JPS60157826A - Manufacture of multilayer drawn bottle - Google Patents

Manufacture of multilayer drawn bottle

Info

Publication number
JPS60157826A
JPS60157826A JP59012130A JP1213084A JPS60157826A JP S60157826 A JPS60157826 A JP S60157826A JP 59012130 A JP59012130 A JP 59012130A JP 1213084 A JP1213084 A JP 1213084A JP S60157826 A JPS60157826 A JP S60157826A
Authority
JP
Japan
Prior art keywords
layer
ethylene
polyester
pipe
gas barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59012130A
Other languages
Japanese (ja)
Other versions
JPH0376651B2 (en
Inventor
Shigezo Nohara
野原 繁三
Yuuto Watanabe
祐登 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP59012130A priority Critical patent/JPS60157826A/en
Publication of JPS60157826A publication Critical patent/JPS60157826A/en
Publication of JPH0376651B2 publication Critical patent/JPH0376651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/335Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
    • B29C48/336Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging one by one down streams in the die
    • B29C48/3363Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging one by one down streams in the die using a layered die, e.g. stacked discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain the resin bottle excellent in gas barrier-property by biaxially-oriented blow molding the multilayer pipe formed by coextruding a polyester family resin with a specified ethylene-vinyl alcohol copolymer. CONSTITUTION:Ethylene-vinyl alcohol copolymer having ethylene component equal to or less than 50mol% is used as a gas barrier resin layer, and polyester family resin mainly consisting of ethylene terephthalate unit is used as an inner layer, an outer layer or an inner and outer layers which are to become a base material. If necessary, an adhesive resin is caused to intervene between said layers. A multilayer pipe is formed, coextruding said layers in the range of 1.1:1-5:1 by the ratio of the inner layer to the outer layer. One end of said pipe is sealed, and a neck part is formed at other end thereof. Thus, a preform is made. The preform is blow molded into a bottle at 80-120 deg.C. Preferably, the nozzle 1 provided with the path 2 for a polyester inner layer, an adhesive path 3a, a gas barrier resin path 4, an adhesive path 3b and the part 5 for a polyester outer layer, is used.

Description

【発明の詳細な説明】 本発明は、多層延伸ボトルの製造法に関するもので、よ
り詳細にはポリエステル層とエチレン−ビニルアルコー
ル共重合体層とを備え、耐温性、耐気体透過性(ガスバ
リヤ−性)に優れた多層延伸ボトルの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer stretched bottle, and more specifically, it is provided with a polyester layer and an ethylene-vinyl alcohol copolymer layer, and has excellent temperature resistance and gas permeability (gas barrier). The present invention relates to a method for manufacturing a multilayer stretched bottle with excellent properties.

ポリエステルの延伸ブロー成形ボトルは、よく知られる
ように、その強靭性、軽量性、透明性、耐圧性、ガスバ
リヤ−性等の特徴をもって炭酸ガス飲料ビール、ぶどう
酒、ウィスキー容器に早くから用いられ、近年醤油、ソ
ース、洗剤、コーラ、サイダー、ビール等の包装容器と
しても広く用いられるに至っている。しかし、プラスチ
ック容器のなかでもガスバリヤ−性が優れるとされるポ
リエステルボトルも炭酸ガス飲料や果汁飲料等の保存維
持となると金属缶ガラスびん等と比較すれば甚だ劣った
ガスバリヤ−拌容器として取扱わざるを得ないのが実状
である。それはいうなれば金属缶壁、ガラスびん壁はガ
スの透過に関しては零という性能であるに反しガスバリ
ヤ−という見地からは、ポリエステルは優れているとは
いえ。
As is well known, polyester stretch-blow-molded bottles have long been used for containers for carbonated beverages such as beer, wine, and whiskey due to their characteristics such as toughness, lightness, transparency, pressure resistance, and gas barrier properties. It has also come to be widely used as packaging containers for sauces, detergents, cola, cider, beer, etc. However, polyester bottles, which are said to have excellent gas barrier properties among plastic containers, have a significantly inferior gas barrier when compared to metal cans, glass bottles, etc. when it comes to preserving carbonated beverages and fruit juice drinks. The reality is that you can't get it. In other words, metal can walls and glass bottle walls have zero performance in terms of gas permeation, but polyester is superior from a gas barrier standpoint.

多少の酸素ガスや炭酸ガス等の気体透過性を有している
のである。それ故新しく出現した延伸ポリエステルボト
ルは透明、軽量、強靭、耐圧等で他の材料では見られな
い特徴を有するけれども、ガスバリヤ−性に関しては必
ずしも優れた材料とはいえないので内容品例えば炭酸ガ
ス入り飲料、ビール、果汁等を包装したもののシェルフ
ライフは成る期限内の制限とか、保存条件がマイルドな
大型容器向けに限られるとか、市場の商品流通に当って
決して満足すべき容器とはいえないのである。
It has some gas permeability such as oxygen gas and carbon dioxide gas. Therefore, although the newly appeared stretched polyester bottles have characteristics not found in other materials, such as transparency, light weight, toughness, and pressure resistance, they cannot necessarily be said to be excellent materials in terms of gas barrier properties, so the contents, such as those containing carbon dioxide, cannot be said to be excellent materials. The shelf life of products packaged with beverages, beer, fruit juice, etc. is limited by the expiration date, and storage conditions are limited to large containers with mild storage conditions, so containers cannot be considered satisfactory when distributing products in the market. be.

しかし、この種のポリエステル容器に対するガスバリヤ
−性の向上の要求は必然的におこるわけで、ポリエステ
ル単層の容器では満足されないなら、より優れたガスバ
リヤ−性を向上するためにはよりよい方法でガスバリヤ
−性を賦与するということが必要になるのである。
However, the demand for improved gas barrier properties for this type of polyester container inevitably arises, and if this cannot be satisfied with a single-layer polyester container, a better method is needed to improve the gas barrier property. - It becomes necessary to give gender.

ポリエステル単層容器に対するガスバリヤ−性の向上の
方法には例えば、ガス透過性のないアルミ箔やガラス箔
による容器表面の被覆とか、ガスバリヤ−性樹脂塗料に
よる容器内外面等へのコーティングの他ガスバリヤー性
熱可塑性樹脂による共射出(多段射出成形法)や共押出
法による多層化が考えられるのである。
Examples of ways to improve the gas barrier properties of single-layer polyester containers include coating the container surface with gas-impermeable aluminum foil or glass foil, coating the inner and outer surfaces of the container with gas-barrier resin paint, and other gas barrier coatings. Multi-layering by co-injection (multi-stage injection molding method) or co-extrusion method using a thermoplastic resin can be considered.

