JPS63191737A - Heat-resistant deformable gas barrier biaxial oriented polyester vessel - Google Patents

Heat-resistant deformable gas barrier biaxial oriented polyester vessel

Info

Publication number
JPS63191737A
JPS63191737A JP62023491A JP2349187A JPS63191737A JP S63191737 A JPS63191737 A JP S63191737A JP 62023491 A JP62023491 A JP 62023491A JP 2349187 A JP2349187 A JP 2349187A JP S63191737 A JPS63191737 A JP S63191737A
Authority
JP
Japan
Prior art keywords
heat
container
layer
crystallinity
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62023491A
Other languages
Japanese (ja)
Other versions
JPH0230929B2 (en
Inventor
平田 俊策
野原 繁三
平田 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2349187A priority Critical patent/JPH0230929B2/en
Priority to SE8700844A priority patent/SE504354C2/en
Priority to GB8704602A priority patent/GB2188272B/en
Priority to US07/020,998 priority patent/US4818575A/en
Priority to FR878702790A priority patent/FR2595067B1/en
Publication of JPS63191737A publication Critical patent/JPS63191737A/en
Priority to GB8912902A priority patent/GB2218395B/en
Publication of JPH0230929B2 publication Critical patent/JPH0230929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • B29K2995/0043Crystalline non-uniform

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱変形性ガスバリャー二軸延伸プリエステ
ル容器に関するもので、より詳細には、内容物の熱間充
填時或いはその後の冷却過程での容器胴部の不斉変形が
防止され、常に容器の外観特性を良好な状態に維持し得
るガスバリャー二軸延伸ポリエステル容器に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a heat-deformable gas barrier biaxially oriented preester container, and more specifically, the present invention relates to a heat-deformable gas barrier biaxially oriented preester container, and more specifically, during hot filling with contents or during the subsequent cooling process. The present invention relates to a gas barrier biaxially oriented polyester container in which asymmetric deformation of the container body is prevented and the appearance characteristics of the container can always be maintained in good condition.

(従来の技術) ポリエチレンテレフタレート(pIivr)から成る延
伸がトルは、透明性、耐衝撃性(耐落下強度)、軽量性
、衛生性、酸素・炭酸ガス等の適度のガスバリヤ−性及
び耐圧性等に優れており、醤油、ソース、ドレッシング
、食用油、ビール、コーラ、サイダー等の炭酸飲料、果
汁飲料、ミネラルウォ−ター、シャンプー、洗剤、化粧
品、ワイン、カラン、エアゾール製品等の包装容器とし
て広く使用されている。
(Prior art) Stretched polyurethane made of polyethylene terephthalate (PIIVR) has transparency, impact resistance (drop resistance), lightness, hygiene, appropriate gas barrier properties such as oxygen and carbon dioxide gas, pressure resistance, etc. Widely used as packaging containers for soy sauce, sauces, dressings, edible oils, carbonated drinks such as beer, cola, and cider, fruit juice drinks, mineral water, shampoos, detergents, cosmetics, wine, currants, aerosol products, etc. It is used.

しかし延伸ポリエステルがトルもプラスチック製なるが
故にガラスびん、金属缶等の完全に密封されたものにあ
ってはガスの透過性はゼロに等しいとみてよいのに対し
延伸ポリエステル&)ルは酸素、炭酸ガスなどに対し僅
かではあるが透過性を有しており、かん、ガラスびんよ
り食品の充填保存性に劣り、炭酸ガス入り飲料にあって
は炭酸ガスの損失を生み、ビール、コーラ、サイダーな
どにおいては明瞭な保存期間の限度をもっており、また
果汁入り飲料にあっては外部よりの酸素の透過の故にこ
れも亦保存期間の制限を受ける。
However, since stretched polyester is made of plastic, it can be assumed that gas permeability is equal to zero in completely sealed items such as glass bottles and metal cans, whereas stretched polyester is made of plastic. It has a slight permeability to carbon dioxide gas, etc., and is inferior to cans and glass bottles in terms of food filling and preservation, and causes a loss of carbon dioxide gas in carbonated beverages, resulting in beer, cola, and cider. Beverages containing fruit juice have a clear shelf life limit, and fruit juice beverages are also subject to a shelf life limit due to the permeation of oxygen from the outside.

この欠点を改善するため、容器をポリエステルの内外層
と、エチレンビニルアルコール共重合体やメタキシリレ
ン基含有ポリアミド等のだスパリャー性樹脂の中間層と
の多層構造とすることが既に提案されている。
In order to improve this drawback, it has already been proposed that the container has a multilayer structure consisting of inner and outer layers of polyester and an intermediate layer of sparse resin such as ethylene vinyl alcohol copolymer or metaxylylene group-containing polyamide.

また、延伸ポリエステル&)ルは、透明性、がスバリャ
ー性と共にガス入り飲料に対する耐圧性において、他の
グラスチック製ボトルに較べて著しく優れているが、延
伸成形温度が比較的低温(80〜110℃)であり、か
つ非延伸部分乃至低延伸部分があるために耐熱性がない
ので、ホット・クックする場合、充填温度は、65℃以
下でないと実用に供し得す、その形状保持性がなくなる
という欠点がある。
In addition, stretched polyester bottles are significantly superior to other glass bottles in terms of transparency, smoothness, and pressure resistance for gas-filled beverages, but the stretching and forming temperature is relatively low (80 to 110 degrees Celsius). ℃) and has non-stretched parts or low-stretched parts, so it has no heat resistance, so when hot cooking, the filling temperature must be 65°C or lower to be used for practical purposes, but it loses its shape retention. There is a drawback.

この欠点を除去するために、既に提案されてい、Ep4
のとして、ポリエステルボトルの非廷伸部分(例えば口
頚部)と延伸部分(例えば胴部)の熱処理(ヒートセッ
ト)することが既に知られている。
To eliminate this drawback, it has already been proposed, Ep4
It is already known to heat-set the non-stretched parts (for example, the neck and neck) and the stretched parts (for example, the body) of polyester bottles.

(発明が解決しようとする問題点) 二軸延伸ポリエステルの熱固定は、器壁が滑らかな容器
の場合には、65℃程度の温度迄の範囲において熱変形
を防止するという効果をもたら゛す。
(Problems to be Solved by the Invention) Heat-setting of biaxially oriented polyester has the effect of preventing thermal deformation at temperatures up to about 65°C in the case of containers with smooth walls. vinegar.

しかしながら、二軸延伸ポリエステル容器への熱間充填
によるビン詰製品の製造においては、加熱時の内容物の
容積と冷却時における内容積との間にかなり大きな容積
変化があり、この容積変化に対応して容器内外にかなり
の圧力差を生じる。
However, in the production of bottled products by hot filling into biaxially oriented polyester containers, there is a fairly large volume change between the volume of the contents when heated and the volume when cooled. This creates a significant pressure difference between the inside and outside of the container.

これを防止するために、容器胴部に、相対的に径が大で
且つ周長の小さいピラー状凸部と、相対的に径が小で且
つ周長の大きいパネル状凹部とを周方向に交互に配置し
、このパネル状凹部を、容器内の圧力変化に応じて胴部
径方向に膨脹及び収縮し得る機能をもたせることが行わ
れている。
In order to prevent this, a pillar-shaped protrusion with a relatively large diameter and a small circumference and a panel-shaped recess with a relatively small diameter and a large circumference are formed in the circumferential direction on the container body. These panel-like recesses are arranged alternately and have the function of being able to expand and contract in the radial direction of the body in response to changes in pressure within the container.

しかしながら、この機能を備えた延伸ポリエステル容器
に熱固定を行うと、これらの凹凸部における熱固定が一
様に行われていないこと及び成形及び熱処理時における
内部歪が残留することに関連して、内容物を熱間充填し
た際、前述したパネル状凹部が不斉変形(−次不斉変形
)シ、次いで密封後冷却を行った際このパネル状凹部の
膨張収縮機能が正常に作用しないため、冷却後の容器が
更にみにくく不斉変形(二次不斉変形)するという欠点
を生じる。このような欠点は、テトルに内容物を充填後
、これを加熱殺菌する場合にも同様に生じる。
However, when heat setting is performed on a stretched polyester container equipped with this function, heat setting is not performed uniformly in these uneven parts, and internal distortion remains during molding and heat treatment. When hot filling the contents, the panel-shaped recess described above undergoes asymmetric deformation (-th order asymmetric deformation), and when cooling is performed after sealing, the expansion and contraction function of this panel-shaped recess does not function normally. The disadvantage is that the container after cooling becomes even more ugly and undergoes asymmetric deformation (secondary asymmetric deformation). Such drawbacks also occur when the tettle is heated and sterilized after being filled with the contents.

