JPS60201909A - Manufacture of multilayer stretch blown bottle - Google Patents

Manufacture of multilayer stretch blown bottle

Info

Publication number
JPS60201909A
JPS60201909A JP59056263A JP5626384A JPS60201909A JP S60201909 A JPS60201909 A JP S60201909A JP 59056263 A JP59056263 A JP 59056263A JP 5626384 A JP5626384 A JP 5626384A JP S60201909 A JPS60201909 A JP S60201909A
Authority
JP
Japan
Prior art keywords
preform
multilayer
temperature
bottle
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59056263A
Other languages
Japanese (ja)
Inventor
Shunsaku Hirata
平田 俊策
Shigezo Nohara
野原 繁三
Takeo Roppongi
六本木 武雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP59056263A priority Critical patent/JPS60201909A/en
Publication of JPS60201909A publication Critical patent/JPS60201909A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1684Injecting parison-like articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • B29C45/1646Injecting parison-like articles
    • B29C2045/1648Injecting parison-like articles the parison core layer being a barrier material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a desired multilayer stretch blown bottle by a method wherein the 1st injected preform is placed in a mold at temperatures distributed so that they are low on the injection gate side and high on the opposite side and thermoplastic resin on and after the 2nd stage is injected and molded. CONSTITUTION:Gas barrier resin is applied to the outer surface of the primary molded article manufactured by the 1st stage injection molding of polyester and dried to make a coated article. The primary preform coated article 13' controlled so that the injection gate side 14 is low in temperature and the opposite side 15 is high is held by the core 17 and the gripper 18 and inserted into the cavity 20 of the molds 19a, 19b. In the secondary injection process polyester resin is injected from the gate at the bottom of the mold to the clearance between the cavity 20 and the coated article 13' to manufacture a multilayer preform with a bottom. This multilayer perform takes finally a bottle shape at a stretch blowing process. It becomes possible to manufacture the desired multilayer stretch blown bottle by this method.

Description

【発明の詳細な説明】 本発明は多層延伸ブローボトルの製造方法に関するもの
で、より詳細には、多段射出法で形成される多層プリフ
ォームの各層の厚みの分布を均一化することにより、厚
みの均一分布性に優れた多層延伸ブローボトルを製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer stretched blow bottle, and more specifically, the present invention relates to a method for manufacturing a multilayer stretched blow bottle. The present invention relates to a method for manufacturing a multilayer stretched blow bottle with excellent uniform distribution of.

延伸ブローボトルの製造法において、延伸可能な熱可塑
性樹脂を射出成形によって有底のプリフォームを形成し
、このプリフォームを用いて延伸ブー−を行う方法は、
延伸棒の押込みによる軸方向延伸と周方向へのブロー延
伸とが同時に可能であり、しかも得られる製品は二軸方
向への分子配向のバランスがよい等の利点を有するため
、ポリエチレンテレフタレートcPET)から成る延伸
ブローボトルの製造に広く用いられている。
In the method of manufacturing a stretched blow bottle, a method of forming a bottomed preform by injection molding a stretchable thermoplastic resin and performing a stretching blow bottle using this preform is as follows:
Axial stretching by pushing in a stretching rod and blow stretching in the circumferential direction are possible at the same time, and the resulting product has advantages such as a well-balanced molecular orientation in the biaxial directions. It is widely used in the production of stretched blown bottles.

延伸ポリエチレンテレフタレート(pET)ボトルは現
在、海外では炭酸ガス入り清涼飲料、ビール、ウィスキ
ーなどに、国内では醤油、ソース、ドレッシング、食用
油など食品用の他合成洗剤化粧品など非食品にも用いら
れている。最近では国内でも海外に次でビール、炭酸ガ
ス入り清涼飲料、果汁などにその用途は広がりつつある
Expanded polyethylene terephthalate (pET) bottles are currently used overseas for carbonated soft drinks, beer, whiskey, etc., and in Japan for food products such as soy sauce, sauces, dressings, and cooking oil, as well as non-food products such as synthetic detergents and cosmetics. There is. Recently, its use has been expanding both domestically and internationally, including beer, carbonated soft drinks, and fruit juice.

延伸PETボトルはその透明性、強度、軽量性などの他
ガスバリヤー性と耐ガス圧性などの優れた点がその用途
を拡げる要因となっている。しかしプラスチック容器の
なかでも諸特性に優れた延伸PETボトルであっても所
詮プラスチックであって金属かん、ガラスびんが完全な
るガスの非透過性なるに対し若干でもガスの透過性を有
するものであって、例えば各種炭酸ガス入り飲料の充填
密封さノtたものに一於ては、その保存期間の限度があ
り、商品の流通期間の制限が避けられず、商品の販売計
画に少なからず支障を来たE7ているのが実状である。
Stretched PET bottles have excellent features such as transparency, strength, and light weight, as well as gas barrier properties and gas pressure resistance, which are factors that have expanded their use. However, even among plastic containers, even stretched PET bottles, which have excellent properties, are still plastic and have some gas permeability, whereas metal containers and glass bottles are completely gas impermeable. For example, there is a limit to the shelf life of various types of carbonated beverages that are filled and sealed, which inevitably limits the distribution period of the product, which poses a considerable hindrance to product sales plans. The reality is that the E7 has arrived.

この場合、炭酸ガス圧の大なるもの程、士た容器容役の
小さいもの程その障害は太きい。
In this case, the greater the carbon dioxide pressure and the smaller the capacity of the container, the greater the damage.

