-7.80 Unstretched PE
T 4.90-5.5 From this result,
Ethylene-vinyl alcohol copolymer (l1lVOH)
It is clear that such gas barrier resins have low thermal conductivity, and in particular, exhibit only a thermal conductivity of A to just that of polyethylene terephthalate (PET). So, ethylene-
Vinyl alcohol copolymers not only have gas barrier properties, but also act as a barrier to heat conduction.

本発明によれば、ポリエステル内層に十分な形態保持性
が与えられるように金型からの取出のための冷却が迅速
に行われ、しかも熱処理に必要な金型表面の温度もあま
り低下させないことから、単一の金型を使用して延伸プ
ロー成形品の熱処理及び取出しのための冷却を迅速に行
うことが可能となる。
According to the present invention, the polyester inner layer is quickly cooled for removal from the mold so that it has sufficient shape retention, and the temperature of the mold surface required for heat treatment is not significantly lowered. , it becomes possible to rapidly heat-treat and cool a stretch-produced product for removal using a single mold.

(発明の作用効果) 本発明によれば、1種の金型と単一のプロー操作とのみ
が必要であることから、少ない工程数と少ない設備コス
トとで熱固定され九二軸延伸プロー成形容器を製造し得
ると共に、金を内での熱処理時間及び型から取出しのた
めの冷却時間を著しく短縮して、金型内での占有時間を
著しく縮少し、耐熱収縮性とガスバリヤ−性との組合せ
に優れ九二軸延伸ポリエステル容器を高生産速度で製造
することができる。また、得られる容器は一段ブロー法
であるため表面形状再現性にも優れており、美観、商品
価値等の外観特性にも優れている。特に、ツーモルト法
では用いる2つの割型に対応して最終容器に左右に各々
2本のパーティングラインが入るが本発明によれば左右
1本ずつの74−ティングラインが入るにすぎず、外観
特性にも優れている。
(Operations and Effects of the Invention) According to the present invention, since only one type of mold and a single blow operation are required, heat setting and 92-axis stretch blow molding can be performed with a small number of steps and a small equipment cost. Not only can the container be manufactured, but the time for heat treatment of the gold inside the mold and the cooling time for taking it out from the mold can be significantly shortened, the time occupied in the mold can be significantly shortened, and the heat shrinkage resistance and gas barrier properties can be improved. The combination is excellent and nine-biaxially stretched polyester containers can be manufactured at high production rates. Moreover, since the container obtained is produced using a one-stage blowing method, it has excellent surface shape reproducibility and also has excellent appearance characteristics such as aesthetic appearance and commercial value. In particular, in the two-molt method, two parting lines are placed on the left and right sides of the final container corresponding to the two split molds used, but according to the present invention, only one 74-parting line is placed on the left and right sides. It also has excellent characteristics.

(発明の好適実施態様の説明) 本発明において、熱可塑性ポリエステルとじては、ポリ
エチレンテレフタレートや、エチレンテレフタレート単
位を主体とし、他にそれ自体公知の改質用エステル単位
の少量を含むコポリエステル等が本発明の目的に使用さ
れる。この4リエステルはフィルムを形成し得るに足る
分子量を有していればよい。
(Description of preferred embodiments of the invention) In the present invention, thermoplastic polyesters include polyethylene terephthalate, copolyesters containing mainly ethylene terephthalate units, and a small amount of ester units for modification which are known per se. Used for the purposes of the present invention. It is sufficient that this 4-liester has a molecular weight sufficient to form a film.

また、ガスバリヤ−性樹脂としてはエチレンと酢酸ビニ
ル等のビニルエステルとの共重合体をケン化して得られ
る共重合体が使用され、成形作業性とバリヤー性とを考
慮すると、エチレン含有量が15乃至50モルチ、11
1に25乃至45モル慢のもので、ケン化度が96%以
上のものが有利に用いられる。この他の樹脂として、塩
化ビニリゾイン樹脂、高ニトリル樹脂、キシリレン基含
有ポリアミド樹脂、パイプぐリヤー性ポリエステル等カ
使用できる。
In addition, as the gas barrier resin, a copolymer obtained by saponifying a copolymer of ethylene and a vinyl ester such as vinyl acetate is used. Considering moldability and barrier properties, the ethylene content is 15%. to 50 molti, 11
Those having a saponification degree of 96% or more are advantageously used. Other resins that can be used include vinylrizoin chloride resin, high nitrile resin, xylylene group-containing polyamide resin, and pipe resin polyester.