従って、本発明の目的は、従来の延伸ポリエステル容器
における上記欠点を解消するものであり、ポリエチレン
テレフタレート等の熱可塑性ポリエステルからなる層と
ガスバリヤ−性樹脂からなる層とを含む多層の延伸成形
容器における内容物の熱間充填或いはそれに続く冷却段
階での容器壁の不斉変形が有効に防止され、その結果と
して優れた外観特性が維持される耐熱変形性ガスバリャ
ー二軸延伸ポリエステル容器を提供するにある。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks of conventional stretched polyester containers, and to provide a multilayer stretch-molded container including a layer made of a thermoplastic polyester such as polyethylene terephthalate and a layer made of a gas barrier resin. To provide a heat deformation-resistant gas barrier biaxially oriented polyester container that effectively prevents asymmetric deformation of the container wall during hot filling of contents or the subsequent cooling stage, and as a result maintains excellent appearance characteristics. .

(問題点を解決するための手段) 本発明によれば、エチレンテレフタレート単位を主体と
するポリエステルから成る内外層とガスバリヤ−性樹脂
から成る少なくとも1個の中間層とから成るプリフォー
ムの二軸延伸ブロー成形で製造された容器でありて、 該容器の胴部は周方向に交互に配置された相対的に径が
大で且つ周長の小さいピラー状凸部と、相対的に径が小
で且つ周長の大きいパネル状四部とを備え、 該パネル状凹部は容器内の圧力変化に応じて胴部径方向
に膨脹及び収縮し得る機能を有する本のにおいて、 該・9ネル部の内層及び外層は、偏光螢光法で測定した
面内配向度(z+m)が0.350以上となるように二
軸分子配向され、且つ 該・ぐネル部の外層は密度法による結晶化度が3096
以上で且つ内層の結晶化度よシも2%以上高い値となる
ように熱固定されていることを特徴とする耐熱変形性ガ
スバリヤ−二軸延伸ポリエステル容器が提供される。
(Means for Solving the Problems) According to the present invention, a preform consisting of inner and outer layers made of polyester mainly composed of ethylene terephthalate units and at least one intermediate layer made of a gas barrier resin is biaxially stretched. The container is manufactured by blow molding, and the body of the container includes pillar-shaped protrusions with relatively large diameters and small circumferential lengths arranged alternately in the circumferential direction, and pillar-shaped protrusions with relatively small diameters arranged alternately in the circumferential direction. and four panel-like parts with a large circumference, and the panel-like recess has a function of expanding and contracting in the radial direction of the body according to pressure changes within the container, comprising: an inner layer of the nine-wall part; The outer layer has biaxial molecular orientation such that the degree of in-plane orientation (z+m) measured by polarized light fluorescence is 0.350 or more, and the outer layer of the tunnel part has a crystallinity of 3096 by the density method.
There is provided a heat-deformable gas barrier biaxially oriented polyester container which is characterized in that it is heat-set so that the crystallinity of the inner layer is also 2% or more higher.

(作用) 本発明の容器の一例を示す第1図(側面図)、第2図(
底面図)及び第3図(断面図)において、この二軸延伸
ポリエステル容器1は、未延伸のノズル部(首部)2、
円錐台状の肩部3、筒状の胴部4及び閉ざされた底部5
から成っている。この胴部4の主たる部分には、相対的
に径が大で且つ周長の短かいピラー状凸部7と、相対的
に径が小で且つ周長の長いパネル状凹部6とが短かい連
結部8f:介して周方向に交互に多数個設けられている
。ピラー状凸部7は容器軸方向(高さ方向)に延びてお
り、従ってツクネル状凹部6はこのピラー状凸部7で仕
切られた容器軸方向に長い角が丸められた長方形の形状
を有している。
(Function) Fig. 1 (side view) and Fig. 2 (side view) showing an example of the container of the present invention.
In FIG. 3 (bottom view) and FIG.
truncated conical shoulder 3, cylindrical body 4 and closed bottom 5
It consists of The main part of the body 4 has a short pillar-shaped protrusion 7 with a relatively large diameter and short circumference, and a short panel-shaped recess 6 with a relatively small diameter and long circumference. Connecting portions 8f: A large number of connecting portions are provided alternately in the circumferential direction. The pillar-shaped protrusions 7 extend in the axial direction (height direction) of the container, and therefore the tunnel-shaped recesses 6 have a rectangular shape with rounded long corners in the container axial direction separated by the pillar-shaped protrusions 7. are doing.

第3図の断面図から了解されるように、ツクネル状凹部
6は内圧の増大により径外方に膨張する(突出する)こ
と及び内圧の減少により内方に収縮する(凹む)ことが
可能であり、これにより内圧変化を緩和させる作用を有
している。
As can be understood from the cross-sectional view of FIG. 3, the tunnel-like recess 6 can expand (protrude) radially outward as the internal pressure increases, and contract inward (concave) as the internal pressure decreases. This has the effect of alleviating changes in internal pressure.

図面に示す具体例では、このノ9ネル状凹部設置部分の
上方に、相対的に径の大きい膨出り/グ部9とこれに隣
り合った径の相対的に小さい溝状リング部10とが設け
られていて、容器軸方向への若干の変形をも許容するよ
うになっている。また、底部5の中央部には、星形の内
方への凹み部11があり、底部5の圧力や熱変形による
外方へのパックリングを防止し得るようになっている。
In the specific example shown in the drawings, a bulge/gang portion 9 with a relatively large diameter and a groove-shaped ring portion 10 with a relatively small diameter adjacent thereto are provided above the portion where the groove-shaped recess is installed. is provided to allow slight deformation in the axial direction of the container. In addition, there is a star-shaped inward concave portion 11 in the center of the bottom portion 5, which prevents the bottom portion 5 from packing outward due to pressure or thermal deformation.

この容器の断面構造を拡大して示す第4図において、多
層ブロー容器lはポリエステル内層20及びポリエステ
ル外層30並びにこれらの中間に位置するガスバリヤ−
性樹脂中間層40から成っている。中間層40と内外層
20.30との間には、樹脂接着剤50 、50’が介
在していてもよい。
In FIG. 4, which shows an enlarged cross-sectional structure of this container, the multilayer blow container 1 has a polyester inner layer 20, a polyester outer layer 30, and a gas barrier located in between.
It consists of a synthetic resin intermediate layer 40. A resin adhesive 50, 50' may be interposed between the intermediate layer 40 and the inner and outer layers 20, 30.

本発明のガスバリヤ−二軸延伸ポリエステル容器は、上
述した胴部器壁形状乃至構造を有し且つ多層断面構造を
有し、しかも該・9ネル部の内層及び外層は、偏光螢光
法で測定した面内配向度(j+m)が0.350以上と
なるように二軸分子配向されていること及び、該パネル
部の外層は密度法による結晶化度が30%以上で且つ内
層の結晶化度よりも2%以上高い値となるように熱固定
されていることが顕著な特徴であり、これにより内容物
を熱間充填した場合におけるパネル部の一次不斉変形や
、続いて冷却する場合における容器胴の二次不斉変形が
防止され、容器の外観特性が常に良好に維持されること
に効果上の特徴を有するものである。
The gas barrier biaxially oriented polyester container of the present invention has the above-mentioned body wall shape and structure and has a multilayer cross-sectional structure, and the inner layer and outer layer of the nine-walled portion are measured by polarized fluorescence method. The molecules are biaxially oriented so that the degree of in-plane orientation (j+m) is 0.350 or more, and the outer layer of the panel has a crystallinity of 30% or more by the density method, and the crystallinity of the inner layer is 30% or more. A notable feature is that it is heat-set to a value 2% or more higher than The advantageous feature is that secondary asymmetric deformation of the container body is prevented and the appearance characteristics of the container are always maintained in good condition.

即ち、ぼりエステル容器の胴部は二軸延伸ブロー成形、
即ち軸方向の引張り延伸と周方向への膨張延伸とにより
、二軸方向に分子配向されるが、本発明の多層ポリエス
テル容器においては、ツクネル部が十分な剛性及び耐ク
リープ性、及び更には透明性を有するようにすること、
及び熱固定に際して球晶の生成を抑制することがら、分
子配向されていることが必要であり、このためには偏光
螢光法で測定した面内配向度(t4−rn )が、・ク
ネル部の内層−リエステル及び外層ポリエステルの両方
共0.350以上となるものでなければならない。
That is, the body of the ester container is biaxially stretched blow molded,
That is, the molecules are oriented in biaxial directions by tensile stretching in the axial direction and expansion stretching in the circumferential direction, but in the multilayer polyester container of the present invention, the tunnel portion has sufficient rigidity and creep resistance, and is further transparent. to have a sexual nature;
In order to suppress the formation of spherulites during heat fixation, it is necessary that the molecules be oriented, and for this purpose, the degree of in-plane orientation (t4-rn) measured by polarized fluorescence spectroscopy is Both the inner polyester layer and the outer polyester layer must have a value of 0.350 or higher.

41Jエステルの分子配向を表わす尺度としてポリエス
テルの密度が一般に使用されているが、ポリエステルの
密度−分子配向の程度のみならず、熱固定の程度(即ち
結晶化度)によっても大きく変化するため、本発明の場
合分子配向の尺度とはなし得ない。
The density of polyester is generally used as a measure to express the molecular orientation of 41J ester, but since the density of polyester varies greatly depending not only on the degree of molecular orientation, but also on the degree of heat fixation (i.e., crystallinity), In the case of invention, it cannot be used as a measure of molecular orientation.