延伸ボトルにおけるガス透過の問題を解消するために、
ポリエステル等の配向性樹脂層に対1.で、エチ)ノン
−ビニルアルコール共重合体、塩化ビニリデン樹脂等の
ガスバリヤ−樹脂層を積層することがf1n々4是案さ
れており、これらの公知方法では、ガスバリヤ−樹脂層
に対する湿度等の影響を回避するため、ガスバリヤ−性
樹脂層を、分子配向可能な耐湿性樹脂の内外層でサンド
イッチする積層構成が一般に採用されている。
To solve the gas permeation problem in stretched bottles,
1 for an oriented resin layer such as polyester. Therefore, it has been proposed to laminate gas barrier resin layers such as non-vinyl alcohol copolymer, vinylidene chloride resin, etc., and these known methods prevent the influence of humidity etc. on the gas barrier resin layer. In order to avoid this, a laminated structure is generally adopted in which a gas barrier resin layer is sandwiched between inner and outer layers of moisture-resistant resin capable of molecular orientation.

この多層延伸ボトルの製造に際しては、前述した各樹脂
層を、必要に応じ接着剤樹脂を介在させた積層構造物と
して同時押出I−5形成させるノ(イブ状のプリフォー
ムを、軸方向延伸とそil、に続くブロー延伸とから成
る遂次二軸延伸に付する方法もあるが、この場合には、
ガスバリヤ−性樹脂序が一段目の延伸でフィブリル化を
生じ、二段目のブロー延伸に際して裂目を発生する等の
トラブルを生ずる恐れがある。
In manufacturing this multilayer stretched bottle, each of the resin layers described above is coextruded to form a laminated structure with an adhesive resin interposed as needed. There is also a method of subjecting the film to sequential biaxial stretching, which consists of
There is a risk that the gas barrier resin system will fibrillate in the first stage of stretching, and that problems such as cracks will occur during the second stage of blow stretching.

かかる見地からは、延伸ブロー成形用の多jI′!jプ
リフォームとして、有底のプリフォームを多段射出成形
で製造し、このブリフヤームを略同時二軸延伸を行うこ
とが望ましくなるわけである。
From this point of view, polyjI′! for stretch-blow molding! J preform, it is desirable to manufacture a bottomed preform by multi-stage injection molding and to subject this brief yarn to biaxial stretching almost simultaneously.

しかしながら、多段射出成形で延伸成形用の有底多層プ
リフォームを製造する場合には、二段目以降に射出中る
樹脂が一段目の成形品の周囲に完全につき回らず、所謂
ショートモールドを発生したり、或いは全体としての肉
厚は最終キャビティ通りであると]、7ても、各層の肉
厚の分布が極めて偏よったものとなるという欠点を生じ
、その結果として最終ボトルの各層の肉厚分布も意図外
に不。
However, when producing a bottomed multilayer preform for stretch molding using multi-stage injection molding, the resin injected in the second stage and subsequent stages does not completely surround the molded product in the first stage, resulting in a so-called short mold. [or the overall wall thickness is the same as that of the final cavity], the disadvantage is that the distribution of the wall thickness of each layer becomes extremely uneven, and as a result, the wall thickness of each layer of the final bottle becomes The thickness distribution was also unexpectedly poor.

均斉なものという不都合を生じる。This causes the inconvenience of being symmetrical.

従って、本発明の目的は、上述した従来法の欠点が有効
に解消された、多段射出成形にょる有底多1m 7’ 
リフォームを用いるブローボトル(7)’JJ a 方
法を提供するにある。
Therefore, it is an object of the present invention to effectively eliminate the drawbacks of the conventional methods described above, and to produce a 1 m 7'
To provide a blow bottle (7) 'JJ a method using remodeling.

本発明の他の目的は、前述したショートモールドの発生
がなく、しかも各樹脂層の厚みをプリフォーム全体にわ
たって設定厚みに維持し得る多層プリフォームの成形法
を提供するにある。
Another object of the present invention is to provide a method for molding a multilayer preform that does not cause the aforementioned short molding and can maintain the thickness of each resin layer at a set thickness over the entire preform.

本発明の更に他の目的は、特に底部におけるガスバリヤ
−樹脂層の薄肉化が防止されると共に、該ガスバリヤ−
樹脂層の延伸による亀裂或いは裂目の発生も有効に防止
された多層延伸ブローボトルの製法を提供するにある。
Still another object of the present invention is to prevent the gas barrier resin layer from becoming thinner, especially at the bottom, and to
It is an object of the present invention to provide a method for manufacturing a multilayer stretched blow bottle that effectively prevents the occurrence of cracks or fissures due to stretching of a resin layer.

本発明によれば、少なくとも一方の樹脂が分子配向可能
な熱可塑性樹脂で構成されている有底の多層プリフォー
ムを、熱可塑性樹脂の多段射出成形で製造17、この多
層プリフォームを軸方向に延伸しつつ周方向にブロー延
伸することから成る多層延伸ブローボトルの製造方法に
おいて、一段目の射出成形プリフォームまたはその被覆
物を、射出ゲート側が低温及びゲートの反対側か品温と
なる温度分布を持たせた状態、好適には両者間に少なく
とも1ocS%に少なくとも201”の温、7(f差を
もたせた状態で射出金型内に位置させ、二段目以降の熱
可塑性樹脂の射出成形を行うことを特徴とする方法が提
供される。
According to the present invention, a bottomed multilayer preform in which at least one resin is made of a thermoplastic resin capable of molecular orientation is manufactured by multistage injection molding of a thermoplastic resin17, and this multilayer preform is axially In a method for manufacturing a multilayer stretched blow bottle that involves blow stretching in the circumferential direction while stretching, the first stage injection molded preform or its coating is heated at a temperature distribution such that the injection gate side is at a low temperature and the opposite side of the gate is at a product temperature. , preferably with a temperature difference of at least 1 ocS% and at least 201" between the two in an injection mold, and the injection molding of the thermoplastic resin in the second and subsequent stages is performed. A method is provided, the method comprising:

本発明を添付図面に示す具体例に基づいて以下に詳細に
説明する。
The present invention will be described in detail below based on specific examples shown in the accompanying drawings.