必らずしも必要でないが、ポリエステル層とガスバリヤ
−性樹脂層との接着性を増強させるために、それ自体公
知の任意の接着剤を用いることができる。コポリエステ
ル系接着剤、ポリアマイド系接着剤、ポリエステル−エ
ーテル系接着剤、ニブキシ変性熱可塑性樹脂、酸変性熱
可塑性樹脂等がこの目的に使用される。
Although not required, any adhesive known per se can be used to enhance the adhesion between the polyester layer and the gas barrier resin layer. Copolyester adhesives, polyamide adhesives, polyester-ether adhesives, niboxy-modified thermoplastic resins, acid-modified thermoplastic resins, etc. are used for this purpose.

次に、熱可塑性ポリエステル層とガスバリヤ−性樹脂層
とを含む多層ノ母すソンを製造する方法として、一つに
はガスバリヤ−性樹脂を内層・外層或いは内外層にポリ
エステル樹脂を夫々使用し必要な場合両横脂層の間に接
着剤層を介在させ共押出法によシ・やイブを形成し、該
多層パイプを適当な長さに切断し、このパイプの一端を
融着閉塞し底部を形成すると共に他端の上部に開口部及
び外周に嵌合部或いは螺合部を有する口頚部を形成し多
層プリフォームトスる。
Next, as a method for manufacturing a multi-layer material including a thermoplastic polyester layer and a gas barrier resin layer, one method is to use a gas barrier resin as an inner layer and an outer layer, or a polyester resin as an inner layer and an outer layer, respectively. In this case, an adhesive layer is interposed between both horizontal layers, a pipe is formed by coextrusion, the multilayer pipe is cut to an appropriate length, one end of the pipe is fused and closed, and the bottom At the same time, a mouth and neck part having an opening and a fitting part or a threaded part on the outer periphery are formed in the upper part of the other end, and the multilayer preform is tossed.

また二台以上の射出機を備えた共射出成形機及び共射出
用金型を用いて内外層をポリエステル樹脂とし内外層を
覆われるように中間に一層乃至それ以上のバリヤー性樹
脂を挿入し射出用プリフォーム金型の要部に応じ底部及
び開口部を有する多層プリフォームを得ることが出来る
In addition, using a co-injection molding machine equipped with two or more injection machines and a co-injection mold, the inner and outer layers are made of polyester resin, and one or more layers of barrier resin are inserted in the middle to cover the inner and outer layers. A multilayer preform having a bottom and an opening can be obtained depending on the main parts of the preform mold.

また3台以上の射出機を備えた多段射出機によりまず第
1次内層プリフォームを形成し、次いで第2次金型に移
し中間層を射出しさらに第3次金型で外層を射出するよ
うに逐次に多段金型を移して多層プリフォームを得るこ
とも出来る。
In addition, a multi-stage injection machine equipped with three or more injection machines is used to first form a first inner layer preform, then transfer it to a second mold, inject an intermediate layer, and then inject an outer layer in a third mold. It is also possible to obtain a multilayer preform by sequentially transferring multistage molds.

斯くして得られたプリフォームに耐熱性を与えるためプ
リフォームの段階で螺合部、嵌合部、支持リング等を有
する口頚部を熱処理により結晶化し白化せしめる場合が
あシ、一方後述の2軸延伸ブローを完了したるものをが
トル成形完了後、未延伸部分の口頚部を結晶化し、白化
する場合もある。
In order to impart heat resistance to the preform obtained in this way, the mouth and neck parts including the threaded parts, fitting parts, support rings, etc. are sometimes crystallized and whitened by heat treatment at the stage of the preform. After axial stretching blowing is completed, the mouth and neck of the unstretched portion may crystallize and turn white after completion of torling.