これに対して、偏光螢光法では、分子配向高分子に吸着
された螢光性分子の光学的異方性を利用して、高分子の
分子配向を定量的に測定するものであり、前述した熱固
定の影響を受けずに分子配向の程度を求め得るものであ
る。この偏光螢光法による容器壁内における二次元配向
度は下記式で表わされる。
On the other hand, polarized fluorescence spectroscopy uses the optical anisotropy of fluorescent molecules adsorbed on molecularly oriented polymers to quantitatively measure the molecular orientation of polymers. The degree of molecular orientation can be determined without being affected by heat fixation. The degree of two-dimensional orientation within the container wall determined by this polarized fluorescence method is expressed by the following formula.

で定量的に表わす事が出来る。It can be expressed quantitatively.

かくして、ωを変化させ(0°、45°、90°)、こ
のωに対する偏光成分強度■、(ω)を測定し、この3
つの連立方程式の解としてt、m及びnの値を求めるこ
とができる。
In this way, we change ω (0°, 45°, 90°), measure the polarization component intensity ■, (ω) for this ω, and
The values of t, m, and n can be obtained as solutions to the two simultaneous equations.

本発明の容器では、・クネル部の外層ポリエステル樹脂
が、結晶化度が30%以上でしかも内層ポリエステル樹
脂のそれに比して2チ以上、特に3チ以上高い値となる
ように熱固定されていることが顕著な特徴である。即ち
、多層延伸ポリエステルの外層ポリエステルを選択的に
しか・も高度に結晶化させると、この結晶化したポリエ
ステル外層のタガ効果により、内容物を熱間充填した場
合におけるパネル部の一部における不均質な一次熱変形
(不斉変形)や、その後の冷却時における二次不斉変形
が有効に防止されるという新規知見に基ずくものである
。即ち、本発明においては、全体の、je IJエステ
ルを一様に熱固定するのではなく、ガスバリヤ一層を介
して容器外側に位置するポリエステル層が集中的に結晶
化されるように熱固定するのである。また、外面が高度
に結晶化されていることから表面に傷が入シにくい硬い
構造となり、内面がより結晶化度が低い状態となること
から、落下衝撃に対しても強い強靭な構造となるという
利点もある。この熱固定は、がスパリャー樹脂中間層が
存在するという多層構成と、後述する熱固定操作との組
合せにより始めて可能となる。
In the container of the present invention, the outer layer polyester resin of the quenelle portion is heat-set so as to have a crystallinity of 30% or more and a value higher than that of the inner layer polyester resin by 2 cm or more, especially 3 cm or more. A notable feature is that That is, when the outer layer polyester of a multilayer stretched polyester is selectively and highly crystallized, the hoop effect of this crystallized polyester outer layer causes non-uniformity in a part of the panel when hot filling is performed. This is based on the new finding that primary thermal deformation (asymmetric deformation) and secondary asymmetric deformation during subsequent cooling are effectively prevented. That is, in the present invention, the entire je IJ ester is not uniformly heat-set, but the polyester layer located on the outside of the container is heat-set through the gas barrier layer so that it is intensively crystallized. be. In addition, since the outer surface is highly crystallized, it has a hard structure that is difficult to scratch, and the inner surface has a lower degree of crystallinity, resulting in a strong structure that is resistant to drop impacts. There is also an advantage. This heat fixation is only possible through the combination of the multilayer structure in which the sparring resin intermediate layer is present and the heat fixation operation described below.

即ち、本発明の容器は、前述した容器形状に対応するキ
ャビティ形状を有する金型を使用し、エチレンテレフタ
レート単位を主体とするポリエステルからなる内外層と
fスパリャー性樹脂からなる少くとも1個の中間層とを
含む多層予備成形品を、85〜115℃の延伸適正温度
に予熱または調温し、その予備成形品を熱固定温度範囲
に維持された金型内にて二軸延伸プロー成形を行うと共
にプロー成形体の熱処理を行い、しかる後プロー成形用
加圧流体を内部冷却用流体に切り換えて、尚プロー成形
体を前記金型キャピテイ表面に接触せしめながら、プロ
ー成形体を型から取出しても形崩れしない温度迄冷却し
、次いで成形体を型から取出すことにより製造される。
That is, the container of the present invention uses a mold having a cavity shape corresponding to the container shape described above, and has inner and outer layers made of polyester mainly composed of ethylene terephthalate units and at least one intermediate layer made of f-sparring resin. A multilayer preformed product containing a layer is preheated or controlled to an appropriate stretching temperature of 85 to 115°C, and the preformed product is subjected to biaxial stretch blow molding in a mold maintained in a heat-setting temperature range. At the same time, the blow molded body is heat-treated, and then the pressurized fluid for blow molding is switched to the internal cooling fluid, and the blow molded body is taken out from the mold while the blow molded body is in contact with the surface of the mold cavity. It is manufactured by cooling to a temperature at which it does not lose its shape, and then removing the molded product from the mold.

この熱処理時の状態を説明するための第5図において、
熱処理後冷却の段階では、ポリエステル外層30は熱固
定温度に加熱された金型60と接触して加熱されており
、一方ポリエステル内層20は冷却用流体70と接触し
て冷却された状態にある。本発明においては、ガスバリ
ヤ−性樹脂中間層40が伝熱バリヤ一層として作用する
ため、?リエステル内層20が形崩れなしに金型外に取
出し得る温度、一般に60℃以下の温度に迅速に冷却さ
れる一方、?リエステル外層30及びこれと接触する金
型60の温度はこの内層冷却操作によってあまり低下せ
ずに、これにより外層の熱固定が有効に行われるという
利点が得られる。
In FIG. 5 for explaining the state during this heat treatment,
In the post-heat treatment cooling stage, the polyester outer layer 30 is heated by contacting the mold 60 heated to the heat setting temperature, while the polyester inner layer 20 is in a cooled state by contacting the cooling fluid 70. In the present invention, since the gas barrier resin intermediate layer 40 acts as a heat transfer barrier layer, ? While the polyester inner layer 20 is rapidly cooled to a temperature that is generally 60° C. or lower, at which it can be taken out of the mold without losing its shape,? The temperature of the realester outer layer 30 and the mold 60 in contact with it does not drop much due to this inner layer cooling operation, which provides an advantage in that the outer layer is effectively heat-set.

下記第1表は椎々の樹脂の温度伝導率を示す。Table 1 below shows the thermal conductivity of the resins of the vertebrae.

第1表 樹脂 塩化ビニリデン樹脂    2.50〜2,65EVO
H2,00〜2.55 延伸PET    6.40〜7.80未延伸 PET
        4.90〜5,55この結果から、エ
チレン−ビニルアルコール共重合体(EVOH)の如き
ガスバリヤ−性樹脂は熱伝導性が低く、特にポリエチレ
ンテレフタレート(PET )のV2乃至凶の熱伝導性
しか示さないことが明らかとなる。即ち、エチレン−ビ
ニルアルコール共重合体は、がスパリャー性であるばか
りではなく、熱伝導のバリヤーとしても作用するのであ
る。
Table 1 Resin Vinylidene chloride resin 2.50-2,65EVO
H2,00~2.55 Stretched PET 6.40~7.80 Unstretched PET
4.90-5,55 These results show that gas barrier resins such as ethylene-vinyl alcohol copolymer (EVOH) have low thermal conductivity, and in particular, polyethylene terephthalate (PET) exhibits only V2 or poor thermal conductivity. It becomes clear that there is no. That is, the ethylene-vinyl alcohol copolymer not only has sparring properties but also acts as a barrier to heat conduction.

熱可塑性ポリエステルとしては、ポリエチレンテレフタ
レートや、エチレンテレフタレート単位を主体とし、他
にそれ自体公知の改質用エステル単位の少量を含むコポ
リエステル等が本発明の目的に使用される。このポリエ
ステルはフィルムを形成し得るに足る分子量を有してい
ればよい。
As thermoplastic polyesters, polyethylene terephthalate, copolyesters mainly containing ethylene terephthalate units, and also containing a small amount of modifying ester units known per se are used for the purpose of the present invention. This polyester only needs to have a molecular weight sufficient to form a film.

また、ガスバリヤ−性樹脂としてはエチレンと酢酸ビニ
ル等のビニルエステルとの共重合体をケン化して得られ
る共重合体が使用され、成形作業性とバリヤー性とを考
慮すると、エチレン含有量が15乃至60モルチ、特に
25乃至50モルチのもので、ケ/化度が96チ以上の
ものが有利に用いられる。この他の樹脂として、塩化ビ
ニリゾイン樹脂、高ニトリル樹脂、キシリレン基含有ポ
リアミド樹脂、ハイパリヤー性ポリエステル等が使用で
きる。
In addition, as the gas barrier resin, a copolymer obtained by saponifying a copolymer of ethylene and a vinyl ester such as vinyl acetate is used. Considering moldability and barrier properties, the ethylene content is 15%. Those having a mole content of 60 to 60 moles, particularly 25 to 50 moles, and a degree of carbonation of 96 degrees or more are advantageously used. Other resins that can be used include vinylrizoin chloride resin, high nitrile resin, xylylene group-containing polyamide resin, and high barrier polyester.