本発明に用いる多層プリフォームを示す第1図において
、このプリフォームは、開口端1、キャップ係合用のネ
ジ2並びに段肩部6及び支持用リング(ネックリング〕
4f:備えた首部5と延伸されるべき厚肉の胴部6及び
閉塞底部7から成っている。
In FIG. 1 showing a multilayer preform used in the present invention, this preform includes an open end 1, a screw 2 for engaging a cap, a step shoulder 6, and a support ring (neck ring).
4f: Consists of a neck 5 with a thick body 6 to be stretched and a closed bottom 7.

この首部5はポリエステル単独で形成され、一方首部よ
りも下の胴部6及び閉塞底部7は、ポリエステル製内層
8、ガスバリヤ−性樹脂中間層9及びポリエステル外層
10の積層構成となっている。この首部5とポリエステ
ル内層とは一体に形成され、前記ガスバリヤ−性樹脂中
間層9はその」1端が鎧部直下に達するように射出成形
法や塗布lIにより設けられ、且つ外層10と首部5と
が首部直下において直接或いは中間層を介して継目11
を形成している。° 一 本発明は、この多層プリフォームにおいて、この閉塞底
部7及びその近傍における中間層9及び/又は内層8の
薄肉化による厚みの不均質を防止し且つ外層10のつき
回りを良好にすることを目的とするものであり、この目
的のため、前述した手段を採用することに特徴を有する
ものである。
The neck portion 5 is made of polyester alone, while the body portion 6 and closed bottom portion 7 below the neck portion have a laminated structure of a polyester inner layer 8, a gas barrier resin intermediate layer 9, and a polyester outer layer 10. The neck portion 5 and the polyester inner layer are integrally formed, and the gas barrier resin intermediate layer 9 is provided by injection molding or coating so that one end thereof reaches just below the armor portion, and the outer layer 10 and the neck portion 5 The seam 11 is directly below the neck or through an intermediate layer.
is formed. ° One object of the present invention is to prevent non-uniformity in thickness due to thinning of the intermediate layer 9 and/or inner layer 8 in the closed bottom portion 7 and its vicinity, and to improve the throwing power of the outer layer 10 in this multilayer preform. The object of this invention is to use the above-mentioned means for this purpose.

本発明の詳細な説明するだめの第2−A乃至2−G図に
おいて、先ず第1工程(第2−A図〕において、ポリエ
ステルの第一段目の射出成形で1次成形品12を製造す
る。この−次成形品12は前述した多層プリフォームの
首部5及びポリエステル内層8に対応するものである。
In Figures 2-A to 2-G for detailed explanation of the present invention, first, in the first step (Figure 2-A), a primary molded product 12 is manufactured by first-stage injection molding of polyester. This second molded product 12 corresponds to the neck portion 5 and polyester inner layer 8 of the multilayer preform described above.

次の工程(第2−8図)において、この1次成形品12
の外面に、エチレン−ビニルアルコール共重合体或いは
塩化ビニリデン共重合体等のガスバリヤ−性樹脂を溶液
或いはラテックス等の形で塗布し、乾燥してガスバリヤ
−性樹脂被覆層9を形成される。
In the next process (Figure 2-8), this primary molded product 12
A gas barrier resin such as ethylene-vinyl alcohol copolymer or vinylidene chloride copolymer is applied in the form of a solution or latex to the outer surface of the film, and is dried to form a gas barrier resin coating layer 9.

本発明では、第2−c図に示す通り、この被豊物16を
、射出ゲート側、即ち図に計いて底部側14が低温、こ
れと反対側、即ち首部に連なる側15が高温となる温度
分布となるように、被覆物16の温度制御を行う。この
ために、画部分14及び15の間に遮蔽板16を設け、
上部15を熱風或いは誘電加熱により加熱すると共に、
下部14を水冷等の手段により冷却して、前述した温度
分布を形成させる。
In the present invention, as shown in FIG. 2-c, the injection gate side, that is, the bottom side 14 as measured in the figure, of this enriched material 16 is at a low temperature, and the opposite side, that is, the side 15 connected to the neck part is high temperature. The temperature of the covering 16 is controlled to achieve a temperature distribution. For this purpose, a shielding plate 16 is provided between the image parts 14 and 15,
While heating the upper part 15 with hot air or dielectric heating,
The lower portion 14 is cooled by means such as water cooling to form the temperature distribution described above.

次いで、第2−D図において、上述した温度分布を形成
させた一次プリフォーム被覆物16′の首部5を把持金
具18で把持してその内部に、コア17を挿入する。
Next, in FIG. 2-D, the neck 5 of the primary preform covering 16' having the above-described temperature distribution formed therein is gripped by the gripping fitting 18, and the core 17 is inserted into the neck portion 5 of the primary preform covering 16'.