準備された多層プリフォーム射出機のプリフォームに与
えた熱即ち余熱を利用しその温度範囲が85〜115℃
の延伸温度に調整するかコールトノやりソンにあっては
再加熱し同じく85〜115℃の延伸温度範囲に予熱す
る。プ党−金聾で2軸延伸するに当シブロー金屋を12
0〜230℃、好ましくは130〜210℃の加熱金型
とし延伸ブローされた多層プリフォームの器壁の外# 
PETが金型内面で接触と同時に熱処理(ヒートセット
)が開始される。所定の熱処理時間後、ブロー用流体を
内部冷却用流体に切換えて、内II PETの冷却を開
始する。熱処理時間は、ブロー成形体の厚みや温度によ
っても相違するが、一般に言って1.5乃至30秒、’
1IK2乃至20秒のオーダーである。
The temperature range is 85 to 115℃ by using the heat given to the preform of the prepared multilayer preform injection machine, that is, the residual heat.
The stretching temperature is adjusted to a temperature of 85 DEG to 115 DEG C., or in the case of a cold process, it is reheated and preheated to a stretching temperature of 85 DEG to 115 DEG C. 12 of our Shibrow Kanaya for biaxial stretching with metal blindness
The outer surface of the container wall of the multilayer preform is stretched and blown into a heated mold at 0 to 230°C, preferably 130 to 210°C.
Heat treatment (heat setting) is started at the same time as the PET comes into contact with the inner surface of the mold. After a predetermined heat treatment time, the blowing fluid is switched to the internal cooling fluid to start cooling the inner II PET. The heat treatment time varies depending on the thickness and temperature of the blow molded product, but generally speaking, it is 1.5 to 30 seconds.
It is on the order of 1IK2 to 20 seconds.

一方冷却時間も、熱処理温度や冷却用流体の種類により
異なるが一般Kl乃至30秒、特に2乃至20秒のオー
ダーセある。
On the other hand, the cooling time also varies depending on the heat treatment temperature and the type of cooling fluid, but is generally on the order of K1 to 30 seconds, and particularly on the order of 2 to 20 seconds.

冷却用流体としては、冷却された各糧気体、例えば−4
0℃乃至+10℃の窒素、空気、炭酸ガス等の他に、化
学的に不活性な液化ガス、例えば液化窒素ガス、液化炭
酸ガス、液化トリクロロフルオロメタンガス、液化ジク
ロロジフルオロメタンガス、他の液化脂肪族炭化水素ガ
ス等も使用される。この冷却用流体には、水等の気化熱
の大きい液体ミストを共存させることもできる。上述し
た冷却用流体を使用することにより、著しく大きい冷却
速度を得ることができる。
The cooling fluid may be a cooled gas, for example -4
In addition to nitrogen, air, carbon dioxide, etc. at 0°C to +10°C, chemically inert liquefied gases such as liquefied nitrogen gas, liquefied carbon dioxide, liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, and other liquefied aliphatic gases. Hydrocarbon gas etc. are also used. This cooling fluid may also contain a liquid mist having a large heat of vaporization, such as water. By using the cooling fluids described above, significantly greater cooling rates can be obtained.

金型から取出したブロー成形体の外層は、放冷により、
或いは冷風を吹付けることKより、外層PETの冷却を
行う。
The outer layer of the blow molded product taken out from the mold is allowed to cool,
Alternatively, the outer layer PET is cooled by blowing cold air.

本発明において、ガスバリヤ−性中間層は、伝熱遮断の
点では容器とした場合の平均値が少なくとも5μmの厚
みを有するべきであるが、300μmを越えると延伸成
形性が低下する傾向がある。一般に20乃至80μmの
範囲が好適である。冷却取出時における保形性の点から
は、同じ< PET内層は少なくとも25μmの厚みを
有するべきであり、25乃至70μmの範囲が適当であ
る。内層/外層の厚み比は、1/3乃至1/1の範囲が
望ましい。
In the present invention, the gas barrier intermediate layer should have an average thickness of at least 5 μm when used as a container in terms of heat transfer insulation, but if it exceeds 300 μm, stretch formability tends to decrease. Generally, a range of 20 to 80 μm is preferred. From the point of view of shape retention during cooling and removal, the PET inner layer should have a thickness of at least 25 μm, and a range of 25 to 70 μm is suitable. The inner layer/outer layer thickness ratio is preferably in the range of 1/3 to 1/1.

但し製造法によってはこの限シではない。However, this is not the case depending on the manufacturing method.

次に、図面に沿って本発明による熱可塑性ポリエステル
y3?)ルの製造法について説明する。
Next, according to the drawing, the thermoplastic polyester y3 according to the present invention? ) The manufacturing method of the mol is explained below.