本発明は、前述のポリエステルボトルのガスバリヤ−性
の改良方法のうち、ガスバリヤ−性樹脂とポリエステル
系樹脂とを共押出しによりパイプを成形し1次いで延伸
ブロー成形する方法を採用したものである。
The present invention employs, among the aforementioned methods for improving the gas barrier properties of polyester bottles, a method in which a gas barrier resin and a polyester resin are coextruded to form a pipe, and then stretch blow molding is performed.

ポリエステルボトルの表面をアルミ箔等で被覆する方法
では、びんの口頚部、肩部及び底部等の被覆が困難であ
り、容器の形状(例えば、球状)によっては著しく外観
を損なう等の欠点があり、さらに、ボトルの内・外表面
へガスバリヤ−性樹脂をコーティングする方法ではガス
八リヤー性樹脂層を充分に厚くコーティングすることが
困難であったり、−ガスバリヤ−性樹脂層の剥離やクレ
ージングないしクラックが生じる欠点があった。
With the method of covering the surface of polyester bottles with aluminum foil, etc., it is difficult to cover the neck, shoulders, and bottom of the bottle, and depending on the shape of the container (e.g., spherical), there are drawbacks such as significantly damaging the appearance. Furthermore, with the method of coating the inner and outer surfaces of the bottle with gas barrier resin, it is difficult to coat the gas barrier resin layer sufficiently thickly, and the gas barrier resin layer may peel, craze, or crack. There was a drawback that this occurred.

また、共射出成形法では、型を交換しつつ各樹脂層毎に
射出を行わなければならないという成形操作上の煩雑さ
がある。
Further, in the co-injection molding method, there is a complicated molding operation in that injection must be performed for each resin layer while changing the mold.

本発明は、前述の欠点を除去すると共に水分を多量に含
む内容器を収容するのに適した多層延伸ボトルの製造法
に関し、基本的にはガスバリヤ−性が改質された多層ポ
リエステルの延伸成形ボトルを形成することにあるので
延伸成形に必要な中間製品としての多層プリフォームを
得ること、またそのプリフォームの前段階の製品である
多層パイプをエチレンビニルアルコール共重合体を中間
層とし、外層及び内層をポリエステルとしその間に接着
剤層を介在させる5層構造で形成し、このプリフォーム
を延伸的温に加熱して二軸延伸ブロー成形するもので、
さらに詳細には、多層延伸ボトルの製造法であって、ガ
スバリヤ−樹脂層となるべき層にエチレン成分50モル
%以下のエチレン−ビニルアルコール共重合体(EVO
H)を、基体となるべき内層、外層或いは内外層にエチ
レンテレフタレート単位を主体とするポリエステル系樹
脂を使用し、必要に応じてこれらの間に接着性樹脂(A
D)を介在させ、内層と外層との比率を1.1:l乃至
5:lの範囲で共押出法により多層パイプを形成し、こ
のパイプを形成し、このパイプの一端を融着閉塞して底
部に形成すると共に、他端を口頚部に形成して得られた
プリフォームを80〜120″Cの延伸適正温度に加熱
して、ブロー成形金型内で軸方向と周方向に二軸延伸ブ
ロー成形することを特徴とする多層延伸ボトルの製造法
に関する。
The present invention relates to a method for manufacturing a multilayer stretched bottle that eliminates the above-mentioned drawbacks and is suitable for accommodating an inner container containing a large amount of water, and basically involves stretching and molding a multilayer polyester with improved gas barrier properties. Since the purpose is to form a bottle, it is necessary to obtain a multilayer preform as an intermediate product necessary for stretch molding, and to make a multilayer pipe, which is a product in the pre-stage of the preform, with an ethylene vinyl alcohol copolymer as the middle layer and an outer layer. It is formed with a five-layer structure in which the inner layer is made of polyester and an adhesive layer is interposed therebetween, and this preform is heated to a stretching temperature and biaxially stretch blow molded.
More specifically, it is a method for producing a multilayer stretched bottle, in which a layer to be a gas barrier resin layer is made of an ethylene-vinyl alcohol copolymer (EVO) containing 50 mol% or less of ethylene.
H), a polyester resin mainly composed of ethylene terephthalate units is used for the inner layer, outer layer, or inner and outer layers that are to be the base, and if necessary, an adhesive resin (A) is used between them.
D), a multilayer pipe is formed by coextrusion with the ratio of the inner layer and the outer layer in the range of 1.1:l to 5:l, this pipe is formed, and one end of this pipe is fused and closed. At the same time, the other end is formed at the bottom part, and the other end is formed at the neck and neck part.The obtained preform is heated to an appropriate stretching temperature of 80 to 120"C, and then biaxially stretched in the axial direction and the circumferential direction in the blow molding mold. The present invention relates to a method for producing a multilayer stretched bottle characterized by stretch blow molding.

本発明によれば、上記の構成の多層延伸ポリエステルボ
トルのガスバリヤ−性を経済的に向上させることが可能
となるという利点が達成される。
According to the present invention, an advantage is achieved in that the gas barrier properties of the multilayer stretched polyester bottle having the above structure can be economically improved.

本発明による多層延伸ポリエステルボトルに於けるガス
バリヤ−性の向上にはエチレン−ビニルアルコール共重
合体の優れたガスバリヤ−性がその主体となるが、この
エチレン−ビニルアルコール共重合体にも湿度依存性が
大きいという欠点がある。即ち、エチレン−ビニルアル
コール共重合対は、一般にビニルアルコール含有率が高
いもの程ガスバリヤー性が高いが湿度依存性が大きく、
反対にエチレン含有率が高い程ガスバリヤー性は低いが
湿度依存性が低いという性質がある。ここではエチレン
含有率が低くガスバリヤ−性の高いものを選択している
のであるから、そのガスバリヤ−性を維持せしめるため
にはエチレン−ビニルアルコール共重合体層がポリエス
テル多層量の層のなかにあって極力低い相対湿度の条件
に置くことが望ましいのである。
The improvement in gas barrier properties of the multilayer stretched polyester bottle according to the present invention is mainly due to the excellent gas barrier properties of the ethylene-vinyl alcohol copolymer, but this ethylene-vinyl alcohol copolymer also has humidity dependence. The disadvantage is that it is large. That is, in general, the higher the vinyl alcohol content of the ethylene-vinyl alcohol copolymer pair, the higher the gas barrier properties, but the greater the humidity dependence.
Conversely, the higher the ethylene content, the lower the gas barrier properties, but the lower the humidity dependence. Here, we have selected a material with a low ethylene content and high gas barrier properties, so in order to maintain the gas barrier properties, the ethylene-vinyl alcohol copolymer layer must be included in the polyester multilayer layer. Therefore, it is desirable to keep the relative humidity as low as possible.