第2−E図に示す第二段射出工程において、温度分布を
形成させた一次プリフォーム被覆物16′をコア17及
び把持具18で把持した状態で、金型1’?z、19A
のキャビティ20内に挿入する。
In the second stage injection process shown in FIG. 2-E, with the primary preform covering 16' having a temperature distribution formed therein held by the core 17 and the gripping tool 18, the mold 1'? z, 19A
into the cavity 20 of.

キャピテイ20と被覆層9との間には、最終プリフ、オ
ームの外層10に対応するクリアランスか設けられてい
る。この状態で金型のゲート21を介してポリエステル
の射出を行う0 多段射出による多層プリフォームの製造の場合、延伸作
業性や経済的見地から、全体としての厚みも伐る厚味以
下に制限されるのが普通であり、況んや第二段目の射出
成形で形成される層の厚みは、その厚みよりも更に薄い
ものに制限される。この厚みが2咽を越える場合には、
射出される溶融樹脂の圧流入に問題がないため、以下に
述べるようなトラブルは生じないが、実際の二段目射出
における一次プリフォームとキャビティとの間隔は上記
厚みよりもかなり薄くなるのが爽情である。
Between the cavity 20 and the covering layer 9 there is a clearance corresponding to the outer layer 10 of the final pref Ohm. In this state, polyester is injected through the gate 21 of the mold. In the case of manufacturing a multilayer preform by multi-stage injection, the overall thickness is limited to less than the cutting thickness from the viewpoint of stretching workability and economical aspects. Generally, the thickness of the layer formed in the second stage injection molding is limited to a layer thinner than that thickness. If this thickness exceeds two throats,
Since there is no problem with the pressure inflow of the molten resin to be injected, the troubles described below do not occur.However, in actual second stage injection, the distance between the primary preform and the cavity is considerably thinner than the above thickness. It's refreshing.

この場合には第一次成形品表面の温度が成程度高くない
と、第2段目の射出による樹脂は完全には第一次プリフ
ォームにつき回らず、いわばショートモールドになる恐
れがある。それは、射出プラスチックが両者の間隔に高
温で射出されたとしでも、コアーに相当する第一次成形
品の温度が低く、又第二段目のキャビティの温度本低く
、かつ間隔が狭いと溶融樹脂が回り切らずに固化してし
まうショートモールドになるからである。
In this case, unless the temperature of the surface of the primary molded product is sufficiently high, the resin injected in the second stage will not completely cover the primary preform, which may result in a short mold. Even if the injected plastic is injected at a high temperature between the two, the temperature of the primary molded product corresponding to the core is low, and the temperature of the second stage cavity is low, and if the gap is narrow, the molten resin This is because the mold becomes short and solidifies without being able to fully rotate.

したがって狭いフレアランスに第二段目射出を行い易く
するためにはなるべく第一次成形品の温・度と第二段目
射出型キャビティの温度を適度に昇温させておいた方が
良いわけであるが、それには或種の限度がある。 1 すなわち第二段目の樹脂が射出圧入されても、成形品を
金型から連続して取り出し得るためには、( 覧 第−次の共通のコアーの温度も第二段目のキャビ ・、
・ティも或温度以下でないと成形品が型に粘着(ブヘ ロッキング)をおこすので夫々或温度以下にしな パが
ら第一次成形品のみ調温【2なくてはならない制限がお
こる。 ゛ また第一次成形品に対し極めて高温の樹脂の第二段目の
射出を行った場合、射出型のゲートに近い第一次成形品
部分は高温高圧にさらされるため、第−次成形品の、射
出ゲート側、即ち下端部が再溶融し、流動薄肉化するか
、極端な場合内層が流出1.て1〜まう場合すらあるの
である。(7たがって射出千人する溶融樹脂の種類、樹
脂の温度によって異るが第一次成形品(第一次プリフォ
ーム−内層)のゲート近くの下部はなるべく冷却して置
いた方が一般的に射出の多層化が円滑に進行する。
Therefore, in order to make it easier to perform the second stage injection into a narrow flare space, it is better to raise the temperature of the first molded product and the temperature of the second stage injection mold cavity appropriately. However, there are certain limits to it. 1. In other words, even if the resin in the second stage is injected, in order to be able to take out the molded product continuously from the mold,
・If the temperature of the tee is not below a certain temperature, the molded product will stick to the mold (Bucherocking), so the temperature of only the primary molded product must be controlled while keeping each temperature below a certain temperature.゛Also, when the second stage injection of extremely high temperature resin is performed on the primary molded product, the part of the primary molded product near the gate of the injection mold is exposed to high temperature and high pressure. The injection gate side, i.e., the lower end, will re-melt and become fluid and thin, or in extreme cases, the inner layer will flow out.1. There are even cases where it goes 1~. (7) Although it varies depending on the type of molten resin to be injected and the temperature of the resin, it is generally better to keep the lower part near the gate of the primary molded product (primary preform - inner layer) as cool as possible. Injection multilayering progresses smoothly.

上述の如く第一次プリフォームと第二段目キャビティと
の間隔が薄く且つ長い通路の場合、第−次成杉晶の温度
はなるべく昇温しでおいた方が良いことと、プリフォー
ム下部はなるべく低温にしておいた方が良いこととの相
矛盾した要求がある。
As mentioned above, when the distance between the primary preform and the second stage cavity is thin and the passage is long, it is better to keep the temperature of the primary cedar crystals as high as possible. There is a contradictory requirement that it is better to keep the temperature as low as possible.