第2図は、共押出成形又は共射出成形によシ成形された
多層プリフォームであり、プリフォーム11は口頚部1
2、ネジ部13、サポートリング(ネックリング)14
、長筒部15及び底部16から成っている。
FIG. 2 shows a multilayer preform molded by co-extrusion molding or co-injection molding.
2, threaded part 13, support ring (neck ring) 14
, a long cylindrical portion 15 and a bottom portion 16.

第3図は、多/ii f IJフオームの壁部断面を示
し、熱可塑性ポリエステルから成る内層2及び外層3、
エチレン−ビニルアルコール共重合体等のガスバリヤ−
性樹脂から成る中間層4並びKこれらの各層間に介在す
る接着剤層10m、10bから成っている。
FIG. 3 shows a wall cross-section of a poly/ii f IJ foam, comprising an inner layer 2 and an outer layer 3 of thermoplastic polyester;
Gas barrier such as ethylene-vinyl alcohol copolymer
The intermediate layer 4 is made of a synthetic resin, and the adhesive layers 10m and 10b are interposed between these layers.

第2図に示されているプリフォームを熱風加熱、赤外線
加熱、高周波加熱等を延伸適性温度まで加熱電制する。
The preform shown in FIG. 2 is electrically heated by hot air heating, infrared heating, high frequency heating, etc. to a temperature suitable for stretching.

この場合温度範囲は85〜115℃、好ましくは90〜
110℃である。
In this case the temperature range is 85-115°C, preferably 90-115°C.
The temperature is 110°C.

次に、第4図及び第5図を用いて延伸ブロ一工程(熱処
理工程)について説明する。
Next, the stretching blowing step (heat treatment step) will be explained using FIGS. 4 and 5.

プリフォーム11の口頚部は、リップキャビティ21 
a e 2 l bで保持され、プリフォーム11の他
の部分は所望の熱処理温度に加熱するためにヒーター2
2が内蔵されたブロー金型231゜23bのキャビティ
24& 、24b内に配置されると共に、該プリフォー
ム11の口部よシ延伸棒25を備えたマンドレル26が
挿入される。この延伸棒25は垂直方向に移動可能であ
り、かつ延伸棒25とマンドレル26との間に流体通路
17が設けられている。
The mouth and neck of the preform 11 has a lip cavity 21.
a e 2 l b, and the other parts of the preform 11 are heated to a desired heat treatment temperature by a heater 2.
A mandrel 26 equipped with a stretching rod 25 is inserted through the mouth of the preform 11. The stretching rod 25 is vertically movable and a fluid passage 17 is provided between the stretching rod 25 and the mandrel 26.

本発明において、ブロー金W23a、23bは110〜
230℃の所望の熱処理温度に加熱されており、この金
型内に延伸温度に調温されたプリフォーム21をセット
して延伸棒25の先端をプリフォーム21の底部内側圧
当てがいながら軸方向に延伸すると共に、流体通路27
を経てプリフォーム内圧圧縮気体を吹き込んで周方向に
膨張延伸してブロー成形品28(第4図)を成形する。
In the present invention, the blow metal W23a, 23b is 110~
The preform 21, which has been heated to the desired heat treatment temperature of 230° C. and whose temperature has been adjusted to the drawing temperature, is set in this mold, and the tip of the drawing rod 25 is pressed against the inside of the bottom of the preform 21 in the axial direction. and the fluid passageway 27
The preform is expanded and stretched in the circumferential direction by blowing compressed gas into the preform to form a blow-molded product 28 (FIG. 4).

延伸倍率は、特に限定されないが、軸方向1c 1.5
乃至3倍、周方向に3乃至5倍程度のものである。
The stretching ratio is not particularly limited, but in the axial direction 1c 1.5
It is approximately 3 to 3 times larger, and 3 to 5 times larger in the circumferential direction.

成形されたブロー成形体は、圧縮流体の内圧が印加され
た状態で、引続きキャピテイ表面24a。
The molded blow-molded body continues to be exposed to the cavity surface 24a while the internal pressure of the compressed fluid is applied.

24bと接触して熱処理が行われる。次いで、ブロー用
圧縮流体が冷却用流体に切換えられ、流体通路27を経
て成形体内部29が冷却用流体で充満されて、取出しの
ための冷却が行われる。
A heat treatment is performed in contact with 24b. Next, the compressed blowing fluid is switched to the cooling fluid, and the inside 29 of the molded body is filled with the cooling fluid through the fluid passage 27 to perform cooling for removal.