必らずしも必要でないが、プリエステル層とがスパリャ
ー性樹脂層との接着性を増強させるために、それ自体公
知の任意の接着剤を用いることができる。コポリエステ
ル系接着剤、ポリアマイド系接着剤、−リエステルーエ
ーテル系接着剤、エポキシ変性熱可塑性樹脂、酸変性熱
可塑性樹脂等がこの目的に使用される。
Although not required, any adhesive known per se can be used to enhance the adhesion between the preester layer and the sparring resin layer. Copolyester adhesives, polyamide adhesives, -lyester-ether adhesives, epoxy-modified thermoplastic resins, acid-modified thermoplastic resins, etc. are used for this purpose.

次に、熱可塑性ポリエステル層とがスパリャー性樹脂層
とを含む多層i4リン/を製造する方法として、一つに
はガスバリヤ−性樹脂を内層・外層或いは内外層にポリ
エステル樹脂を夫々使用し必要な場合両樹脂層の間に接
着剤層を介在させ共押出法によりパイプを形成し、該多
層パイプを適当な長さに切断し、この・々イブの一端を
融着閉塞し底部を形成すると共に他端の上部に開口部及
び外周に嵌合部或いは螺合部を有する口頭部を形成し多
層プリフォームとする。
Next, as a method for producing a multi-layer i4 phosphor containing a thermoplastic polyester layer and a sparring resin layer, one method is to use a gas barrier resin as an inner layer and an outer layer, or a polyester resin as an inner and outer layer, respectively. In this case, a pipe is formed by coextrusion with an adhesive layer interposed between both resin layers, the multilayer pipe is cut to an appropriate length, and one end of this tube is fused and closed to form the bottom. A mouth portion having an opening and a fitting portion or a screw portion on the outer periphery is formed in the upper part of the other end to form a multilayer preform.

また二台以上の射出機を備えた共射出成形機及び共射出
用金型を用いて内外層をポリエステル樹脂とし内外層を
覆われるように中間に一層乃至それ以上のバリヤー性樹
脂を挿入し射出用プリフォーム金型の要部に応じ底部及
び開口部を有する多層プリフォームを得ることが出来る
In addition, using a co-injection molding machine equipped with two or more injection machines and a co-injection mold, the inner and outer layers are made of polyester resin, and one or more layers of barrier resin are inserted in the middle to cover the inner and outer layers. A multilayer preform having a bottom and an opening can be obtained depending on the main parts of the preform mold.

また3台以上の射出機を備えた多段射出機によりまず第
1次内層プリフォームを形成し、次いで第2次金型に移
し中間層を射出しさらに第3次金型で外層を射出するよ
うに逐次に多段金型を移して多層プリフォームを得るこ
とも出来る。
In addition, a multi-stage injection machine equipped with three or more injection machines is used to first form a first inner layer preform, then transfer it to a second mold, inject an intermediate layer, and then inject an outer layer in a third mold. It is also possible to obtain a multilayer preform by sequentially transferring multistage molds.

斯くして得られたプリフォームに耐熱性を与えるためプ
リフォームの段階で螺合部、嵌合部、支持リング等を有
する口頭部を熱処理により結晶化し白化せしめる場合が
あり、一方後述の2軸延伸ブローを完了したるものヲテ
トル成形完了後、未延伸部分の口頚部を結晶化し、白化
する場合もある。
In order to impart heat resistance to the preform obtained in this way, the mouth part containing the threaded part, fitting part, support ring, etc. may be crystallized and whitened by heat treatment at the stage of the preform. After completion of stretch-blowing, the mouth and neck of the unstretched portion may crystallize and turn white.

準備された多層プリフォーム射出機のプリフォームに与
えた熱即ち余熱を利用しその温度範囲が85〜115℃
の延伸温度に調整するかコールド・ンリンンにあっては
再加熱し同じく85〜115℃の延伸温度範囲に予熱す
る。ブロー金型で2軸延伸するに当りブロー金型を12
0〜230℃、好ましくは130〜210℃の加熱金型
とし延伸ブローされた多層プリフォームの器壁の外層P
ETが金型内面で接触と同時に熱処理(ヒートセット)
が開始される。所定の熱処理時間後、ブロー用流体を内
部冷却用流体に切換えて、内層PETの冷却を開始する
。熱処理時間は、ブロー成形体の厚みや温度によっても
相違するが、外層PETに前述した結晶化度をもたらす
ものであり、一般に言って1.5乃至30秒、特に2乃
至20秒のオーダーである。一方冷却時間も、熱処理温
度や冷却用流体の種類により異なるが一般に1乃至30
秒、特に2乃至20秒のオーダーである。
The temperature range is 85 to 115℃ by using the heat given to the preform of the prepared multilayer preform injection machine, that is, the residual heat.
In the case of cold stretching, the stretching temperature is adjusted to a stretching temperature of 85 to 115°C, or reheated and preheated to a stretching temperature range of 85 to 115°C. When performing biaxial stretching with a blow mold, the blow mold was
The outer layer P of the vessel wall of the multilayer preform is stretched and blown into a heated mold at 0 to 230°C, preferably 130 to 210°C.
Heat treatment (heat set) when ET contacts the inside of the mold
is started. After a predetermined heat treatment time, the blowing fluid is switched to the internal cooling fluid to start cooling the inner layer PET. The heat treatment time varies depending on the thickness and temperature of the blow-molded product, but it brings the above-mentioned crystallinity to the outer layer PET, and is generally on the order of 1.5 to 30 seconds, particularly 2 to 20 seconds. . On the other hand, the cooling time also varies depending on the heat treatment temperature and the type of cooling fluid, but is generally 1 to 30 minutes.
seconds, especially on the order of 2 to 20 seconds.

冷却用流体としては、冷却された各種気体、例えば−4
0℃乃至+10℃の窒素、空気、炭酸ガス等の他に、化
学的に不活性な液化ガス、例えば液化窒素ガス、液化炭
酸ガス、液化トリクロロフルオロメタンがス、液化ジク
ロロジフルオロメタンガス、他の液化脂肪族炭化水素ガ
ス等も使用される。この冷却用流体には、水等の気化熱
の大きい液体ミストを共存させることもできる。上述し
た冷却用流体を使用することにより、著しく大きい冷却
速度を得ることができる。
As the cooling fluid, various cooled gases, such as -4
In addition to nitrogen, air, carbon dioxide, etc. at 0°C to +10°C, chemically inert liquefied gases such as liquefied nitrogen gas, liquefied carbon dioxide, liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, and other liquefied gases. Aliphatic hydrocarbon gases and the like are also used. This cooling fluid may also contain a liquid mist having a large heat of vaporization, such as water. By using the cooling fluids described above, significantly greater cooling rates can be obtained.

!/Iた、ブローに際して2個の金型を使用し、第1の
金型では前記の温度及び時間の範囲内で熱処理(ヒート
セット)をおこなったのち、該サンプルを前記冷却用の
第2の金型へ移し、再度ブローすると同時に該サンプル
を冷却する方法も採用することができる。
! /I In addition, two molds were used for blowing, and after performing heat treatment (heat setting) within the above temperature and time range in the first mold, the sample was transferred to the second mold for cooling. It is also possible to adopt a method in which the sample is cooled at the same time as it is transferred to a mold and blown again.

金型から取出したブロー成形体の外層は、放冷により、
或いは冷風を吹付けることにより、外層P訂の冷却を行
う。
The outer layer of the blow molded product taken out from the mold is allowed to cool,
Alternatively, the outer layer P is cooled by blowing cold air.

本発明において、ガスバリヤ−性中間層は、伝熱遮断の
点では容器とした場合の平均値が少なくとも5IRnの
厚みを有するべきであるが、300μmi越えると延伸
成形性が低下する傾向がある。
In the present invention, the gas barrier intermediate layer should have an average thickness of at least 5IRn when used as a container in terms of heat transfer insulation, but if it exceeds 300 μm, stretch formability tends to decrease.

一般に20乃至80μmの範囲が好適である。本発明の
目的からはPET外層は少なくとも25薊の厚みを有す
るべきであシ、25乃至200#iの範囲が適当である
。内層/外層の厚み比は、1/3乃至1/1の範囲が望
ましい。但し製造法によってはこの限りではない。
Generally, a range of 20 to 80 μm is preferred. For purposes of the present invention, the PET outer layer should have a thickness of at least 25 mm, with a range of 25 to 200 #i being suitable. The inner layer/outer layer thickness ratio is preferably in the range of 1/3 to 1/1. However, this may not apply depending on the manufacturing method.

本発明の延伸ポリエステル容器において、パネル状凹部
の寸法は、容器の大きさによっても変化するが、一般に
周方向寸法が10乃至50w+、軸方向(高さ方向)寸
法が40乃至160mの範囲内にあることが望ましい。
In the stretched polyester container of the present invention, the dimensions of the panel-shaped recess vary depending on the size of the container, but generally the circumferential dimension is within the range of 10 to 50 m+, and the axial direction (height direction) dimension is within the range of 40 to 160 m. It is desirable that there be.