本発明においては、この相対立する要求を、−次プリフ
ォームに前述した温度分布をもたせることにより、ショ
ートモールドがなく、しかもプリフォームの内層或いは
中間層の偏肉を防止1.っ2、各層をプリフォーム全面
にわたって設定厚に維持することを可能にしたものであ
る。
In the present invention, these conflicting requirements can be resolved by providing the above-mentioned temperature distribution to the preform, thereby eliminating short molding and preventing uneven thickness of the inner layer or intermediate layer of the preform.1. 2. It is possible to maintain each layer at a set thickness over the entire surface of the preform.

図面に示す具体例、即ち内層及び外層がPETで、被覆
層がエチレン−ビニルアルコール共重合体層である場合
、型のキャビティに保持される一次プリフォームの上部
15の温度が約40乃至80Cの範囲、特に40乃至6
DCで、下部14の温度が30tT以下、特に−10′
c乃至20tl”の範囲となる温度分布とすれば、ショ
ートモールドを防止しつつ、各層を設定厚みに制御する
ことが可能である。
In the embodiment shown in the drawings, where the inner and outer layers are PET and the covering layer is an ethylene-vinyl alcohol copolymer layer, the temperature of the upper part 15 of the primary preform held in the mold cavity is about 40 to 80C. range, especially 40 to 6
DC, the temperature of the lower part 14 is below 30tT, especially -10'
If the temperature distribution is in the range of c to 20 tl'', it is possible to control each layer to a set thickness while preventing short molding.

第2−E図に示す第二段目の射出成形で、第1図に示す
断面構造の多層プリフォームが形成されるO この多層プリフォーム21を金型19α、19bから取
出した後、杷持具18で支持して、第2−F図に示す予
備加熱工程で、pETの延伸温度に予備加熱する。
In the second stage injection molding shown in FIG. 2-E, a multilayer preform having the cross-sectional structure shown in FIG. It is supported by a tool 18 and preheated to the stretching temperature of pET in a preheating step shown in FIG. 2-F.

最後に、第2−G図に示す延伸ブロ一工程において、プ
リフォーム21を、ブロー割金型22α。
Finally, in the stretch blowing step shown in FIG. 2-G, the preform 21 is placed in a blow molding die 22α.

22bに入れて型締を行った後、延伸棒26を押込んで
軸方向に引張延伸すると同時に、延伸棒のブロ一孔24
から流体を吹込んで周方向にブロー延伸し、最終ボトル
形状とする。
22b and the mold is clamped, the stretching rod 26 is pushed in and stretched in the axial direction, and at the same time the blow hole 24 of the stretching rod is inserted.
A fluid is blown into the bottle to blow it in the circumferential direction to form the final bottle shape.

本発明の延伸ブロー成形法によれば、有底多層プリフォ
ーム中の各層、特にガスバリヤ一層の厚みを所定の設定
厚みに維持できると共に、同時2T11+ブロー延伸が
可能となるため、バリヤ一層へのクラックの発生防止が
可能となり、優れた緒特性、特にガスバリヤ−性、透明
性その他の外観特性、耐衝撃性等に優れたボトルを得る
ことが可能となる。
According to the stretch blow molding method of the present invention, the thickness of each layer in the bottomed multilayer preform, especially the gas barrier layer, can be maintained at a predetermined set thickness, and simultaneous 2T11 + blow stretching is possible, so cracks in the barrier layer can be maintained. This makes it possible to prevent the occurrence of , making it possible to obtain a bottle with excellent properties, especially gas barrier properties, transparency and other appearance properties, impact resistance, etc.

本発明を、内層、外層がポリエチレンテレフタレートか
ら成る多層ボトルの例について説明したが、本発明は延
伸による分子配向が可能な他の樹脂例えばポリプロピレ
ン、ポリカーボネート、ボリアリレート、ポリブチレン
テレフタレート等の他の熱可塑性ポリエステル等にも等
しく適用できる。
Although the present invention has been described with reference to an example of a multilayer bottle in which the inner and outer layers are made of polyethylene terephthalate, the present invention is also applicable to other resins whose molecules can be oriented by stretching, such as polypropylene, polycarbonate, polyarylate, polybutylene terephthalate, etc. It is equally applicable to plastic polyesters and the like.

また、本発明を二段の射出成形について説明したが、本
発明は三段以上の多段射出成形に適用し得ることも当然
である。例えば、二段目の射出にガスバリヤ−性樹脂、
三段目の射出にポリエステル等の配向性樹脂音用い、二
段目以降の射出に際して前述した条件を採用することも
できる。
Further, although the present invention has been described with respect to two-stage injection molding, it is natural that the present invention can be applied to multi-stage injection molding with three or more stages. For example, gas barrier resin is used in the second injection stage.
It is also possible to use an oriented resin such as polyester for the third injection stage, and to adopt the conditions described above for the second and subsequent injection stages.

本発明を次の例で説〜明する。The invention is illustrated by the following examples.