このようにして得られた最終成形品は、例えば80℃以
上の高温度の熱間充填に対しても熱変形も熱収縮もなく
、耐熱性、耐熱収縮性を備えかつ透明性、ガスバリヤ−
性の優れた多層&)ルが得られるのである。
The final molded product obtained in this way has no heat deformation or shrinkage even when subjected to hot filling at a high temperature of 80°C or higher, has heat resistance, heat shrinkage resistance, transparency, and gas barrier properties.
This results in a multi-layer structure with excellent properties.

(発明の用途) 本発明による容器は、80℃以上の高温度での熱間充填
(ホットハック)品でかつシェルフライフを延長させた
い果汁類、ラガービャーの如き炭酸ガス入シでかつ熱処
理(・臂ステライズ)を要する内容物で耐圧性、耐熱性
を要求されるものの包装容器として特に有用である。
(Applications of the Invention) The container according to the present invention is a hot-filling (hot-hack) product at a high temperature of 80°C or higher, and is a product that contains carbon dioxide gas such as fruit juice or lager beer whose shelf life is desired to be extended, and is heat-treated (. It is particularly useful as a packaging container for contents that require pressure resistance and heat resistance.

(実施例) 本発明を次の実施例で説明する。(Example) The invention is illustrated by the following examples.

実施例1 共押出し法により、ポリエチレンテレフタレー) (P
ET 、温度伝導率= 5.55 X 10−’ m2
/hr −)ト、エチレン含有量が30モルチでビニル
アルコールを有tが70モル−のエチレン・ビニルアル
コール共重合体(EVOH、温rl伝導率= 2.00
X10−’m2/hr・)を用い、接着剤(AD)とし
て6ナイロンと66ナイロンとの共重合体(66ナイロ
ンが22モルチ、6ナイロンが78モルチの共重合体、
温度伝導率= 2.85X10  m /hr・)によ
って多層パイプを構成し、ボトム・ネックを形成し、重
量が599の多層プリフォームを得た。
Example 1 Polyethylene terephthalate) (P
ET, temperature conductivity = 5.55 x 10-' m2
/hr -) ethylene-vinyl alcohol copolymer with an ethylene content of 30 mol and vinyl alcohol and t of 70 mol (EVOH, temperature rl conductivity = 2.00)
X10-'m2/hr.
A multilayer pipe was constructed with temperature conductivity = 2.85×10 m /hr·), a bottom neck was formed, and a multilayer preform with a weight of 599 was obtained.

パイプ成形時の層の厚さ比率は、 PET (外fl)/Ao/Evou/AD/pgT(
内層)=1010.2/110.215であった。但し
、ADは接着剤層を意味する。
The layer thickness ratio during pipe forming is PET (outer fl)/Ao/Evou/AD/pgT (
inner layer) = 1010.2/110.215. However, AD means an adhesive layer.

核多層プリフォームを100℃に予備加熱した後、キャ
ビティ内表面が145℃に加熱された内容積が1580
Ce、のプロー用金型内で2軸延伸ブローすると同時に
12秒間ヒートセットしたのち、ブロー用流体を内部冷
却用流体(+5℃に調節された空気)K切換えて、再度
9秒間流体圧を印加し、直ちに取出し、放冷することK
よシ、内容積が1500c8.の&)ルを成形した。
After preheating the core multilayer preform to 100℃, the inner volume of the cavity heated to 145℃ is 1580℃.
After biaxial stretching blowing and heat setting for 12 seconds in the blowing mold of Ce, the blowing fluid was switched to internal cooling fluid (air adjusted to +5℃) K, and fluid pressure was applied again for 9 seconds. Immediately take it out and leave it to cool.
Yes, the internal volume is 1500c8. &) le was molded.

ガス透過性 本発明品?トルの酸素透過度Q02は、0.2cc肩2
・day−atm 、 (保存条件二?トル内湿度が1
00チRH,、Iトル外湿度が601RH,であシ、保
存温度は22℃、)であった。
Gas permeable product of this invention? Tor's oxygen permeability Q02 is 0.2cc shoulder 2
・day-atm, (Storage conditions 2? The humidity inside the tank is 1.
The outside humidity was 601 RH, and the storage temperature was 22° C.).