一方多層化ポリエステルボトルに清涼飲料水を充填密封
した状態でボトルの胴壁内の湿度条件を考えると、ボト
ル内面で水系飲料に接する点では相対湿度は100%と
みられ、他方ボトル外面は外気の湿度は季節、天候、保
管場所の条件で変化はするが、平均して約60%RIB
(相対湿度)となる。仮に、ボトル内面壁を100%R
Hボトル外面壁を60%とすると、ボトル壁内の相対湿
度は内外層間の厚さのなかでの位置によって略直線的に
相対湿度が定まってくることが実験の結果略明らかにな
っている。即ち、バリヤ一層がボトル壁の丁度中間に位
置すると約80%RHとなり、これより内側だとより高
相対湿度に、これより外側だとより低い相対湿度となる
On the other hand, if we consider the humidity conditions inside the body wall of a multi-layered polyester bottle filled with soft drink and sealed, the relative humidity at the point in contact with the water-based beverage on the inside of the bottle is considered to be 100%, while the outside surface of the bottle is exposed to outside air. Humidity varies depending on the season, weather, and storage location conditions, but on average it is approximately 60% RIB.
(relative humidity). Suppose the inner wall of the bottle is 100% R.
Assuming that the outer wall of the H bottle is 60%, experiments have shown that the relative humidity within the bottle wall is determined approximately linearly depending on the position within the thickness between the inner and outer layers. That is, if the barrier layer is located exactly in the middle of the bottle wall, there will be approximately 80% RH, with higher relative humidity further inward and lower relative humidity outside this.

このようにボトル壁の位置によって相対湿度が変わるか
ら、中間ガスバリヤ一層としてのエチレン−ビニルアル
コール共重合体もボトル壁内の位置によってガスバリヤ
−性(酸素や炭酸ガスなどの遮断性)が変わるのである
As the relative humidity changes depending on the position of the bottle wall, the gas barrier properties (blocking properties against oxygen, carbon dioxide, etc.) of the ethylene-vinyl alcohol copolymer used as the intermediate gas barrier layer also change depending on the position within the bottle wall. .

本発明の主旨とするところは、エチレン−ビニルアルコ
ール共重合体(エチレン成分50モル%以下)の極めて
優れたガスバリヤ−性を維持するため、位置的相対湿度
を極力低い方を選ぶという多層ポリエステルの層の構成
をなすということでさらに詳しくはボトル壁の層構成に
於いて外層ポリエステル/AD/EVOH/AD/内層
ポリエステルの構成で、外層;内層= 1 : 1.1
乃至l:5望ましくはl:2乃至l:3とし、そうした
比率となるべく第1次成形品となる多層パイプを形成す
ることである(パイプの層比率と延伸ブローボトルの層
比率は平均して特に大きい差は生じない)。
The gist of the present invention is to maintain the extremely excellent gas barrier properties of the ethylene-vinyl alcohol copolymer (ethylene content: 50 mol% or less) by selecting the lowest possible relative humidity for multilayer polyester. More specifically, the layer structure of the bottle wall is composed of outer layer polyester/AD/EVOH/AD/inner layer polyester, where outer layer; inner layer = 1: 1.1.
The ratio should be from 1:5 to 1:5, preferably from 1:2 to 1:3, and a multilayer pipe that will be the primary molded product should be formed with such a ratio (the layer ratio of the pipe and the layer ratio of the stretched blow bottle should be on average There is no particularly large difference).

斯くして形成された多層延伸ポリエステルボトルは壁内
の中間層エチレン−ビニルアルコール共重合体は外層寄
りとなり、中味が水系飲料である場合、内層寄りとなる
ものより低い相対湿度となり、その相対湿度が低い分だ
けEVOHのガスバリヤ−性の維持がはかられるという
結果が実験的に明らかになったのである。斯かる視点か
らすると中間EVOH層が最初から外面がもしくは外面
に極力近く位置した方が良いとの理屈は成り立つが、そ
の位置ではパイプ成形時の冷却効果を妨げる点や、多層
延伸ブロ一時亀裂の発生、ボトル実用時にEVOH層の
破損等の不都合が生ずるので、本発明では中間層EVO
Hのそうした層位置は選択しない。
In the thus formed multilayer stretched polyester bottle, the middle layer of ethylene-vinyl alcohol copolymer in the wall is closer to the outer layer, and when the content is an aqueous beverage, the relative humidity is lower than that of the inner layer, and the relative humidity is lower than that of the inner layer. It has been experimentally revealed that the gas barrier properties of EVOH can be maintained by lowering the amount of gas. From this point of view, it is logical that it is better for the intermediate EVOH layer to be located at or as close to the outer surface as possible from the beginning, but this position may impede the cooling effect during pipe forming or cause temporary cracks in the multilayer stretch blower. In the present invention, the intermediate layer EVO
Such a layer position of H is not selected.

とくにパイプ成形に当って外面若しくは外面に接する位
置にエチレン−ビニルアルコール共重合体を配すること
はパイプの冷却効果を損なうので、自然冷却層の数を増
し、パイプラインの長さを増さなくてはならぬ欠点を生
ずる。また一方中間層エチレンービニルアルコール共重
合体層をボトル壁の中間位置より内側に配することは先
述の通りEVOHの優れたガスバリヤ−性を損なう結果
となるのでEVOH層の厚みを増さなくてはならないの
で、いわば経済的でないということになるのである。
In particular, placing ethylene-vinyl alcohol copolymer on the outer surface or in a position in contact with the outer surface during pipe forming impairs the cooling effect of the pipe, so it is necessary to increase the number of natural cooling layers without increasing the length of the pipeline. This results in unavoidable drawbacks. On the other hand, placing the intermediate ethylene-vinyl alcohol copolymer layer inside the middle position of the bottle wall will impair the excellent gas barrier properties of EVOH as mentioned above, so it is necessary to avoid increasing the thickness of the EVOH layer. Therefore, it is not economical, so to speak.