実施例上 固有粘度が0.7のポリエチレンテレフタレートを射出
成形して、ネックリングを備えた口頚部を有する一次プ
リフォーム(長さ110間、内径25φ、厚さ2.0 
Q)を形成する。このプリフォームのネックリングより
下の部分をウレタン系接着剤溶液(トリレンジイソシア
ネートと線状ポリエステルのメチルエチルケトン溶液)
中に侵し、90Uの温度で熱風乾燥し、次いで、この塗
装プリフォームをビニルアルコール含有!85モルチの
エチレン−ビニルアルコール共重合体/ 7” o ハ
ノールΦ水混合溶液中に浸し100Cの温度で熱風乾燥
し、更に前記ウレタン系接着剤溶液中に浸した後95t
rの温度で熱風乾燥すると共に、この塗装プリフォーム
の底部及び口頚部を20t?以下に冷却し、かつ胴部を
弾性的変形を有する温度(例えば40〜70C)に調温
して射出型(コアー)に挿入E〜、この塗装プリフォー
ムの塗装置(外面)に前記ポリエチレンテレフタレート
を射出して、肉厚5.5mの多層プリフォームを成形し
、この多層プリフォームを95iCの温度に加熱した後
延伸ブロー成形して胴部平均肉厚が300μ、内容積5
00 CCの多層ボトルを得た。
In the example, a primary preform (length 110, inner diameter 25φ, thickness 2.0
Q) is formed. The part below the neck ring of this preform is coated with a urethane adhesive solution (methyl ethyl ketone solution of tolylene diisocyanate and linear polyester).
The inside of the paint preform is dried with hot air at a temperature of 90U, and then the preform is coated with vinyl alcohol. After soaking in 85 molti ethylene-vinyl alcohol copolymer/7" o Hanol Φ water mixed solution and drying with hot air at a temperature of 100C, and further soaking in the urethane adhesive solution, 95t
While drying with hot air at a temperature of The polyethylene terephthalate is then cooled to the following temperature and the body is adjusted to a temperature that causes elastic deformation (e.g. 40 to 70C) and inserted into the injection mold (core). was injected to form a multilayer preform with a wall thickness of 5.5 m, and after heating this multilayer preform to a temperature of 95 iC, stretch blow molding was performed to obtain a body with an average wall thickness of 300 μm and an internal volume of 5 m.
A multilayer bottle of 0.00 CC was obtained.

このボトルは、酸素透過度が2.1CC/11?・dL
′Lv・a、tm−37Cで、単体のポリエチレンテレ
フタレートボトルに比べて115以下であり、また、1
0回の蛸り返し落下に対して各層間の剥離は認められな
かった。
This bottle has an oxygen permeability of 2.1CC/11?・dL
'Lv・a, tm-37C, is 115 or less compared to a single polyethylene terephthalate bottle, and 1
No peeling between the layers was observed after 0 repeated drops.

実施例2゜ 長さ110胡、内径25φ、肉厚1.5Bのポリエチレ
ンテレフタレート(固有粘度0.7)のプリフォームを
射出成形により成形した。このプリフォームを塩化ビニ
リデン系水性ラテックス中に浸漬1〜た後、1oorの
温度で熱風乾燥し、次いで、この塗装プリフォームの口
頚部及び底部を約15Cに冷却L、かつ、それ以外の部
分(胴部)を弾性的変形性を有する温度(例えば、40
〜70C)にA温[−2て射出型(コアー)に挿入し、
この塗装プリフォームの塗装面(外面〕に固有粘度0.
7のポリエチレンテレフタレートを射出して、肉厚6.
5門の多層プリフォームを成形し、この多層プリフォー
ムを95Cの温度に加熱した後延伸ブロー成形して胴部
平均肉厚が300μ、内容積500頭の多層ボトルを得
た。
Example 2 A preform of polyethylene terephthalate (intrinsic viscosity 0.7) having a length of 110°, an inner diameter of 25φ, and a wall thickness of 1.5B was molded by injection molding. After immersing this preform in vinylidene chloride-based aqueous latex, it was dried with hot air at a temperature of 1 oor, and then the neck and bottom parts of this painted preform were cooled to about 15C, and the other parts ( body) at a temperature at which it has elastic deformability (for example, 40
-70C) to A temperature [-2] and insert it into the injection mold (core),
The painted surface (outer surface) of this painted preform has an intrinsic viscosity of 0.
7 polyethylene terephthalate is injected to make the wall thickness 6.
A multilayer preform with five gates was molded, and this multilayer preform was heated to a temperature of 95C and then stretch blow molded to obtain a multilayer bottle with an average body wall thickness of 300 μm and an internal volume of 500 bottles.

このボトルは、酸素透過度が4.5(L/lt?・da
y・atm・37tZ’で単体のポリエチレンテレフタ
レートボトルに比べて1/3以下であり、また10回の
繰り返1〜落下に対して各層間の剥離は認められなかっ
た。
This bottle has an oxygen permeability of 4.5 (L/lt?・da
y.atm.37tZ' was less than 1/3 of that of a single polyethylene terephthalate bottle, and no peeling between the layers was observed after 10 repeated drops.

尚、ポリエチレンテレフタレート単体ボトルの酸素透過
度は15 CC/n? @ day*atm−37Cで
あった。
In addition, the oxygen permeability of a single polyethylene terephthalate bottle is 15 CC/n? It was @day*atm-37C.