比較のために成形した単層PET&)ル(同重量、同内
容積)を、前記と同条件で測定した場合の酸素透過度Q
Oは4.4cc/m @ day−atm 、であった
Oxygen permeability Q when a molded single-layer PET (same weight, same internal volume) was measured under the same conditions as above for comparison.
O was 4.4 cc/m @ day-atm.

耐熱性 本発明による内容積が1500cc、のケトルを、あら
かじめ内容積を測定しくVom7り、これに85℃の温
湯を充填したのちに室温まで放冷して、再び該ケトルの
内容積を測定した(Vlm)。
Heat Resistance A kettle according to the present invention with an internal volume of 1500 cc was preliminarily measured for its internal volume, filled with hot water at 85°C, allowed to cool to room temperature, and the internal volume of the kettle was measured again. (Vlm).

ケトルの熱収縮率、Sを、 5=(V、/Me−1)X100 と定義すると、Sは−0,21でありた。The heat shrinkage rate of the kettle, S, is 5=(V,/Me-1)X100 When defined as , S was -0.21.

また、形状的にも変化は認められなかりた。Moreover, no change was observed in terms of shape.

実施例2 主射出機に固有粘度が0.75のポリエチレンテレフタ
レー) (PET 、温度伝導率は実施例1と同じ。)
を供給し、副射出機に東洋紡績■製のメタキシリレン・
アジパミド樹脂(SM・ナイロン。
Example 2 The main injection machine was made of polyethylene terephthalate with an intrinsic viscosity of 0.75 (PET, the temperature conductivity was the same as in Example 1).
and meta-xylylene manufactured by Toyobo ■ to the sub-injection machine.
Adipamide resin (SM/nylon.

温度伝導率= 2.45X 10  m /hr、)を
供給し、多層プリフォームを共射出するに当シ、最初に
主射出機より約60kJi/mの圧力で一次射出1.3
秒おこない、その後、0.1秒開核PETの射出を止め
たのち、核PETの射出開始より1.4秒遅れてPET
の一次射出圧力よりも高い圧力(約100に9/32)
で副射出機より溶融されたSM・ナイロンを0.8秒間
で所定量を射出し、さら&C8M・ナイロンの射出の終
了から0,05秒遅らせて主射出機より一次射出圧力よ
シも低い圧力(約30 kg / 5!2)でPETを
射出し、肉厚が約5目、の多層プリフォームを成形した
。このプリフォームのttが約59.9であシ、うち、
8M・ナイロンは重量比で約4.5チであった。
Temperature conductivity = 2.45X 10 m/hr), and in order to co-inject the multilayer preform, firstly, the primary injection was performed from the main injection machine at a pressure of about 60 kJi/m.
After that, the injection of the open core PET is stopped for 0.1 seconds, and the PET is started 1.4 seconds after the start of the nuclear PET injection.
pressure higher than the primary injection pressure (approximately 9/32 to 100)
A predetermined amount of molten SM/nylon is injected in 0.8 seconds from the sub-injection machine, and then the pressure is lower than the primary injection pressure from the main injection machine by 0.05 seconds after the end of injection of C8M/nylon. (approximately 30 kg/5!2) PET was injected to mold a multilayer preform with a wall thickness of approximately 5 mm. The tt of this preform is about 59.9, of which
The weight ratio of 8M nylon was approximately 4.5 inches.

該多層プリフォームを、実施例1と同じ条件で同−金型
内で2軸延伸ブローをおこなうと同時にヒートセットお
よび冷却をし、内容積が1500a、のケトルを得た。
The multilayer preform was subjected to biaxial stretching blowing in the same mold under the same conditions as in Example 1, and was simultaneously heat set and cooled to obtain a kettle with an internal volume of 1500 a.