また、径の大きいピラー状凸部と径の小さいノ4ネル状
凹部との段差、即ち径の差は1乃至8■の範囲内にある
ことが望ましい。
Further, it is desirable that the level difference, that is, the difference in diameter, between the large-diameter pillar-shaped convex portion and the small-diameter funnel-shaped concave portion is within the range of 1 to 8 cm.

本発明の延伸ポリエステル容器は、内容物を70乃至9
8℃の温度で熱間充填し、或いは内容物を充填後70乃
至95℃の温度で加熱滅菌するための密封保存容器とし
て有用である。
The stretched polyester container of the present invention has a content of 70 to 9
It is useful as a sealed storage container for hot filling at a temperature of 8°C or heat sterilization at a temperature of 70 to 95°C after filling.

(発明の効果) 本発明の容器は、ポリエステルに特有の優れた容器特性
とガスバリヤ−性とを兼ね備え、しかも内容物の熱間光
′94(加熱殺菌)とそれに続く冷却段階での容器壁の
不斉変形が有効に防止され、その結果として優れた外観
特性が維持されるという利点がある。
(Effects of the Invention) The container of the present invention has both the excellent container properties and gas barrier properties unique to polyester, and furthermore, the container wall is protected against heat sterilization (heat sterilization) of the contents and the subsequent cooling step. There is an advantage that asymmetric deformation is effectively prevented and, as a result, excellent appearance characteristics are maintained.

(実施例) 本発明を下記の実施例によって説明する。なお、各実施
例に於ける各測定方法及び計算方法は次の通シであった
: 1)結晶化度、x; 20℃に設定されたノルマルヘプタン/四塩化炭素系密
度勾配管中に測定すべきす/fルの細片(約2 wa 
X 2■)を沈降させ、サンプルが静止した位置から測
定比重、dを得た。
(Examples) The present invention will be explained by the following examples. The measurement methods and calculation methods in each example were as follows: 1) Crystallinity, x; Measured in a normal heptane/carbon tetrachloride density gradient tube set at 20°C. A strip of tosu/fl (approx. 2 wa
X 2■) was allowed to settle, and the measured specific gravity, d, was obtained from the position where the sample came to rest.

そして、得られ九各測定比重、dの値から、下記式、 (1/d )= ((1−x )/da ) + (x
/da)によって、各結晶化度、Xを計算した。ここで
、amは結晶化度、Xが0チの場合の比重値(da=1
.335)を意味する。また、dcは同じく結晶化度、
Xが100%の場合の比重値(dc=1.455)を表
わす。
Then, from the obtained nine measured specific gravity and the value of d, the following formula, (1/d) = ((1-x)/da) + (x
/da), each crystallinity degree, X, was calculated. Here, am is the degree of crystallinity, and the specific gravity value when X is 0 (da=1
.. 335). Also, dc is the crystallinity,
It represents the specific gravity value (dc=1.455) when X is 100%.

11)容器の酸素ガス透過度、 QO2:測定すべき容
器(この場合はボトル)内に少量の水を入れ、真空中で
窒素ガスに置換し、さらに?トルロ部とゴム栓との接触
表面部分を工?キシ系接着剤で棟りたのち、該ボトルを
温度が22℃、相対湿度が60 % RHの恒温恒湿槽
内に7週間保存した。
11) Oxygen gas permeability of the container, QO2: Put a small amount of water in the container to be measured (in this case, a bottle), replace it with nitrogen gas in a vacuum, and then... Did you modify the contact surface between the torro part and the rubber stopper? After being glued with an adhesive, the bottle was stored for 7 weeks in a constant temperature and humidity chamber at a temperature of 22° C. and a relative humidity of 60% RH.

その後、各テ)ル内へ透過した酸素の濃度をガスクロマ
トグラフを使用して測定し、次式に従って容器の酸素ガ
ス透過度(QO2,単位は007m2・day * a
tm )を計算した: QO2=(mxct/100)/1xOPxAここで、 m;ボトル内への窒素ガスの充填量(ml )、t;恒
温槽内での保存期間(=49 ) (day)、Ct 
: を8後のボトル内の酸素濃度(vol % )、o
P;酸素ガス分圧(=O1209)(atm)、A:ボ
トルの有効表面積(1n)。
Thereafter, the concentration of oxygen that permeated into each cell was measured using a gas chromatograph, and the oxygen gas permeability of the container (QO2, unit: 007 m2 day * a) was determined according to the following formula.
tm ) was calculated: QO2 = (mxct/100)/1xOPxA where, m: Amount of nitrogen gas filled into the bottle (ml), t: Storage period in the thermostatic chamber (=49 days), Ct
: Oxygen concentration in the bottle after 8 (vol%), o
P: Oxygen gas partial pressure (=O1209) (atm), A: Effective surface area of the bottle (1n).

酸素ガス透過度、QO2は、1種類の一トルについて、
それぞれ5本ずつ測定し、相加平均値をもりてデータと
した。
Oxygen gas permeability, QO2, is for one type of 1 Torr.
Five pieces of each were measured, and the arithmetic average value was taken as data.

111)容器の耐熱性(熱変形率)、S:水温が20℃
の水道水を、測定すべきサンプル容器(この場合はボト
ル)に満注量を充填して、サンプルの滴注内容積(■。
111) Container heat resistance (thermal deformation rate), S: Water temperature is 20°C
Fill the sample container to be measured (in this case, a bottle) with tap water to the full volume to obtain the dripping volume of the sample (■.

9即位はml)を、あらかじめ測定した。9 ml) was measured in advance.

そして、このボトルに85℃の熱水を満注量充填し、キ
ャッピングして3分間ホールドしたのち、中味(水道水
)が室温(20℃)に戻るまで水冷した。
The bottle was then filled with hot water at 85°C, capped and held for 3 minutes, and then cooled with water until the contents (tap water) returned to room temperature (20°C).

その後、11名の・ぐネル(人間)に該サンプルを見せ
、 変形が見られないサンプルにOi、 やや変形しているサンプルにΔを、 明らかに変形しているサンプルに×を、それぞれ回答さ
せた。
After that, the samples were shown to 11 people (humans), and they were asked to answer Oi for samples with no deformation, Δ for samples that were slightly deformed, and × for samples that were clearly deformed. Ta.

さらに、該サンプルから中味を抜き取ったのち、再び2
0℃の水道水を該サンプルに満注量を再充填して、滴注
内容積(vL単位はd)を測定した。
Furthermore, after extracting the contents from the sample, 2
The sample was refilled with tap water at 0° C. to the full volume, and the volume of the dripped water (in d in vL) was measured.

容器の耐熱性(熱変形率)、S(*位は’lの計算は下
記式、 S= 100 x (Vl/VO−1)に従っておこな
った。
The heat resistance (thermal deformation rate) of the container, S (where * is 'l), was calculated according to the following formula, S = 100 x (Vl/VO-1).

熱変形率、Sについては、1種類のyj?)ルにつき5
本ずつ測定をおこない、5本の結果の相加平均値をもっ
てデータとした。
Regarding the thermal deformation rate, S, one type of yj? )5 per le
Measurements were carried out for each sample, and the arithmetic mean value of the five samples was used as data.

実施例1゜ 特開昭61−254325号公報に記載された方法に従
って、主射出機に粘度(固有粘度)が0575のポリエ
チレンテレ7タレー)(P灰一温度伝導tA= 5.5
5 X 10−’ m2/hr、 )を供給し、副射出
機に三菱瓦斯化学■製のメタキシリレン・アジノ譬ミド
樹脂(MXD6 、温度伝導率=2.45X10” m
2/ hr −)を供給し、2橿3層構成の多層グリ7
オームを共射出成形するにわたり、最初に主射出機より
約60 kg/cyn2の圧力で一次射出を1.3秒問
おこない、その後、0.1秒間該PETの射出を止めた
のち、核PETの射出開始よ、91−4秒遅れてPET
の一次射出圧力よりも高い圧力(約120ky/=x2
)で副射出機より溶融されたMXD6を0.9秒間で所
定葉(約8wt%)を射出し、さらにMXD6の射出開
始から0.05秒遅らせて主射出機より一次射出圧力よ
りも低い圧力(約4okg、/3うでPETを射出して
、肉厚が約4mの多層プリフォームを成形した。このプ
リフォームの重量は59、OFであり、そのうち、MX
D6は7.8ft%であつた。また内層PET/外層P
ETの厚み比は215であった。
Example 1 According to the method described in Japanese Unexamined Patent Publication No. 61-254325, the main injection machine was filled with polyethylene Tele7 tarley having a viscosity (intrinsic viscosity) of 0575 (P ash - temperature conduction tA = 5.5).
5 x 10-' m2/hr), and meta-xylylene azinamide resin (MXD6, temperature conductivity = 2.45 x 10" m, manufactured by Mitsubishi Gas Chemical) was supplied to the sub-injection machine.
2/hr -), and a multilayer grid with 2 rods and 3 layers 7
During co-injection molding of Ohm, first, primary injection was performed from the main injection machine at a pressure of approximately 60 kg/cyn2 for 1.3 seconds, then, after stopping the injection of the PET for 0.1 second, the core PET was injected. Start injection, 91-4 seconds late PET
pressure higher than the primary injection pressure (approximately 120ky/=x2
), a predetermined amount (approximately 8 wt%) of molten MXD6 is injected in 0.9 seconds from the sub-injection machine, and then after a delay of 0.05 seconds from the start of MXD6 injection, the main injection machine injects the melted MXD6 at a pressure lower than the primary injection pressure. (A multilayer preform with a wall thickness of approximately 4m was molded by injecting PET with a weight of approximately 40kg/3.The weight of this preform was 59.OF, of which MX
D6 was 7.8 ft%. Also, inner layer PET/outer layer P
The thickness ratio of ET was 215.