実施例3゜ 固有粘度0.7、イソフタール酸含有量8 モル9!1
のエチレンテレフタレート共重合体を射出成形して、ネ
ックリングを備えた口頚部を有する一次プリフォーム(
長さ110m、内径25φ、厚さ2、 Orun )を
形成する。このプリフォームのネックリングより下の部
分をウレタン系接着剤中に浸漬し、90Cの温度で熱風
乾燥し、次いで、この塗装フリフオームをビニルアルコ
ール含有t 85 モル係のエチレン−ビニルアルコー
ル共重合体/フロパノール・水混合溶液中に浸漬し、更
に、前記ウレタン系接着剤溶液中に浸漬した後、95C
の温度で熱風乾燥すると共に、この塗装プリフォームの
口和部及び底部を約30Cに冷却し、かつ、胴部を弾性
的変形性を有する温度に調温して射出型(コアー)に挿
入し、この塗装プリフォームの塗装面(外面)に固有粘
度0.7のポリエチレンテレフタレートを射出して、肉
厚6.5Rの多層プリフォームを成形し、この多層プリ
フォームを95Cの温度に加熱調温した後、二軸延伸プ
ロー成形して胴部平均肉厚が0.3mm、内容積が50
0CCの多J〜ボトルを得た。
Example 3 Intrinsic viscosity 0.7, isophthalic acid content 8 moles 9!1
ethylene terephthalate copolymer is injection molded to produce a primary preform having a neck part with a neck ring (
The length is 110m, the inner diameter is 25φ, and the thickness is 2. The part of this preform below the neck ring is immersed in a urethane adhesive and dried with hot air at a temperature of 90C, and then this coated preform is coated with a vinyl alcohol-containing t 85 molar ethylene-vinyl alcohol copolymer/ After immersing in a furopanol/water mixed solution and further immersing in the urethane adhesive solution, 95C
The coating preform was dried with hot air at a temperature of 30C, the mouth and bottom of the preform was cooled to about 30C, and the body was heated to a temperature at which it could be elastically deformed, and the preform was inserted into an injection mold (core). , Polyethylene terephthalate with an intrinsic viscosity of 0.7 is injected onto the painted surface (outer surface) of this painted preform to form a multilayer preform with a wall thickness of 6.5R, and this multilayer preform is heated to a temperature of 95C. After that, biaxial stretch blow molding was performed to obtain a body with an average wall thickness of 0.3 mm and an internal volume of 50 mm.
A multi-J bottle of 0CC was obtained.

このボトルの酸素透過度は2.3CC/−・day・α
tm@37 Cで、単体のポリエチレンテレフタレート
ボトルに比べて115以下であり、また、10回の枚1
り返し落下に対して各層間の剥離は認められなかった。
The oxygen permeability of this bottle is 2.3CC/-・day・α
tm@37C, it is 115 or less compared to a single polyethylene terephthalate bottle, and it is also
No peeling between the layers was observed after repeated drops.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる多層プリフォームの断面図、第
2−A図ないし第2−G図は本発明の各工程の断面図で
ある。 5・・・・・・首部、6・・・・・・胴部、7・・・・
・・底部、8・・・・・・内層、9・・・・・・中間層
、10・・・・・・外層、12・・・・・・−次成形品
、13・・・・・・被覆物、16′・・・・・・−次プ
リフオーム被覆物、16・・・・・・遮蔽板、17・・
・・・・コアー、19α、19b・・・・・・金型、2
1・・・・・・多層プリフォーム、22α、22b・・
・・・・ブロー11..23・・・・・・延伸棒。 特許出願人 東洋製罐株式会社 第1図 第2−A図 第2−8図1 第2−C図 第2−D図1 8
FIG. 1 is a sectional view of a multilayer preform used in the present invention, and FIGS. 2-A to 2-G are sectional views of each step of the present invention. 5... Neck, 6... Torso, 7...
...Bottom, 8...Inner layer, 9...Middle layer, 10...Outer layer, 12...-Next molded product, 13...・Coating, 16'...-Next preform coating, 16... Shielding plate, 17...
... Core, 19α, 19b ... Mold, 2
1...Multilayer preform, 22α, 22b...
...Blow 11. .. 23...Stretching rod. Patent applicant: Toyo Seikan Co., Ltd. Figure 1 Figure 2-A Figure 2-8 Figure 1 Figure 2-C Figure 2-D Figure 1 8

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも一方の樹脂が分子配向可能な熱可塑性
樹脂で構成されてbる有底の多層プリフォームを、熱可
塑性樹脂の多段射出成形で製造し、この多層プリフォー
ムを軸方向に延伸1〜つつ周方向にブロー延伸すること
から成る多層延伸ブローボトルの製造方法において、一
段目の射出成形プリフォームまたはその被覆物を、射出
ゲート側が低温及びゲートの反対側が高温となる温度分
布を持たせた状態で射出金型内に位置させ、二段目以降
の熱可塑性樹脂の射出成形を行うことを特徴とする方法
(1) A bottomed multilayer preform in which at least one of the resins is composed of a thermoplastic resin capable of molecular orientation is manufactured by multistage injection molding of the thermoplastic resin, and this multilayer preform is stretched in the axial direction. In a method for producing a multilayer stretched blow bottle, which involves blow stretching in the circumferential direction while ... Method 0, characterized in that the thermoplastic resin is placed in an injection mold in a state in which the thermoplastic resin is injected in the second and subsequent stages.
JP59056263A 1984-03-26 1984-03-26 Manufacture of multilayer stretch blown bottle Pending JPS60201909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59056263A JPS60201909A (en) 1984-03-26 1984-03-26 Manufacture of multilayer stretch blown bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59056263A JPS60201909A (en) 1984-03-26 1984-03-26 Manufacture of multilayer stretch blown bottle

Publications (1)

Publication Number Publication Date
JPS60201909A true JPS60201909A (en) 1985-10-12

Family

ID=13022189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59056263A Pending JPS60201909A (en) 1984-03-26 1984-03-26 Manufacture of multilayer stretch blown bottle

Country Status (1)

Country Link
JP (1) JPS60201909A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022451A1 (en) * 1994-02-18 1995-08-24 The Coco-Cola Company Hollow containers having a very thin inert or impermeable inner surface layer by coating the inside surface of the preform
WO2005102667A2 (en) * 2004-04-16 2005-11-03 Advanced Plastics Technologies Luxembourg S.A. Preforms, bottles and methods of manufacturing the preforms and the bottles
WO2019216429A1 (en) * 2018-05-10 2019-11-14 サントリーホールディングス株式会社 Plastic bottle preform and method for production thereof
WO2021065705A1 (en) * 2019-10-01 2021-04-08 東洋製罐株式会社 Method for producing composite preform and synthetic resin container
US11752683B2 (en) 2007-04-19 2023-09-12 Anheuser-Busch Inbev S.A. Integrally blow-moulded bag-in-container comprising an inner layer and an outer layer comprising energy absorbing additives, preform for making it and process for producing it
US11834226B2 (en) 2007-04-19 2023-12-05 Anheuser-Busch Inbev S.A. Integrally blow-moulded bag-in-container having interface vents opening to the atmosphere at location adjacent to bag's mouth; preform for making it; and processes for producing the preform and bag-in-container
US11890784B2 (en) 2007-04-19 2024-02-06 Anheus Er-Busch Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921421A (en) * 1972-04-20 1974-02-25
JPS5537335A (en) * 1978-09-08 1980-03-15 Nissei Plastics Ind Co 2 layer parisons molding method in injection blast molding
JPS58168531A (en) * 1982-03-31 1983-10-04 Katashi Aoki Injection stretch blow molding of two-layered bottle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921421A (en) * 1972-04-20 1974-02-25
JPS5537335A (en) * 1978-09-08 1980-03-15 Nissei Plastics Ind Co 2 layer parisons molding method in injection blast molding
JPS58168531A (en) * 1982-03-31 1983-10-04 Katashi Aoki Injection stretch blow molding of two-layered bottle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022451A1 (en) * 1994-02-18 1995-08-24 The Coco-Cola Company Hollow containers having a very thin inert or impermeable inner surface layer by coating the inside surface of the preform
WO2005102667A2 (en) * 2004-04-16 2005-11-03 Advanced Plastics Technologies Luxembourg S.A. Preforms, bottles and methods of manufacturing the preforms and the bottles
WO2005102667A3 (en) * 2004-04-16 2006-03-09 Advanced Plastics Technologies Preforms, bottles and methods of manufacturing the preforms and the bottles
US11752683B2 (en) 2007-04-19 2023-09-12 Anheuser-Busch Inbev S.A. Integrally blow-moulded bag-in-container comprising an inner layer and an outer layer comprising energy absorbing additives, preform for making it and process for producing it
US11834226B2 (en) 2007-04-19 2023-12-05 Anheuser-Busch Inbev S.A. Integrally blow-moulded bag-in-container having interface vents opening to the atmosphere at location adjacent to bag's mouth; preform for making it; and processes for producing the preform and bag-in-container
US11890784B2 (en) 2007-04-19 2024-02-06 Anheus Er-Busch Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it
WO2019216429A1 (en) * 2018-05-10 2019-11-14 サントリーホールディングス株式会社 Plastic bottle preform and method for production thereof
JPWO2019216429A1 (en) * 2018-05-10 2021-05-13 サントリーホールディングス株式会社 Preforms for plastic bottles and their manufacturing methods
WO2021065705A1 (en) * 2019-10-01 2021-04-08 東洋製罐株式会社 Method for producing composite preform and synthetic resin container

Similar Documents

Publication Publication Date Title
US4615925A (en) Barrier-coated tube of biaxially stretched thermoplastic material having a monoaxially stretched barrier coating thereon
US4665682A (en) Method for producing a hot fillable, collapse resistant polyester container without the need to utilize set process techniques and/or non-conventional container geometries
US4868026A (en) Multilayered container and process for production thereof
US4818575A (en) Biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties and process for preparation thereof
EP0494098B2 (en) Method of blow moulding container
EP0105825B1 (en) Multi-layer polyisophthalate and polyterephthalate articles and process therefor
US4391861A (en) Preform of a thermoplastic
US4381277A (en) Method for producing containers
KR20060128062A (en) Polyester resin lamination vessel and molding method therefor
JPS5991038A (en) Manufacture of bottle
GB2138350A (en) Process for producing stretched multilayer polyester bottle
JPH0471698B2 (en)
JPS60201909A (en) Manufacture of multilayer stretch blown bottle
US6214281B1 (en) Multi-layer container and preform and process for obtaining same
JPS6356104B2 (en)
GB2218395A (en) A draw-blow moulded laminar polyester vessel
US6562279B2 (en) Multi-layer container and preform and process for obtaining same
JPH05200839A (en) Production of heat and pressure-resistant bottle
JPS5841182B2 (en) Method for manufacturing hot-fillable plastic containers
JPH0431286B2 (en)
JPH02229023A (en) Manufacture of multilayer stretch-molded vessel with intermediate layer arranged offset to inside surface side
JP2001150524A (en) Heat-resistant polyester resin laminated container and method for molding the same
JPS61197205A (en) Orientation blow molding preform
JPS62270315A (en) Manufacture of oriented polyester vessel
JPS60157826A (en) Manufacture of multilayer drawn bottle