後述の実施例で説明するごとく、ポリエステルの外層:
内層の比をl:2及び2:lとしたものにあっては、酸
素ガスバリヤ−性はり、6倍から2倍の相違が認められ
、明らかに外層寄りの方が酸素透過性は低い。この傾向
は炭酸ガスバリヤ−に於いても同様であった。
As explained in the examples below, the polyester outer layer:
When the ratio of the inner layer was 1:2 and 2:1, a difference in oxygen gas barrier property of 6 to 2 times was observed, and the oxygen permeability was clearly lower in the outer layer. This tendency was also the same for carbon dioxide gas barriers.

本発明において、内外層を構成するポリエステルとして
は、ポリエチレンテレフタレートや、エチレンテレフタ
レート単位を主体とし、他にそれ自体公知の改質用エス
テル単位の少量を含むコポリエステル等が本発明の目的
に使用される。このポリエステルはフィルムを形成し得
るに足る分子量を有していればよい。
In the present invention, as the polyester constituting the inner and outer layers, polyethylene terephthalate, a copolyester mainly containing ethylene terephthalate units, and a small amount of a known modifying ester unit, etc. are used for the purpose of the present invention. Ru. This polyester only needs to have a molecular weight sufficient to form a film.

また、ガス八リヤー性中間層としてのエチレン−ビニル
アルコール共重合体のも先述のようにエチレン成分の多
いビニルアルコール共重合体の方が層の位置による相対
湿度によってガスバリヤ−性の影響が少ないことは明ら
かであるが、たとえ湿度依存性が大きくてもガスの透過
性の絶対値の低いエチレン成分の低いエチレン−ビニル
アルコール共重合体の方が結果としてI\イガスバリャ
ー性を与えるのに望ましく、このエチレン成分の低いガ
ス透過性の低いエチレン−ビニルアルコール共重合体を
使用することが本発明において特に有利であり、エチレ
ン−ビニルアルコール共重合体としては、エチレンと酢
酸ビニル等のビニルエステルとの共重合体をケン化して
得られる共重合体が使用され、成形作業性とバリヤー性
とを考慮すると、エチレン含有量が15乃至50モル%
特に25乃至45モル%のもので、ケン化度が96%以
上のものが有利に用いられる。この共重合体の分子量は
フィルム形成能を有するものであればよい。
In addition, regarding the ethylene-vinyl alcohol copolymer used as the gas barrier intermediate layer, as mentioned above, the gas barrier property is less affected by the relative humidity depending on the layer position with the vinyl alcohol copolymer with a large ethylene component. Although it is clear that even if the humidity dependence is large, an ethylene-vinyl alcohol copolymer with a low ethylene component and a low absolute value of gas permeability is preferable in terms of providing I\gas barrier properties. It is particularly advantageous in the present invention to use an ethylene-vinyl alcohol copolymer with a low ethylene component and low gas permeability. A copolymer obtained by saponifying a polymer is used, and considering moldability and barrier properties, the ethylene content is 15 to 50 mol%.
Particularly, those having a saponification degree of 25 to 45 mol% and a saponification degree of 96% or more are advantageously used. The molecular weight of this copolymer may be any as long as it has film-forming ability.

ポリエステル層とエチレン−ビニルアルコール共重合体
層との接着性を増強させるために、それ自体公知の任意
の接着剤を用いることができる。
To enhance the adhesion between the polyester layer and the ethylene-vinyl alcohol copolymer layer, any adhesive known per se can be used.

コポリエステル系接着剤、ポリエステル−エーテル系接
着剤、エポキシ変性熱可塑性樹脂、酸変性熱可塑性樹脂
等がこの目的に使用される。
Copolyester adhesives, polyester-ether adhesives, epoxy-modified thermoplastics, acid-modified thermoplastics, and the like are used for this purpose.

ポリエステル基体(PET)、エチレン−ビニルアルコ
ール共重合体(EVOI()、接着剤層(AD)は、種
々の層構成で用いることができ、PET/EVOH/P
ET。
Polyester substrate (PET), ethylene-vinyl alcohol copolymer (EVOI), adhesive layer (AD) can be used in various layer configurations, PET/EVOH/P
E.T.

PET/AD/EVOH/AD/PET等の層構成で用
いることができる。
It can be used in a layered structure such as PET/AD/EVOH/AD/PET.

層の厚みは、種々変化させ得るが、一般に、PET :
 EVOH=2 : l乃至30:1、特に4:1乃至
15:lの範囲の厚み比とするのがよく、接着剤層を用
いる場合にはPET:AD=5:l乃至10:1特にl
O:l乃至50:lの範囲の厚み比とするのがよい。
The thickness of the layer can vary, but generally PET:
A thickness ratio of EVOH=2:1 to 30:1, especially 4:1 to 15:1 is preferable, and when an adhesive layer is used, PET:AD=5:1 to 10:1, especially 1
The thickness ratio is preferably in the range of O:l to 50:l.

本発明を、添付図面に示す具体例に基づき以下に詳細に
説明する。
The present invention will be explained in detail below based on specific examples shown in the accompanying drawings.

本発明方法に用いる成型機全体の配置を示す第1図及び
ダイスの詳細な構造を示す第2図において、多層多重ダ
イス1には中心部から外方への順序でいって、ポリエス
テル内層用通路2、接着剤用通路3a、ガスバリヤ−性
樹脂用通路4、接着剤用通路3b、及びポリエステル外
層用通路5が設けられている。ポリエステル内外層通路
2及び5は、ポリエステル用押出機(主押出機)6にギ
アポンプ7及び分岐チャンネル8を介して接続されてい
る。また、接着剤用通路3a、3bは接着剤用押出機(
副押出4ilA)9に、ガスバリヤ−性樹脂通路4はガ
スバリヤ−性樹脂用押出機(副押出機B)ioにそれぞ
れ接続されている。
In FIG. 1 showing the overall arrangement of the molding machine used in the method of the present invention and FIG. 2 showing the detailed structure of the die, the multilayer die 1 has a polyester inner layer passage in order from the center outward. 2. An adhesive passage 3a, a gas barrier resin passage 4, an adhesive passage 3b, and a polyester outer layer passage 5 are provided. The polyester inner and outer layer passages 2 and 5 are connected to a polyester extruder (main extruder) 6 via a gear pump 7 and a branch channel 8. In addition, the adhesive passages 3a and 3b are connected to an adhesive extruder (
The sub-extruder 4ilA) 9 and the gas barrier resin passage 4 are connected to an extruder for gas barrier resin (sub-extruder B) io, respectively.