該多層プリフォームを、東洋食品機械■製のOBM−I
Q型二軸延伸プロー成形機を使用して、100℃に予備
加熱したのち、キャビティ内表面が160℃に加熱され
た内容積が約158011jのブロー用金型内で2軸延
伸すると同時に9秒間ヒートセットしたのち、ブロー用
流体を内部冷却用流体(+5℃に調節された空気)に切
換えて、再度10秒間流体圧を加えた後、直ちに取出し
、次いで放冷することによりて、第1図に示すような内
容積が151 smzの円筒状のボトルを成形した。
The multilayer preform was manufactured by OBM-I manufactured by Toyo Shokuhin Kikai ■.
Using a Q-type biaxial stretch blow molding machine, the cavity was preheated to 100°C, and then biaxially stretched in a blow mold with an internal volume of approximately 158011J whose inner surface of the cavity was heated to 160°C for 9 seconds. After heat setting, the blowing fluid was switched to the internal cooling fluid (air adjusted to +5°C), fluid pressure was applied again for 10 seconds, and then immediately taken out and left to cool, as shown in Figure 1. A cylindrical bottle with an internal volume of 151 smz as shown in FIG.

得られた&トル胴部のノJ?ネル状凹部の寸法は、周方
向寸法が35■、軸方向(高さ方向)の寸法が137■
であった。また、ピラー状凸部と・ぐネル状凹部との段
差、即ち径の差は6.5mでありた。
No J of obtained &tor torso? The dimensions of the flannel-shaped recess are 35 cm in the circumferential direction and 137 cm in the axial direction (height direction).
Met. Further, the difference in level, that is, the difference in diameter between the pillar-shaped convex portion and the tunnel-shaped concave portion was 6.5 m.

以下、このメトルを“A1と記す。Hereinafter, this meter will be referred to as "A1."

比較のために、前記多層プリ7減・−ムを前記二軸延伸
ブロー成形機によつて100℃に予備加熱したのちに、
キャビティ表面が19±2℃に設定された内容積が約1
589dのブロー用金型ないで、前記のようなヒートセ
ット操作をせずに25秒間二軸延伸ブローをおこない、
第1図に示すような内容積が1547m1の円筒状の&
)ルを成形した。得られfc&)ル胴部の形状及び寸法
は前記とほぼ同じであった。以下、このボトルを“B′
と記す。
For comparison, after preheating the multilayer preform to 100°C using the biaxial stretch blow molding machine,
The cavity surface is set at 19±2℃ and the internal volume is approximately 1
Biaxial stretching blowing was performed for 25 seconds without using the blowing mold 589d and without the heat setting operation as described above.
A cylindrical &
) was molded. The shape and dimensions of the obtained fc&)le body were almost the same as those described above. Below, this bottle is referred to as "B'
It is written as

このようにして得られた2種類のPET/MXD6/P
ET系3#デトル、A及びBに対して、それぞれの内層
(PET )、中間層(MXD6 )及び外層(PET
 )をそれぞれ静かに剥離し、前述した偏光螢光法によ
って、内層及び外層の面内配向度(7+m)を測定した
。測定には、日本分光工業■製の偏光螢光光度計(FO
M−2形)を使用した。
Two types of PET/MXD6/P obtained in this way
For ET system 3#Dettol, A and B, the inner layer (PET), middle layer (MXD6) and outer layer (PET
) was gently peeled off, and the degree of in-plane orientation (7+m) of the inner layer and outer layer was measured by the polarized fluorescence method described above. For measurements, a polarized fluorophotometer (FO) manufactured by JASCO Corporation was used.
M-2 type) was used.

また、測定個所は第6図における横軸上に記載したP1
〜P4の4個所についての&)ル軸方向、セして&)ル
周方向に6個所の各パネル部分の合計24個所を測定し
、それらの相加平均値をもってデータとした。
In addition, the measurement location is P1 shown on the horizontal axis in Figure 6.
Measurements were taken at 24 locations in total, including 6 locations in the &) axial direction and 6 locations in the &) circumferential direction at 4 locations from P4 to P4, and the arithmetic average value thereof was used as data.

Aye)ルについての内層PETの面内配向度(L+m
 )は0.813、外層PETの面内配向度(z+m)
は0.756であシ、一方、B&トルについての内層P
ETの面内配向度(t+tn)は0.394、外層PE
Tの面内配向度(t+m)は0.343であった。
Aye) In-plane orientation degree of inner layer PET (L+m
) is 0.813, the in-plane orientation degree (z+m) of the outer layer PET
is 0.756, while the inner layer P for B & Tor
The in-plane orientation degree (t+tn) of ET is 0.394, and the outer layer PE
The in-plane orientation degree (t+m) of T was 0.343.

次に、前述した各測定方法及び計算方法に準拠して、結
晶化度、酸素ガス透過度及び耐熱性の各試験を施行した
: A&)ルについて、各部分の結晶化度、xf第6図に示
す。この図で、横軸はAメトル底部からの軸(高さ)方
向の位置(底部からの距離、 cm )を、また縦軸は
各対応部分の結晶化度(%)をそれぞれ表わす。ここで
、結晶化度、又は、サドル周方向に6個所の各パネル部
分、及びそれらの軸方向に対応する各部分から得られた
結晶化度の周方向に於ける各6点の相加平均値である。
Next, tests for crystallinity, oxygen gas permeability, and heat resistance were conducted in accordance with the measurement methods and calculation methods described above. Shown below. In this figure, the horizontal axis represents the position (distance from the bottom, cm) in the axial (height) direction from the bottom of the A meter, and the vertical axis represents the degree of crystallinity (%) of each corresponding portion. Here, the crystallinity, or the arithmetic average of the six points in the circumferential direction of the crystallinity obtained from each of the six panel parts in the circumferential direction of the saddle and each part corresponding to their axial direction. It is a value.

第6図から、Aサドルでは特にノ4ネル部分(同図中、
P1〜P4の部分)に於いて内層と外層との間の結晶化
度の差が犬きく、外1−の結晶化度、Xはいずれも30
%より大きく、且つ内層の結晶化度よりも2チ以上大き
いことが知られる。
From Figure 6, we can see that in the A saddle, especially the 4th flannel part (in the figure,
The difference in crystallinity between the inner layer and the outer layer is large in the P1 to P4 portions, and the crystallinity of the outer layer, X, is 30 for both.
It is known that the degree of crystallinity is greater than % and is greater than the crystallinity of the inner layer by 2 or more.

比較のために、Bボトルについて、第6図に於けるP1
〜P4に対応する部分の結晶化度(周方向6点の平均値
)を第2表に示す。外ノーの結晶化度はいずれも30チ
より小さい値を示し且つ内層と外層との結晶化度の差も
2チ以下であることが同表から知られる。
For comparison, P1 in Figure 6 for bottle B
Table 2 shows the degree of crystallinity (average value of six points in the circumferential direction) of the portion corresponding to P4. It is known from the same table that the crystallinity of the outer layer is less than 30 cm, and the difference in crystallinity between the inner layer and the outer layer is 2 cm or less.

第3表に、A及びBの各&)ル、及び比較のために肉厚
が約4−で、重量が59.C1のPET単層のプリフォ
ーム(形状はA及びBのプリフォームと同じ)を使用し
、前述し九二軸延伸プロー成形機により、且つ前述した
ヒートセット条件で成形した単層のPETがトル(胴部
の形状及び寸法は前記とほぼ同じ。以下、この単層メト
ルを“C1と記す。)に対して、酸素ガス透過度、QO
Zを測定した結果を示す。
Table 3 shows each of A and B, and for comparison, the wall thickness is approximately 4 mm and the weight is 59 mm. Using the single-layer PET preform C1 (the shape is the same as the preforms A and B), the single-layer PET molded using the above-mentioned 92-axis stretch blow molding machine and under the above-mentioned heat setting conditions was (The shape and dimensions of the body are almost the same as above. Hereinafter, this single-layer metre will be referred to as "C1."), oxygen gas permeability, QO
The results of measuring Z are shown.

Aボトルの示す酸素ガス透過度は、PET単層のCボト
ルが示す酸素ガス透過度の値よりも明らかに小さく、且
つ前記ヒートセット条件していないBボトルの示す値よ
りも小さいことが第3表から知られる。
The third point is that the oxygen gas permeability of the A bottle is clearly lower than the oxygen gas permeability value of the PET single-layer C bottle, and is also smaller than the value of the B bottle that is not subjected to the heat setting conditions. Known from the table.

111)耐熱性; A、B及びCの3種類の&)ルに対して、耐熱性試験を
施行した。
111) Heat resistance; A heat resistance test was conducted on three types of &) A, B, and C.