ガス透過性 本発明によるyf)ルの酸素透過度、 QO□は、0.
9cc/m  −day * aim 、 (保存条件
は実施例1の場合と同じ。)であった・ 比較のために施行した単層のPETyK)ル(同一重量
、同一内容積)のQO2は4.4cc/m−day・a
tm・)であった・ 耐熱性 本発明による内容積が1500ccの&)ルを実施例1
の場合と同一の方法で耐熱性試験(ケトルの収縮率測定
)を施行した。ケトルの収縮率(S)は、−0,1%で
あった。
Gas permeability The oxygen permeability, QO□, of yf) according to the present invention is 0.
9cc/m-day*aim, (Storage conditions were the same as in Example 1.) QO2 of the single-layer PETyK (same weight, same internal volume) conducted for comparison was 4. 4cc/m-day・a
tm・)・Heat resistance Example 1
A heat resistance test (kettle shrinkage rate measurement) was conducted using the same method as in the case of . The shrinkage rate (S) of the kettle was -0.1%.

また、形状的にも変形は認められなかりた。Moreover, no deformation was observed in terms of shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造法の原理を示す説明図であシ。 第2図は本発明に用いるプリフォームの側断面図であり
、 第3図は第2図のプリフォームの断面構造を示す拡大断
面図であシ、 第4図は延伸ブロ一工程を説明するための側断面図であ
り、 第5図は熱固定及び冷却の工程を説明す・るための側断
面図である。 lは多層プロー成形体、2はポリエステル内層。 3は?リエステル外層、4はガスバリヤ−性樹脂中間層
、5は加熱された金型、6は冷却用流体、11はプリフ
ォーム、22はヒーター、23m。 23bは金型、25は延伸棒、27はブロー用流体及び
冷却用流体の通路を示す。 gFJ1図 第2図    第3図 第4図 第5図
FIG. 1 is an explanatory diagram showing the principle of the manufacturing method of the present invention. Fig. 2 is a side sectional view of the preform used in the present invention, Fig. 3 is an enlarged sectional view showing the cross-sectional structure of the preform shown in Fig. 2, and Fig. 4 explains the drawing process. FIG. 5 is a side sectional view for explaining the heat setting and cooling steps. 1 is a multilayer blow-molded product, and 2 is a polyester inner layer. What about 3? A polyester outer layer, 4 a gas barrier resin intermediate layer, 5 a heated mold, 6 a cooling fluid, 11 a preform, 22 a heater, and 23 m. 23b is a mold, 25 is a drawing rod, and 27 is a passage for blowing fluid and cooling fluid. gFJ1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)エチレンテレフタレート単位を主体とするポリエ
ステルからなる内外層とガスバリヤー性樹脂からなる少
くとも1個の中間層とを含み多層予備成形品を85〜1
15℃の延伸適正温度に予熱または調温し、その予備成
形品を熱固定温度範囲に維持された金型内にて二軸延伸
ブロー成形を行うと共にブロー成形体の熱処理を行い、
しかる後ブロー成形用加圧流体を内部冷却用流体に切換
て、尚ブロー成形体を前記金型キャビティ表面に接触せ
しめながら、ブロー成形体を量から取出しても形崩れし
ない温度迄冷却し、次いで成形体を型から取出すことを
特徴とする耐熱収縮性二軸延伸容器の製法。
(1) A multilayer preformed product comprising inner and outer layers made of polyester mainly composed of ethylene terephthalate units and at least one intermediate layer made of gas barrier resin.
Preheat or adjust the temperature to the appropriate stretching temperature of 15°C, perform biaxial stretch blow molding on the preformed product in a mold maintained within the heat-fixing temperature range, and heat treat the blow molded product.
Thereafter, the pressurized fluid for blow molding is switched to the internal cooling fluid, and while the blow molded product is in contact with the surface of the mold cavity, it is cooled to a temperature at which the blow molded product does not lose its shape even if it is taken out of the mold, and then A method for producing a heat-shrinkable biaxially stretched container, which comprises removing a molded object from a mold.
JP61041952A 1986-02-28 1986-02-28 Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container Granted JPS62199425A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61041952A JPS62199425A (en) 1986-02-28 1986-02-28 Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container
GB8704602A GB2188272B (en) 1986-02-28 1987-02-27 A process for preparation of a biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties.
SE8700844A SE504354C2 (en) 1986-02-28 1987-02-27 Process for making a biaxially drawn vessel and biaxially drawn polyester vessel
FR878702790A FR2595067B1 (en) 1986-02-28 1987-03-02 METHOD FOR MANUFACTURING A BIAXIALLY STRETCHED CONTAINER AND CONTAINER MANUFACTURED BY THIS METHOD
US07/020,998 US4818575A (en) 1986-02-28 1987-03-02 Biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties and process for preparation thereof
GB8912902A GB2218395B (en) 1986-02-28 1989-06-05 Biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041952A JPS62199425A (en) 1986-02-28 1986-02-28 Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container

Publications (2)

Publication Number Publication Date
JPS62199425A true JPS62199425A (en) 1987-09-03
JPH0443499B2 JPH0443499B2 (en) 1992-07-16

Family

ID=12622535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041952A Granted JPS62199425A (en) 1986-02-28 1986-02-28 Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container

Country Status (1)

Country Link
JP (1) JPS62199425A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134240A (en) * 1986-11-10 1988-06-06 オーエンス−イリノイ・プラスチツク・プロダクツ・インコーポレーテツド Multilayer biaxial oriented heat-set article and manufacture
WO1997038845A1 (en) * 1996-04-18 1997-10-23 Nippon Steel Chemical Co., Ltd. Multi-layered blow molded body and multi-layered blow molding method
JP2010503565A (en) * 2006-09-15 2010-02-04 ザ・コカ−コーラ・カンパニー Multi-layer container with improved gas barrier properties
US7713464B2 (en) 2001-11-01 2010-05-11 Kureha Corporation Multilayer container of polyglycolic acid and polyester and blow molding production process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493073A (en) * 1972-04-28 1974-01-11
JPS5712617A (en) * 1980-06-26 1982-01-22 Mitsubishi Plastics Ind Ltd Production of bottle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493073A (en) * 1972-04-28 1974-01-11
JPS5712617A (en) * 1980-06-26 1982-01-22 Mitsubishi Plastics Ind Ltd Production of bottle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134240A (en) * 1986-11-10 1988-06-06 オーエンス−イリノイ・プラスチツク・プロダクツ・インコーポレーテツド Multilayer biaxial oriented heat-set article and manufacture
JPH0420784B2 (en) * 1986-11-10 1992-04-06 Ooensu Irinoi Purasuchitsuku Purodakutsu Inc
WO1997038845A1 (en) * 1996-04-18 1997-10-23 Nippon Steel Chemical Co., Ltd. Multi-layered blow molded body and multi-layered blow molding method
CN1064304C (en) * 1996-04-18 2001-04-11 新日铁化学株式会社 Multi-layered blow molded body and multi-layered blow molding method
US7713464B2 (en) 2001-11-01 2010-05-11 Kureha Corporation Multilayer container of polyglycolic acid and polyester and blow molding production process
JP2010503565A (en) * 2006-09-15 2010-02-04 ザ・コカ−コーラ・カンパニー Multi-layer container with improved gas barrier properties

Also Published As

Publication number Publication date
JPH0443499B2 (en) 1992-07-16

Similar Documents

Publication Publication Date Title
US4818575A (en) Biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties and process for preparation thereof
CA1240113A (en) Process for production of multi-layer pipes for draw-forming
US4665682A (en) Method for producing a hot fillable, collapse resistant polyester container without the need to utilize set process techniques and/or non-conventional container geometries
US5989661A (en) Pressurized refill container resistant to sprue cracking
JPH0471698B2 (en)
GB2141970A (en) Multi-layer drawn polyester bottle
GB2218395A (en) A draw-blow moulded laminar polyester vessel
JPS62199425A (en) Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container
JPS62164504A (en) Manufacture of preform for oriented polyester vessel
JPH0431286B2 (en)
JPS5841182B2 (en) Method for manufacturing hot-fillable plastic containers
JPH0379189B2 (en)
JPS60201909A (en) Manufacture of multilayer stretch blown bottle
JPS60189418A (en) Manufacture of heat resisting polyester bottle
JPH02229023A (en) Manufacture of multilayer stretch-molded vessel with intermediate layer arranged offset to inside surface side
JPH0376651B2 (en)
JPH0531792A (en) Manufacture of heat resistant container
JPS61197205A (en) Orientation blow molding preform
JPS6251423A (en) Manufacture of oriented polyester container
JPS61146521A (en) Preparation of multi-layered stretched polyester container
JPS63191737A (en) Heat-resistant deformable gas barrier biaxial oriented polyester vessel
JPS62270315A (en) Manufacture of oriented polyester vessel
JPS6216169B2 (en)
JPS60147317A (en) Manufacture of multilayer orientation polypropylene bottle
JPH0376645B2 (en)