各樹脂通路からダイス内に供給される樹脂は、ポリエス
テル内層/接着剤層ガスバリヤ−性樹脂中間層/接着剤
層/ポリエステル外層の順序にダイス内で積層され、ダ
イスオリフィス11を通して多層パイプ12の形状に押
し出される。この樹脂パイプ12は、サイジングフォー
マ−13内に導かれ、その径を所定の寸法に調節された
後、冷却水を収容する冷却槽14内に導かれ、溶融パイ
プの冷却固化が行なわれた後、引取機15により冷却槽
外に引き出され、カッター16により所定の寸法に裁断
されて、プリフォーム形成用のパイプとなる。
The resin supplied into the die from each resin passage is laminated within the die in the order of polyester inner layer/adhesive layer/gas barrier resin intermediate layer/adhesive layer/polyester outer layer, and passes through the die orifice 11 into the shape of a multilayer pipe 12. is pushed out. This resin pipe 12 is guided into a sizing former 13, its diameter is adjusted to a predetermined size, and then guided into a cooling tank 14 containing cooling water, where the molten pipe is cooled and solidified. The pipe is pulled out of the cooling tank by a pulling machine 15, and cut into a predetermined size by a cutter 16 to become a pipe for forming a preform.

本発明においては、溶融押出しされるパイプ内部に不活
性ガス或いは水噴霧を含む不活性ガスを積極的に通じる
。このために第2図において、ダイスlの中心軸にダイ
スを貢通するように不活性が供給パイプ17及び水供給
パイプ18を設ける。第2図に示す具体例においては、
パイプ17とパイプ18とは同軸に設けられており、小
径のパイプ17が不活性ガス通路、大径のパイプ18と
パイプ17との環状空間が水通路となっている。パイプ
17及びパイプ18はダイスオリフィス11の反対側端
部において、窒素等の不活性ガス源18と水供給源20
とにそれぞれ接続され、他方の端部のパイプ18が小径
に絞られることによってノズル21を形成している。か
くして、水供給源う0を閉じ、不活性ガス源19からの
ガスをパイプ17に供給する場合には、ノズル21から
樹脂パイプ12内に不活性ガスが充満されると共に、充
満される不活性ガスによる樹脂パイプ12の内面側から
の冷却が行なわれることになる。同様に、水供給源20
と不活性ガス源19とからの両者を供給する場合には、
ノズル21を経て水噴霧を含む不活性ガスが樹脂パイプ
12内に充満され、樹脂パイプ12の内面側からの冷却
が一層効率良く行なわれることになる。
In the present invention, an inert gas or an inert gas containing water spray is actively passed into the pipe to be melt-extruded. For this purpose, in FIG. 2, an inert gas supply pipe 17 and a water supply pipe 18 are provided on the central axis of the die l so as to pass through the die. In the specific example shown in Figure 2,
The pipe 17 and the pipe 18 are coaxially provided, and the small diameter pipe 17 serves as an inert gas passage, and the annular space between the large diameter pipe 18 and the pipe 17 serves as a water passage. Pipe 17 and pipe 18 are connected at opposite ends of die orifice 11 to a source 18 of an inert gas such as nitrogen and a source 20 of water.
The pipe 18 at the other end is narrowed to a small diameter to form a nozzle 21. Thus, when the water supply source 0 is closed and gas from the inert gas source 19 is supplied to the pipe 17, the inert gas is filled into the resin pipe 12 from the nozzle 21, and the inert gas The resin pipe 12 is cooled from the inner surface by the gas. Similarly, water supply source 20
When both are supplied from the inert gas source 19,
The resin pipe 12 is filled with inert gas containing water spray through the nozzle 21, and the resin pipe 12 is cooled from the inner surface side more efficiently.

第3図は、本発明により製造される好適な多層パイプを
示すものであり、この多層パイプ21は、ポリエステル
の内層22及び外層25、エチレン−ビニルアルコール
共重合体の中間ガスノ(リヤ一層24及びこれらの間に
介在する接着層23a。
FIG. 3 shows a preferred multilayer pipe 21 made in accordance with the present invention, comprising inner and outer layers 22 and 25 of polyester, an intermediate layer 24 and a rear layer 24 of ethylene-vinyl alcohol copolymer. Adhesive layer 23a interposed between these.

23bから成っている。23b.

パイプは共押出により製造することが重要であることは
既に指摘したが、押出されたパイプは、ポリエステルの
不透明化を防止するために、水に浸漬する等して急冷す
ると共にパイプ内部に不活性ガスを通すことが重要であ
ることは既に指摘した通りである。
It has already been pointed out that it is important to manufacture pipes by coextrusion, but in order to prevent the polyester from becoming opaque, extruded pipes are rapidly cooled by immersion in water, etc., and an inert material is added inside the pipe. As already pointed out, it is important to allow gas to pass through.

このパイプを一定の寸法に切断した後、この一端部を加
熱溶融して、例えば半円球状等の任意の底形状に対応す
るキャビティ及び突起部を有する雌雄金型で押圧し、第
4図に示す如く底部26を形成する。
After cutting this pipe to a certain size, one end of the pipe is heated and melted, and then pressed with a male and female mold having a cavity and protrusion corresponding to an arbitrary bottom shape, such as a semicircular shape, as shown in Fig. 4. A bottom portion 26 is formed as shown.

次いで、このパイプ2の他端部も加熱し、プレス、延伸
、吹込成形等を所望の金型内で行なって、第3図に示す
通り、上端に開口27を有し、周囲にネックリング(サ
ポートリング)29等の蓋との嵌合部、螺合部及び係止
部とを有する予備成形物(プリフォーム)30に成形す
る。
Next, the other end of this pipe 2 is also heated and subjected to pressing, stretching, blow molding, etc. in a desired mold to form an opening 27 at the upper end and a neck ring ( A preform 30 having a fitting portion, a screwing portion, and a locking portion for fitting with a lid such as a support ring 29 is formed.

これらのプリフォームの成形加工は、その順序を問わな
いものであり、上記順に或いは逆の順に行なうことがで
きるし、また同時に行なってもよい。
The order of forming these preforms does not matter, and they may be carried out in the above order or in the reverse order, or may be carried out simultaneously.

上記方法によるときは多層パイプより予備成形品を得る
に当って余分な樹脂部分を発生せしめない特徴がある。
The method described above has the feature that no excess resin is generated when a preformed product is obtained from a multilayer pipe.

次の工程では上記予備成形品を熱風、赤外線ヒーター、
高周波誘電加熱等で多層プリフォームの延伸適正温度ま
で予備加熱する。この場合温度範囲は85″〜120℃
望ましくは95℃〜110°Cの間のポリエステル樹脂
の延伸温度まで予備加熱する。
In the next process, the above preformed product is heated using hot air, an infrared heater,
The multilayer preform is preheated to the appropriate temperature for stretching using high-frequency dielectric heating or the like. In this case the temperature range is 85''~120℃
It is preheated to the stretching temperature of the polyester resin, preferably between 95°C and 110°C.

延伸ブロー成形操作を説明するための第6図及び第7図
において、予備成形物30の口部にマンドレル31を挿
入すると共に、その口部を一対の割金型32a、32b
で挟持する。マンドレル31と同軸に垂直移動可能な延
伸棒33が設けられており、この延伸棒33とマンドレ
ル31との間には、流体吹込用の環状通路34がある。
6 and 7 for explaining the stretch blow molding operation, a mandrel 31 is inserted into the mouth of a preform 30, and the mouth is inserted into a pair of split molds 32a, 32b.
Hold it between the two. A vertically movable stretching rod 33 is provided coaxially with the mandrel 31, and between this stretching rod 33 and the mandrel 31 there is an annular passage 34 for the injection of fluid.

この延伸棒33の先端35をプリフォーム30の底部2
6の内側に当てがい、この延伸棒33を下方に移動させ
ることにより軸方向に延伸すると共に、前記通路34を
経てプリフォーム30内に流体を吹込み、この流体圧に
よりプリフォームを周方向に膨張延伸させる。
The tip 35 of this stretching rod 33 is attached to the bottom 2 of the preform 30.
6 and moves the stretching rod 33 downward to stretch it in the axial direction, and at the same time blow fluid into the preform 30 through the passage 34, and use this fluid pressure to stretch the preform in the circumferential direction. Expand and stretch.

未発明により製造されたパイプを用い、軸方向延伸と周
方向延伸とを同時に乃至は殆んど同時に行なうことによ
り、ビニルアルコールが高含有のエチレン−ビニルアル
コール共重合体層にあっても比較的低い温度で延伸可能
でかつ透明性の優れた多層容器が得られる。
By performing axial stretching and circumferential stretching at the same time or almost simultaneously using a pipe manufactured by the uninvented method, even if the ethylene-vinyl alcohol copolymer layer has a high vinyl alcohol content, it is possible to A multilayer container that can be stretched at low temperatures and has excellent transparency can be obtained.

このことは、エチレン−ビニルアルコール共重合体でも
高ビニルアルコール含有のものは非常に延伸が難しく、
フィルムの延伸にあっては延伸適正温度にあっても、縦
軸に次いで横軸に逐次延伸するときは前述した如く途中
でフィルムが破裂してしまうことからしても以外のこと
である。またポリプロピレンとエチレン−ビニルアルコ
ール共重合体との多層パイプの延伸ブロー成形に於いて
は、140’〜165℃とかなり高い温度領域で多層内
のエチレン−ビニルアルコール共重合体層の延伸がよう
やく可能である事実とも考え合わすと、ポリエステル樹
脂温度範囲856〜1200C5なかでも95″〜11
0℃の低い温度領域で、エチレン−ビニルアルコール共
重合体が二軸延伸可能であることは驚くべき臂実である
This means that even ethylene-vinyl alcohol copolymers containing high vinyl alcohol are extremely difficult to stretch.
In stretching a film, even if the stretching temperature is appropriate, if the film is stretched sequentially in the vertical axis and then in the horizontal axis, the film will burst in the middle as described above. Furthermore, in stretch blow molding of multilayer pipes made of polypropylene and ethylene-vinyl alcohol copolymer, it is finally possible to stretch the ethylene-vinyl alcohol copolymer layer within the multilayer at a fairly high temperature range of 140' to 165°C. Considering the fact that polyester resin temperature range 856~1200C5, 95''~11
It is surprising that an ethylene-vinyl alcohol copolymer can be biaxially stretched in a temperature range as low as 0°C.

この理由は、ポリエステル層にエチレン−ビニルアルコ
ール共重合体層が載せられた状態で共延伸が行なわれ、
しかも共延伸時に両樹脂層の層間剥離が抑制されること
及び二軸延伸が同時にしかもバランスよく行なわれるこ
とにあるのと推定される。
The reason for this is that co-stretching is performed with the ethylene-vinyl alcohol copolymer layer placed on the polyester layer.
Moreover, it is presumed that this is because delamination between both resin layers is suppressed during co-stretching, and biaxial stretching is performed simultaneously and in a well-balanced manner.

かくして得られた第8図に示す多層延伸ポリエステルボ
トル36は、すぐれた透明性の他のプラスチックボトル
よりすぐれるポリエステル(延伸PET)単体ボトルよ
りなお非常に高いガスバリヤ−性を有17、かつ必要に
応じそのガスバリヤ−性は調整5)能で、さらにこのボ
トルは耐圧性をも具備し、炭酸ガス入りの飲料、すなわ
ちビール、コーラ、サイターの充填保存も極めて容易で
あり、容器は術生的であり使用済みの容器の廃棄焼却に
於いても発生するガスは殆んど炭酸ガスと水のみで有害
ガスの発生もみず易焼却処理性の特徴があり、ガラスび
んに匹敵する透明性、ガス遮断性耐圧性をもちながらも
軽量かつ耐波びん性のある理想的な容器が提供される。
The thus obtained multi-layer stretched polyester bottle 36 shown in FIG. 8 has gas barrier properties that are superior to other plastic bottles with excellent transparency and are still much higher than polyester (stretched PET) single bottles. Its gas barrier properties can be adjusted5) accordingly, and the bottle also has pressure resistance, making it extremely easy to fill and store carbonated beverages, such as beer, cola, and citrus. Yes, even when used containers are disposed of and incinerated, the gas generated is almost only carbon dioxide and water, and no harmful gases are generated.They are easily incinerated, and have a transparency comparable to that of glass bottles, and a gas barrier. The present invention provides an ideal container that is lightweight and wave-resistant while having high pressure resistance.

また、本発明による多層延伸ポリエステルボトルは着色
、非着色、透明、不透明のいずれに於いても適用出来る
Furthermore, the multilayer stretched polyester bottle according to the present invention can be applied in any of colored, uncolored, transparent, and opaque forms.

以下実施例について説明する。Examples will be described below.

実 施 例 90mmの主押出機とその附属ギヤーポンプそれに40
mmの補助押出I!2台、計3台の押出機を用い3種5
層用パイプ成形用ダイヘッドで各樹脂を多環状に合流さ
せ、溶融パイプを押出し、寸法を定めるためのサイジン
グホーマーを通し、パイプ外面を水流にて冷却する冷却
槽及び引取機を経てカッターで定尺に切断されるパイプ
成形機を用いた。
Example: 90mm main extruder, its attached gear pump, and 40mm main extruder
mm auxiliary extrusion I! 3 types and 5 using 2 extruders, total of 3 extruders
Each resin is merged into a polycyclic shape using a die head for forming layered pipes, the molten pipe is extruded, passed through a sizing former to determine the dimensions, passed through a cooling tank where the outer surface of the pipe is cooled with a water stream, and a take-off machine, and then cut to a fixed size with a cutter. A pipe forming machine was used to cut the pipe.

主押出機には極限粘度(IV値)1.0のPETを、補
助押出機1よりはエチレン約30モル%のエチレン−ビ
ニルアルコール共重合体(商品名EVAL)を、補助押
出41Il!2よりはエステル系接着剤を、ギヤーポン
プを経て夫々多層ダイスに供給しその層比率を外層側よ
り、PET/AD/EVOH/AD/PET50:5:
15:5:100及び100:5: 15:5:50の
平均比率でパイプを形成した。得られたパイプはいづれ
も外径30mm。
The main extruder was filled with PET having an intrinsic viscosity (IV value) of 1.0, and the auxiliary extruder 1 was filled with an ethylene-vinyl alcohol copolymer (trade name: EVAL) containing approximately 30 mol% ethylene. From No. 2, the ester adhesive was supplied to each multilayer die via a gear pump, and the layer ratio was changed from the outer layer side to PET/AD/EVOH/AD/PET 50:5:
The pipes were formed with an average ratio of 15:5:100 and 100:5:15:5:50. The obtained pipes each had an outer diameter of 30 mm.

内径23a+m、厚さ3.? vall、重量59gの
多層定尺パイプである。
Inner diameter 23a+m, thickness 3. ? This is a multi-layer regular pipe with a weight of 59 g.

夫々のパイプの下端を加熱し半円球融着閉塞し、他端部
を螺合を有する口頚部に加熱成形し、得られた予備成形
品(プリフォーム)を約98℃に予備加熱し、ブロー用
金型で縦横はぼ同時的に延伸ブローをして容積1.51
の円筒状ボトルを得た。
The lower end of each pipe is heated to fuse and close the pipe into a semicircular sphere, the other end is heated and formed into a neck and neck part with a threaded connection, and the obtained preform is preheated to about 98°C, Stretch and blow vertically and horizontally using a blowing mold to create a volume of 1.51.
A cylindrical bottle was obtained.

同上ボトルの胴部の平均肉厚は約290JL同中間層エ
チレン−ビニルアルコール共重合体の平均肉厚は夫々的
24pL、接着剤層の肉厚は夫々約8経であった。
The average wall thickness of the body of the same bottle was about 290 JL, the average wall thickness of the middle layer ethylene-vinyl alcohol copolymer was 24 pL, and the thickness of each adhesive layer was about 8 JL.

この2種のボトルを外界の相対湿度を60%RHとし、
保存条件35℃とした場合の酸素透過量は次の如くであ
った。
The relative humidity of these two types of bottles was set to 60% RH,
The amount of oxygen permeation when the storage condition was 35°C was as follows.

n七3 即ち、エバール外面寄りの層位置のものが内面寄りのも
のより酸素透過量が2/3〜1/2と低く EVOHを
外面寄りにした場合、中間層の厚みケ薄くしても良いと
いう結果が得られた。
n73 In other words, the oxygen permeation rate of the EVOH layer closer to the outer surface is 2/3 to 1/2 lower than that of the EVOH layer closer to the inner surface.If EVOH is placed closer to the outer surface, the thickness of the intermediate layer may be made thinner. The result was obtained.

また、上記と同じボトルに炭酸ガスを4.0ガスポリウ
ム含む水を充填密封し、保存条件22℃で炭酸ガスロス
を径詩的に測定したところ15%の炭酸ガスロスを示し
た期間(シェルフライフ)は下表の如くであった。
In addition, when the same bottle as above was filled with water containing 4.0 gas porium and sealed and the carbon dioxide loss was measured under storage conditions of 22°C, the period (shelf life) during which the carbon dioxide loss was 15% was It was as shown in the table below.

明らかに外面寄りにEVOHを配シしたものの方が炭酸
ガスロスが遅いことを示している。
This clearly shows that the carbon dioxide gas loss is slower in the case where EVOH is placed closer to the outer surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、多層パイプ成形装置の平面図、第2図は、多
層ダイスの断面図、 第3図は、本発明に用いられる多層パイプの断面図、 第4図及び第5図は底部及びネック部を形成した予備成
形品の断面図、 第6図及び第7図は予備成形品をブロー金型内に保持し
、ブロー成形前の断面図及びブロー成形後の一断面図、 第8図は、本発明により成形された多層延伸ボトルであ
る。 引照数字1は多層ダイス、6は主押出機、9゜10は副
押出機、12は多層パイプ、13はサイジングフォーマ
−114は冷却槽、16はカッター、17は不活性ガス
供給パイプ、18は水供給パイプ、21はパイプ、26
は底部、27は開口端部、30は予備成形品、36は多
層延伸ボトルを夫々示す。 特許出願人 東洋製罐株式会社 第3図 第5図
Fig. 1 is a plan view of the multilayer pipe forming apparatus, Fig. 2 is a sectional view of the multilayer die, Fig. 3 is a sectional view of the multilayer pipe used in the present invention, and Figs. 4 and 5 are the bottom and A cross-sectional view of a preformed product with a neck formed therein; FIGS. 6 and 7 are a cross-sectional view of the preformed product held in a blow mold; a cross-sectional view before blow molding; and a cross-sectional view after blow molding; FIG. is a multilayer stretched bottle formed according to the present invention. Reference number 1 is a multilayer die, 6 is a main extruder, 9°10 is a sub-extruder, 12 is a multilayer pipe, 13 is a sizing former, 114 is a cooling tank, 16 is a cutter, 17 is an inert gas supply pipe, 18 is Water supply pipe, 21 is a pipe, 26
27 represents the bottom, 27 represents the open end, 30 represents the preform, and 36 represents the multilayer stretched bottle. Patent applicant: Toyo Seikan Co., Ltd. Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 多層延伸ボトルの製造法であって、ガスバリヤ−樹脂層
となるべき層にエチレン成分50モル%IFFのエチレ
ン−ビニルアルコール共重合体を、基体となるべき内層
、外層或いは内外層にエチレンテレフタレート単位を主
体とするポリエステル系樹脂を使用し、必要に応じてこ
れらの間に接着性樹脂を介在させ、内層と外層との比率
を1.1 : 1乃至5:1の範囲で共押出法により多
層パイプを形成し、このパイプの一端を融着閉塞して底
部に形成すると共に、他端を口頚部に形成して得られた
プリフームを80〜120℃の延伸適正温度に加熱して
、ブロー成形金型内で軸方向と周方向に2軸延伸ブロー
成形することを特徴とする多層延伸ボトルの製造法。
A method for manufacturing a multilayer stretched bottle, which comprises using an ethylene-vinyl alcohol copolymer with an ethylene component of 50 mol% IFF in the layer that is to become the gas barrier resin layer, and ethylene terephthalate units in the inner layer, outer layer, or inner and outer layers that are to become the base material. Multilayer pipes are produced by coextrusion using polyester resin as the main material, with an adhesive resin interposed between them as necessary, and with a ratio of the inner layer to the outer layer ranging from 1.1:1 to 5:1. One end of this pipe is fused and closed to form the bottom part, and the other end is formed as the neck and neck part.The obtained preform is heated to an appropriate stretching temperature of 80 to 120°C to form a blow molding mold. A method for manufacturing a multilayer stretched bottle, characterized by biaxial stretching blow molding in the axial direction and circumferential direction within a mold.
JP59012130A 1984-01-27 1984-01-27 Manufacture of multilayer drawn bottle Granted JPS60157826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012130A JPS60157826A (en) 1984-01-27 1984-01-27 Manufacture of multilayer drawn bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012130A JPS60157826A (en) 1984-01-27 1984-01-27 Manufacture of multilayer drawn bottle

Publications (2)

Publication Number Publication Date
JPS60157826A true JPS60157826A (en) 1985-08-19
JPH0376651B2 JPH0376651B2 (en) 1991-12-06

Family

ID=11796947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012130A Granted JPS60157826A (en) 1984-01-27 1984-01-27 Manufacture of multilayer drawn bottle

Country Status (1)

Country Link
JP (1) JPS60157826A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235126A (en) * 1985-04-12 1986-10-20 Nissei Ee S B Kikai Kk Multi-layer vessel and manufacture thereof
KR20030006583A (en) * 2001-07-13 2003-01-23 주식회사 천경 Container having a double wall structure, manufacturing method and apparatus therefor
JP2004034340A (en) * 2002-06-28 2004-02-05 Toyo Seikan Kaisha Ltd Multilayered structure for packaging
WO2004062881A1 (en) * 2003-01-14 2004-07-29 E.I.Dupont De Nemours And Company Container having a double wall structure, manufacturing method and apparatus therefor
JP2008018727A (en) * 2007-08-14 2008-01-31 Toyo Seikan Kaisha Ltd Multilayered structure for packaging

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235126A (en) * 1985-04-12 1986-10-20 Nissei Ee S B Kikai Kk Multi-layer vessel and manufacture thereof
JPH053376B2 (en) * 1985-04-12 1993-01-14 Nissei Asb Machine Co Ltd
KR20030006583A (en) * 2001-07-13 2003-01-23 주식회사 천경 Container having a double wall structure, manufacturing method and apparatus therefor
JP2004034340A (en) * 2002-06-28 2004-02-05 Toyo Seikan Kaisha Ltd Multilayered structure for packaging
WO2004062881A1 (en) * 2003-01-14 2004-07-29 E.I.Dupont De Nemours And Company Container having a double wall structure, manufacturing method and apparatus therefor
JP2008018727A (en) * 2007-08-14 2008-01-31 Toyo Seikan Kaisha Ltd Multilayered structure for packaging

Also Published As

Publication number Publication date
JPH0376651B2 (en) 1991-12-06

Similar Documents

Publication Publication Date Title
KR910008615B1 (en) Molding process of multilayer pipe for bottle
US4846359A (en) Multi-layered plastic bottle having integrally formed handle and method of making
US6499311B2 (en) Double walled bottle
JPH053376B2 (en)
JPH0471698B2 (en)
US5788926A (en) Plastic bottle and process for making the same
KR20020010604A (en) Transparent multilayer polypropylene container with barrier protection
JPS60157826A (en) Manufacture of multilayer drawn bottle
JPS62164504A (en) Manufacture of preform for oriented polyester vessel
JPS6251423A (en) Manufacture of oriented polyester container
JPH02229023A (en) Manufacture of multilayer stretch-molded vessel with intermediate layer arranged offset to inside surface side
JPH0323336B2 (en)
JPS61268426A (en) Manufacture of oriented polyester container with resistance to heat shrinkage
JPS61197205A (en) Orientation blow molding preform
JPS60147306A (en) Manufacture of multilayer pipe for forming orientation molding
JPS61279513A (en) Manufacture of multi-layer preform for stretch blow molding
JPS6211624A (en) Preform for orientation blow forming and manufacture thereof
JPH0415725B2 (en)
JPS61173924A (en) Oriented multilayer plastic vessel and manufacture thereof
JPS61219644A (en) Oriented multilayer plastic vessel and manufacture thereof
JPH03294B2 (en)
JPH0443499B2 (en)
JPH0371008B2 (en)
JPH0367483B2 (en)
JPS6112307A (en) Multi-layered preform for stretching blow molding and its preparation