11名のパネル(入間)による視覚試験に於いては、 〔1〕Aメトルについては10名の人間が○と、また1
名のパネルがΔと回答し、 〔2〕Bボトルについては11名全員が×と回答した。
In a visual test conducted by a panel of 11 people (Iruma), 10 people said ○ and 1 for A Metol.
The number of panelists answered Δ, and all 11 panelists answered × for [2] B bottle.

また、 〔3〕Cボトルについては9名のパネルが○と、また2
名の人間がΔと回答した。
Regarding [3] C bottle, 9 panelists answered ○, and 2
The named person answered Δ.

次に、熱変形率、Sの測定結果は、 〔1〕Aボトルについては、S = 0.07±0.0
2チ、〔2〕Bデトルについては、S = 6.59±
1642%、また、 〔3〕Cボトルでは、5=O109±0.04%であっ
た。
Next, the measurement results of the thermal deformation rate, S, are as follows: [1] For bottle A, S = 0.07±0.0
For 2chi, [2]B dettle, S = 6.59±
1642%, and in the [3]C bottle, 5=O109±0.04%.

第2表 第3表 実施例2゜ 特開昭61−60436号公報に記載された方法に従っ
て、主押出機に実施例1に記載したポリエチレンテレフ
タレー) (PET、温度伝導率=5.55X 10 
 m”/hr、)を供給し、バリヤー剤層用副押出機に
■クラレ製のエチレン・ビニルアルコール共重合体(エ
チレン含有量=30.1モル係、ケン化1=99.6%
、温度伝導率−2,00X 1.Om”/hr)を、ま
た、接着剤層用押出機にカプロラクタム/ヘキサメチレ
ンジアンモニウムアジペート共重合体(カプロラクタム
含有量が78チの共重合体、6/66PA、温度伝導率
= 2.85X 10−’m”/hr、)をそれぞれ供
給した。
Table 2 Table 3 Example 2 According to the method described in JP-A No. 61-60436, the main extruder was charged with polyethylene terephthalate (PET, temperature conductivity = 5.55X 10) as described in Example 1.
m"/hr,) and fed to the sub-extruder for the barrier agent layer ■ Ethylene-vinyl alcohol copolymer manufactured by Kuraray (ethylene content = 30.1 mol, saponification 1 = 99.6%)
, temperature conductivity -2,00X 1. Also, caprolactam/hexamethylene diammonium adipate copolymer (copolymer with caprolactam content of 78 cm, 6/66 PA, temperature conductivity = 2.85X 10) was added to the extruder for the adhesive layer. -'m''/hr,) were supplied respectively.

そして、共押出法によシ、層構成が、外層(PET)/
接着剤層(6/66PA)/中間層(EVOII) /
接着剤層(6/66PA)/内層(PET )、から成
る3種5層のノぜイブを成形した。該/ぐイブの総肉厚
は:3.95朋でちり、各層の厚み比は上述した記載の
順に、外層から510.2/110.215であった。
Then, by coextrusion method, the layer structure is changed to outer layer (PET)/
Adhesive layer (6/66PA) / Intermediate layer (EVOII) /
A nozzle with three types and five layers consisting of an adhesive layer (6/66PA)/inner layer (PET) was molded. The total thickness of the /guive was: 3.95 mm, and the thickness ratio of each layer was 510.2/110.215 in the order listed above from the outer layer.

次に、該多層・ぐイブを59.OJFごとに切断し、底
部゛及びd部を成形して、重量が59.!i’の5層グ
リフオームを得た。
Next, 59. Cut each OJF and mold the bottom part and d part, and the weight is 59. ! A five-layer glyphome of i' was obtained.

前記多層プリフォームを、実施例1に記載し九二軸延伸
プロー成形機を使用して、110℃に予備加熱したのち
、キャビティ内表面が145℃に加熱された内容積が約
1580mlのブロー用金型内で二軸延伸すると同時に
12秒間ヒートセットしたのち、ブロー用流体を内部冷
却用流体+5℃に調節された空気に切換えて、再度9秒
間流体圧を加えた後、直ちに取出し、次いで放冷するこ
とによって、第1図に示すような内容積が1521rn
lの円筒状のボトルを成形した。得られたボトル胴部の
凹部及び凸部の形状及び寸法は、すべて実施例1の場合
と同じであった。以下、このざトルをD“と記す。
The multilayer preform described in Example 1 was preheated to 110° C. using the 92-axis stretch blow molding machine, and then the inner surface of the cavity was heated to 145° C. for blowing with an internal volume of about 1580 ml. After biaxial stretching and heat setting for 12 seconds in the mold, the blowing fluid was changed to internal cooling fluid + air adjusted to 5°C, fluid pressure was applied again for 9 seconds, and the mold was immediately taken out and then released. By cooling, the internal volume becomes 1521rn as shown in Figure 1.
1 cylindrical bottle was molded. The shapes and dimensions of the concave portions and convex portions of the obtained bottle body were all the same as in Example 1. Hereinafter, this position will be referred to as "D".

比較のために、前記多層プリフォームを前記二軸延伸7
’ r=−成形機によって110℃に予備加熱したのち
に # K=ビティ内表面が19±2℃に設定された内
容積が約1ssoiのブロー用金型内で、前記のような
ヒー トセット操作をせず1(25秒間二二軸延伸ロー
をおこない、第1図に示すような内容積が1546献の
回置状の&)ルを成形した。得られ7′)、ボトル胴部
の凹部及び凸部の形状及び寸法ツ二前記とほぼ同じであ
った。以下、このメトルを”E″と記す。
For comparison, the multilayer preform was subjected to the biaxial stretching 7
'r=-After being preheated to 110°C by a molding machine, the heat setting operation as described above is carried out in a blow mold with an internal volume of about 1 ssoi where the inner surface of the mold is set at 19±2°C. A biaxial stretching roll was carried out for 25 seconds without any process, and a perpendicular &) circle having an internal volume of 1,546 mm as shown in FIG. 1 was formed. The shape and dimensions of the concave and convex portions of the bottle body were almost the same as those described above. Hereinafter, this meter will be referred to as "E".

この」ニうにし2で得られた2種類のPET/PA/E
VOi−I /PA / PET系5層Nトル、D及び
Eに対して、それぞれの外層(PET ) 、中間層+
接着剤層(PA/EVOH/PA ’)及び内層(PE
T )をそれぞれ静かに剥離し、前述した偏光螢光法に
よって、外層及び内層の面内配向度(A+m)を測定し
た。測定方法や測定個所などはすべて実施例1の場合と
同じであった。
Two types of PET/PA/E obtained from this Nishi 2
VOi-I/PA/PET system 5 layer N, D and E, each outer layer (PET), middle layer +
Adhesive layer (PA/EVOH/PA') and inner layer (PE
T) was gently peeled off, and the degree of in-plane orientation (A+m) of the outer layer and inner layer was measured by the polarized fluorescence method described above. The measurement method and measurement locations were all the same as in Example 1.

Dメトルについての外層PETの面内配向tlJ、CL
+rn )Ho、366、内rg4PETの面内配向1
i(を十m)は0.472であ妙、一方、Eylr)ル
についての外層PETの面内配向度(、t+rrr )
i!0.310、内1aPETの面内配向g5. (1
+ rn )は0.374でおった。
In-plane orientation tlJ, CL of outer layer PET for Dmetal
+rn) Ho, 366, in-plane orientation of inner rg4PET 1
i (10 m) is 0.472, which is strange, while the in-plane orientation degree of the outer layer PET (, t + rrr ) for Eylr)
i! 0.310, in-plane orientation of 1aPET g5. (1
+rn) was 0.374.

次に、前述した各測定方法及び1゛算方法に進拠して、
D及びEダトルに対して結晶化度、酵素ガス透過度及び
耐熱性の各試験f施行した=1)結晶化度やX: 嬉4表にDボトルについて胴部の/4’ネル状凹部分(
第6図中のP1〜P4に対応する部分)の結晶度9xを
示す。外1−の結晶化度はいずれも30壬より大さく、
且つ内J−の結晶化度よりも2チ以上大きいことが第4
表から知られる。
Next, based on the above-mentioned measurement methods and 1 calculation method,
Crystallinity, enzyme gas permeability, and heat resistance tests were conducted on D and E bottles = 1) Crystallinity and (
The crystallinity of the portion corresponding to P1 to P4 in FIG. 6 is 9x. The crystallinity of outside 1- is all greater than 30 壬,
and the crystallinity of J- is 2 or more higher than that of J-.
Known from the table.

比較のために、Fl’l−ルについて、先と同一部分の
結晶化jfI%Xを第5表に示す。外層の結晶化度はい
ずれも30チより小さい値を示し、且つ外層と内層との
結晶化度の差も2チ以下であることが同表から知られる
For comparison, Table 5 shows the crystallization jfI%X of the same portion as above for Fl'l-ru. It is known from the same table that the crystallinity of the outer layer is less than 30 cm, and the difference in crystallinity between the outer layer and the inner layer is 2 cm or less.

11)酸素ガス透過度、QO2; 第6表に、D及びEメトルに対する酸素ガス透過度、 
QO2の測定結果を示す。第6表には、比較の九めに実
施例1中の第3表に記載した単層のPETylr)ル(
Cyr)ル)の結果も併せて示す。
11) Oxygen gas permeability, QO2; Table 6 shows the oxygen gas permeability for D and E metres,
The measurement results of QO2 are shown. Table 6 shows the single-layer PETyl resin described in Table 3 in Example 1 for comparison.
The results of Cyr) are also shown.

D&)ルの示す酸素ガス透過度は、PET単層のCボト
ルが示す酸素ガス透過度の値よりも明らかに小さく、且
つ前記ヒートセットを施していないE、Irトルの示す
値よりも小さいことが第6表から知られる。
The oxygen gas permeability shown by D&) is clearly smaller than the oxygen gas permeability shown by the PET single-layer C bottle, and also smaller than the value shown by E, Ir, which is not heat set. is known from Table 6.

111)耐熱性; D及びEの2種像の&)ルに対して、耐熱性試験を施行
した。
111) Heat resistance; A heat resistance test was conducted on the two types of &) L, D and E.

11名のパネル(人間)による耐熱性試験に於いては、 [1]  D&)ルについては9名の人間がOと、また
2名の・ザネルかへと回答し、 C2J  E、r)ルについて4211名全員がXと回
答した。
In a heat resistance test conducted by a panel of 11 people (humans), 9 people answered O for [1] D&), and 2 answered ・Zanel, and C2J E, r) All 4,211 people answered X.

次に熱変形率、Sの測定結果は、 〔1〕Dボトルについては、S=0.11±003%、
また、 [2)  E&トルについては、S=6.74±1.3
7チであった。
Next, the measurement results of the thermal deformation rate, S, are as follows: [1] For the D bottle, S = 0.11 ± 003%,
Also, [2] For E & Tor, S=6.74±1.3
It was 7chi.

第4表 第5表 第6表Table 4 Table 5 Table 6

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の容器の一例の側面図、第2図は第1図
の容器の底面図、 第3図は第1図の容器の線A−Aにおける断面図、 第4図は容器壁の断面構造を拡大して示す断面図、 第5図は熱処理時の状態を示す説明図、第6図は実施例
1で得られた容器の外層及び内層の各位置における結晶
化度を示す線図である。 1は二軸延伸ポリエステル容器、2はノズル部、3は肩
部、4は胴部、5は底部、6は・母ネル状凹部、7はピ
ラー状凸部、20はポリエステル内層、30はポリエス
テル外層、40はがスパリャー性樹脂中間層、50及び
50′は樹脂接着剤層、60は金型、70は冷却用流体
である。
FIG. 1 is a side view of an example of the container of the present invention, FIG. 2 is a bottom view of the container in FIG. 1, FIG. 3 is a sectional view of the container in FIG. 1 along line A-A, and FIG. 4 is a container FIG. 5 is an explanatory diagram showing the state during heat treatment; FIG. 6 shows the degree of crystallinity at each position of the outer layer and inner layer of the container obtained in Example 1. It is a line diagram. 1 is a biaxially stretched polyester container, 2 is a nozzle part, 3 is a shoulder part, 4 is a body part, 5 is a bottom part, 6 is a mother-nel-shaped recessed part, 7 is a pillar-shaped convex part, 20 is a polyester inner layer, 30 is polyester The outer layer 40 is a sparring resin intermediate layer, 50 and 50' are resin adhesive layers, 60 is a mold, and 70 is a cooling fluid.

Claims (1)

【特許請求の範囲】[Claims] (1)エチレンテレフタレート単位を主体とするポリエ
ステルから成る内外層とガスバリヤー性樹脂から成る少
なくとも1個の中間層とから成るプリフォームの二軸延
伸ブロー成形で製造された容器であって、 該容器の胴部は周方向に交互に配置された相対的に径が
大で且つ周長の短かいピラー状凸部と、相対的に径が小
で且つ周長の長いパネル状凹部とを備え、 該パネル状凹部は容器内の圧力変化に応じて胴部径方向
に膨脹及び収縮し得る機能を有するものにおいて、 該パネル部の内層及び外層は、偏光螢光法で測定した面
内配向度(l+m)が0.350以上となるように二軸
分子配向され、且つ 該パネル部の外層は密度法による結晶化度が30%以上
で且つ内層の結晶化度よりも2%以上高い値となるよう
に熱固定されていることを特徴とする耐熱変形性ガスバ
リャー二軸延伸ポリエステル容器。
(1) A container manufactured by biaxial stretch blow molding of a preform consisting of an inner and outer layer made of polyester mainly containing ethylene terephthalate units and at least one intermediate layer made of a gas barrier resin. The body includes pillar-shaped protrusions with a relatively large diameter and a short circumference and panel-shaped recesses with a relatively small diameter and a long circumference, arranged alternately in the circumferential direction, The panel-shaped recess has the function of expanding and contracting in the radial direction of the body in response to pressure changes within the container, and the inner and outer layers of the panel have an in-plane orientation degree ( l+m) is 0.350 or more, and the outer layer of the panel has a crystallinity of 30% or more by the density method and a value that is 2% or more higher than the crystallinity of the inner layer. A heat-deformable gas barrier biaxially oriented polyester container characterized by being heat-set.
JP2349187A 1986-02-28 1987-02-05 TAINETSUHENKEISEIGASUBARYAANIJIKUENSHINHORIESUTERUYOKI Expired - Lifetime JPH0230929B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2349187A JPH0230929B2 (en) 1987-02-05 1987-02-05 TAINETSUHENKEISEIGASUBARYAANIJIKUENSHINHORIESUTERUYOKI
SE8700844A SE504354C2 (en) 1986-02-28 1987-02-27 Process for making a biaxially drawn vessel and biaxially drawn polyester vessel
GB8704602A GB2188272B (en) 1986-02-28 1987-02-27 A process for preparation of a biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties.
US07/020,998 US4818575A (en) 1986-02-28 1987-03-02 Biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties and process for preparation thereof
FR878702790A FR2595067B1 (en) 1986-02-28 1987-03-02 METHOD FOR MANUFACTURING A BIAXIALLY STRETCHED CONTAINER AND CONTAINER MANUFACTURED BY THIS METHOD
GB8912902A GB2218395B (en) 1986-02-28 1989-06-05 Biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2349187A JPH0230929B2 (en) 1987-02-05 1987-02-05 TAINETSUHENKEISEIGASUBARYAANIJIKUENSHINHORIESUTERUYOKI

Publications (2)

Publication Number Publication Date
JPS63191737A true JPS63191737A (en) 1988-08-09
JPH0230929B2 JPH0230929B2 (en) 1990-07-10

Family

ID=12111977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2349187A Expired - Lifetime JPH0230929B2 (en) 1986-02-28 1987-02-05 TAINETSUHENKEISEIGASUBARYAANIJIKUENSHINHORIESUTERUYOKI

Country Status (1)

Country Link
JP (1) JPH0230929B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410010U (en) * 1990-05-16 1992-01-28
JPH0450610U (en) * 1990-09-06 1992-04-28

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951752B2 (en) * 2001-04-24 2007-08-01 東洋製罐株式会社 Plastic multilayer container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410010U (en) * 1990-05-16 1992-01-28
JPH0450610U (en) * 1990-09-06 1992-04-28

Also Published As

Publication number Publication date
JPH0230929B2 (en) 1990-07-10

Similar Documents

Publication Publication Date Title
US4818575A (en) Biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties and process for preparation thereof
US5251424A (en) Method of packaging products in plastic containers
ES2249379T3 (en) MOLDING PROCEDURE OF ARTICLES OF MULTIPLE LAYERS OF PLASTIC MATTER.
EP0494098B2 (en) Method of blow moulding container
EP0316167B1 (en) Combination of synthetic resin bottle and closure therefor
US4868026A (en) Multilayered container and process for production thereof
JPS5991038A (en) Manufacture of bottle
HU213531B (en) Method of forming multilayer product, especially container, bottle, and multilayer container, bottle, made from multilayer material and preform forming the container, the bottle
EP1777053A2 (en) Sleeve molding
JPS61235126A (en) Multi-layer vessel and manufacture thereof
US20090223920A1 (en) Abuse resistant preform and container neck finish
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
JPS59199237A (en) Manufacture of multilayer stretched polyester bottle
JPH0369783B2 (en)
GB2218395A (en) A draw-blow moulded laminar polyester vessel
JPS5892536A (en) Biaxially stretched plastic bottle
JPS63191737A (en) Heat-resistant deformable gas barrier biaxial oriented polyester vessel
JPH04154536A (en) Saturated polyester bottle
JPS5841182B2 (en) Method for manufacturing hot-fillable plastic containers
JPS5892535A (en) Plastic bottle
JPH0431281B2 (en)
JPS61259946A (en) Heat-resistant vessel
JPH02229023A (en) Manufacture of multilayer stretch-molded vessel with intermediate layer arranged offset to inside surface side
JPH0443499B2 (en)
US20040000127A1 (en) Method for extending the effective life of an oxygen scavenger in a container wall

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees