JPS6096751A - Heat resistant structure - Google Patents

Heat resistant structure

Info

Publication number
JPS6096751A
JPS6096751A JP58201007A JP20100783A JPS6096751A JP S6096751 A JPS6096751 A JP S6096751A JP 58201007 A JP58201007 A JP 58201007A JP 20100783 A JP20100783 A JP 20100783A JP S6096751 A JPS6096751 A JP S6096751A
Authority
JP
Japan
Prior art keywords
heat
resistant
alloy
bonding layer
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201007A
Other languages
Japanese (ja)
Inventor
Takao Suzuki
隆夫 鈴木
Masayuki Ito
伊藤 昌行
Hiromitsu Takeda
博光 竹田
Yoshikazu Takahashi
高橋 由和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58201007A priority Critical patent/JPS6096751A/en
Publication of JPS6096751A publication Critical patent/JPS6096751A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To provide a heat resistant structure excellent in high temp. durability, obtained by forming a cerium oxide coating layer to the surface of a structure comprising a heat resistant alloy through a bonding layer. CONSTITUTION:An adequately selected heat resistant alloy (IN939 etc.) is formed into a structure having a predetermined shape and, if necessary, sand blast treatment is applied to the surface thereof and a bonding layer is formed thereto by a plasma spray method. The bonding layer is formed of an Ni-base alloy or a Co-base alloy and uniformly formed in a thickness of about 30-300mum. Subsequently, cerium oxide is uniformly applied in a thickness of about 50- 500mum to form a coating layer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は耐熱構造体に関し、更に詳しくは、セラミック
耐熱被覆層を改良するととにょシ耐熱合金部品の高温耐
久性が向上した耐熱構造体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heat-resistant structure, and more particularly to a heat-resistant structure in which the high-temperature durability of a heat-resistant alloy component is improved by improving a ceramic heat-resistant coating layer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

耐熱構造体はガスタービン部材などの耐熱合金部品に汎
用されているが、例えばガスタービン部材の場合、ガス
温度が1400℃以上にも達するため、その苛酷な使用
条件に耐える高温特性に優れた耐熱構造体が要求されて
いる。
Heat-resistant structures are commonly used for heat-resistant alloy parts such as gas turbine parts. For example, in the case of gas turbine parts, gas temperatures reach over 1400°C, so heat-resistant structures with excellent high-temperature properties that can withstand the harsh operating conditions are used. A structure is required.

従来、高温特性に優れた耐熱構造体に関し、種々、研究
が行われた結果、窒化ケイ素(SL 8N4)や炭化ケ
イ素(5iC)等のセラミック材料を構造材料として使
用する方法、耐熱合金を冷却しながら高温部材として使
用する方法、及びセラミック材料の低熱伝導性を利用し
た耐熱性セラミックを被覆する方法等の提案がなされて
いる。しかしながら、(1)の提案は研究過程にあシ実
用化に未だ達しておらず、(2)の提案は冷却に伴カう
熱効率低下が問題となっておシ、結局、(3)の提案が
、現在、最も注目されている、 耐熱被覆は、従来の耐熱合金上に熱伝導度の低いセラミ
ックを被覆し、基材合金を高熱よシ保獲する方法である
。セラミックは一般に熱膨張係数が、J\さく、セラミ
ック被覆仮基材合金との熱膨張差によシセラミック層の
剥離が生じ易い。したがって、耐熱被覆に適用されるセ
ラミック材料は、単に熱伝導度が低いだけでなく、熱膨
張係数も耐熱合金のそれに近い値を有することが望まれ
る。
In the past, various studies have been conducted on heat-resistant structures with excellent high-temperature properties, including methods using ceramic materials such as silicon nitride (SL 8N4) and silicon carbide (5iC) as structural materials, and methods for cooling heat-resistant alloys. However, proposals have been made for methods of using it as a high-temperature member, and methods of coating it with heat-resistant ceramics that take advantage of the low thermal conductivity of ceramic materials. However, proposal (1) is still in the research process and has not yet been put into practical use, and proposal (2) suffers from a problem of reduced thermal efficiency due to cooling, so in the end, proposal (3) However, heat-resistant coating, which is currently attracting the most attention, is a method in which ceramics with low thermal conductivity are coated on conventional heat-resistant alloys to protect the base alloy from high heat. Ceramic generally has a low coefficient of thermal expansion, and the ceramic layer tends to peel off due to the difference in thermal expansion with the ceramic-coated temporary base alloy. Therefore, it is desirable that the ceramic material applied to the heat-resistant coating not only have low thermal conductivity but also have a coefficient of thermal expansion close to that of the heat-resistant alloy.

そこで、従来はZrOx が耐熱被覆用セラミック材料
として用いられていた。
Therefore, ZrOx has conventionally been used as a ceramic material for heat-resistant coating.

しかし、ZrO,は約1ooo℃と約1200Cにおい
て相転移が起こるので、その安定化のためにY2O,、
MgQ、CaO等を固溶させる事が不可欠である反面こ
の固溶成分は、高温で長時間実用する間に損失し、耐久
性の観点からは逆に寿命を制限する要因となっていた。
However, since ZrO undergoes a phase transition at about 100°C and about 1200°C, Y2O,...
While it is essential to dissolve MgQ, CaO, etc. in solid solution, these solid solution components are lost during long-term practical use at high temperatures, and from the viewpoint of durability, this has been a factor that limits the service life.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した欠点の解消にあシ、セラミッ
ク耐熱被覆層を改良することにょル高温耐久性が優れた
耐熱構造体を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks and to provide a heat-resistant structure having excellent high-temperature durability by improving the ceramic heat-resistant coating layer.

〔発明の概要〕 本発明の耐熱構造体は、耐熱合金からなる構造体と、該
構造体表面に結合層を介して設けられた酸化セリウム被
覆層とから成ることを特徴とするものである。
[Summary of the Invention] The heat-resistant structure of the present invention is characterized by comprising a structure made of a heat-resistant alloy and a cerium oxide coating layer provided on the surface of the structure via a bonding layer.

本発明の耐熱合金からなる構造体とは耐熱合金を用途に
応じて概括的な所定形状に形成したものであシ、耐熱合
金としては用途等に応じて、通常、耐熱合金として使用
されているものでおれば格別限定されない。この耐熱合
金の具体例としては、I N 939 、lN737B
:LC等の:Ni基耐熱合金−′又は・X−40’、M
AR−M−509等のCo基耐熱合金等が挙げられる。
The structure made of a heat-resistant alloy of the present invention is a heat-resistant alloy formed into a general predetermined shape depending on the use. There are no particular limitations as long as it is something. Specific examples of this heat-resistant alloy include IN939 and IN737B.
:Ni-based heat-resistant alloy such as LC-' or X-40', M
Examples include Co-based heat-resistant alloys such as AR-M-509.

本発明の結合層は耐熱合金からなる構造体と酸化セリウ
ム被覆層との熱膨張差に起因する熱応力を緩和する役割
を果たす。このため、結合層に使用される材料としては
、その膨張係数が耐熱合金基材と耐熱被覆層の基材との
中間の値を有するものが望ましい。この材料の具体例と
しては、Nl基又はCo基合金、?’JiCrA/、Y
又はCoCrAtY合金等が挙げられる。
The bonding layer of the present invention serves to alleviate thermal stress caused by the difference in thermal expansion between the structure made of a heat-resistant alloy and the cerium oxide coating layer. Therefore, it is desirable that the material used for the bonding layer has an expansion coefficient intermediate between that of the heat-resistant alloy base material and that of the base material of the heat-resistant coating layer. Specific examples of this material include Nl-based or Co-based alloys, ? 'JiCrA/,Y
Or CoCrAtY alloy, etc. can be mentioned.

本発明の被覆層はその材料として酸化セリウムを用いて
形成されたものである。なお、参考として酸化セリウム
の物性を示せば、焼結体での熱伝導率が約I W/に−
m とステンレスの1/1o以下と小さく、熱膨張係数
も約14X10 と耐熱合金に近似するため、耐熱被覆
層の材料としては極めて好ましい。
The coating layer of the present invention is formed using cerium oxide as its material. For reference, the physical properties of cerium oxide show that the thermal conductivity of the sintered body is approximately IW/-
It is extremely preferable as a material for the heat-resistant coating layer because it has a small m2 of less than 1/1o of stainless steel and a coefficient of thermal expansion of approximately 14×10, which is similar to that of a heat-resistant alloy.

つぎに、本発明の耐熱構造体の製造方法を説明する。ま
ず、適宜に選択された耐熱合金を常法によシ所定形状の
構造体とし、その表面を必要に応じてアルミナ(A40
m )粒等によりサンドブラスト処理を施し、表面を溶
射被覆に適した状態とした後、結合層を設けてもよい。
Next, a method for manufacturing a heat-resistant structure of the present invention will be explained. First, an appropriately selected heat-resistant alloy is formed into a structure of a predetermined shape by a conventional method, and the surface is coated with alumina (A40
m) A bonding layer may be provided after sandblasting with particles or the like to make the surface suitable for thermal spray coating.

この結合層は、その形成に通常、使用される方法を適用
すればよく、例えば、溶射法、拡散被覆法、CVD、蒸
着、PvD等が挙げられる。これらの方法の中でも、膜
厚形成速度が大きな方法が適当であるため、溶射法が好
ましい。また、この結合層の厚さ2は、30〜300μ
m、好ましくは50〜200μmである。厚さが上記範
囲を外れる場合には結合層の効果が少ないか、あるいは
結合層の接着強度が低下する傾向であシネ都合だか゛ら
である。セらにまた、この結合層の形状は、構造体の表
面に均一に施工されていることが望ましい。この結合層
を施工した後、引き続き耐熱被覆層として酸化セリウム
を施工して、本発明の耐熱構造体が得られる。
This bonding layer may be formed by any commonly used method, such as thermal spraying, diffusion coating, CVD, vapor deposition, PvD, and the like. Among these methods, the thermal spraying method is preferred because it is suitable for increasing the film thickness formation rate. Moreover, the thickness 2 of this bonding layer is 30 to 300μ
m, preferably 50 to 200 μm. If the thickness is out of the above range, the effect of the bonding layer will be small or the adhesive strength of the bonding layer will tend to decrease, which is a problem for the cinema. Furthermore, it is desirable that the shape of this bonding layer is uniform on the surface of the structure. After applying this bonding layer, cerium oxide is subsequently applied as a heat-resistant coating layer to obtain the heat-resistant structure of the present invention.

との被覆層はその形成方法として上記した結合層の形成
方法に適用し〆方法により施工すればよい。また、この
被覆層の厚さは50〜500μm。
The coating layer may be formed by applying the method for forming the bonding layer described above and finishing it. Moreover, the thickness of this coating layer is 50 to 500 μm.

好ましくは200〜300μmである。厚さが上記範囲
を外れる場合は耐熱効果が弱まるか、あるいは被覆層の
接着強度が低下する傾向であり、好ましくない。さらに
また、この被覆層の形状は、結合層の表面に均一に施工
されていることが望ましい・ 以下において、本発明の実施例を掲げ、本発明をさらに
詳しく説明する。
Preferably it is 200 to 300 μm. When the thickness is outside the above range, the heat resistance effect tends to be weakened or the adhesive strength of the coating layer tends to decrease, which is not preferable. Furthermore, it is desirable that the shape of this coating layer is uniformly applied to the surface of the bonding layer.The present invention will be described in more detail below with reference to examples of the present invention.

〔発明の実施例〕[Embodiments of the invention]

実施例1 耐熱合金からなる構造体として第1表に示す組成を有す
るN1 基合金を50 X 10 X 3 (tJ)に
切断加工し、その表面を約1m粒径のA403粒子によ
シサンドプラスト処理した。そして、そのNi基合金表
面に結合層としてのNi −17Cr −AL −0,
6Y合金粉末をプラズマ溶射装置によシ溶射距離125
m、電流値700A、電圧値34vの条件で約100μ
m厚さとなるよう溶射被覆した。さらに、前記結合層上
へCe02粉末を同装置によシ溶射距離80■、電流値
800A、電圧値37Vの条件で約300μm厚さとガ
るよう溶射して% CeO□層を形成し、本発明の耐熱
構造体を得た。得られた耐熱構造体に関し、高温耐久性
を確認するために次のような評価試験を行った。
Example 1 As a structure made of a heat-resistant alloy, an N1-based alloy having the composition shown in Table 1 was cut into 50 x 10 x 3 (tJ), and its surface was coated with A403 particles with a grain size of about 1 m using sandoplast. Processed. Then, on the surface of the Ni-based alloy, a bonding layer of Ni-17Cr-AL-0,
6Y alloy powder was sprayed using a plasma spraying device at a spraying distance of 125 mm.
m, about 100μ under the conditions of current value 700A and voltage value 34V.
Thermal spray coating was applied to a thickness of m. Furthermore, CeO2 powder was sprayed onto the bonding layer using the same apparatus at a spraying distance of 80cm, a current value of 800A, and a voltage value of 37V to form a % CeO□ layer to a thickness of about 300μm. A heat-resistant structure was obtained. Regarding the obtained heat-resistant structure, the following evaluation test was conducted to confirm high-temperature durability.

熱伝導度試験・・・酸化セリウムからなる耐熱被覆層の
熱伝導度を、レーザーフラッシ ュ法によシ測定した。同時に比較 例として、ZrO−8Y2O2からなる耐熱被覆層及び
Ni基合金の熱伝導 度を同様にして測定した。
Thermal conductivity test: The thermal conductivity of the heat-resistant coating layer made of cerium oxide was measured by a laser flash method. At the same time, as a comparative example, the thermal conductivity of a heat-resistant coating layer made of ZrO-8Y2O2 and a Ni-based alloy was measured in the same manner.

熱衝撃試験 −・試験片を、大気中で1080℃で60
分間加熱、280℃で60分 間冷却の熱衝撃試験をくシ返し、 肉眼によシ亀裂発生が観察される までa<p返し回数をめる。
Thermal shock test - The test piece was tested at 1080℃ for 60 minutes in the atmosphere.
Repeat the thermal shock test by heating for 60 minutes and cooling at 280°C for 60 minutes, and count the number of times a<p until cracking is observed with the naked eye.

結果を第2表(示す。The results are shown in Table 2.

第1表 第2表 実施例2 実施例、1と同様の条件でサンドブラスト処理したNi
基合金表面に、200 Torr のアルゴン雰囲気下
、37V800A+7)条件テNi −17Cr −6
At−0,6Y合金粉末を約100μm厚さとなるよう
溶射被覆した。さらに、実施例1と同様な条件でCeO
,耐熱被覆層を形成し、本発明の耐熱構造体を得た。
Table 1 Table 2 Example 2 Ni sandblasted under the same conditions as Example 1
Ni-17Cr-6 was applied to the surface of the base alloy under argon atmosphere of 200 Torr under 37V800A+7) conditions.
At-0,6Y alloy powder was thermally sprayed to a thickness of about 100 μm. Furthermore, under the same conditions as in Example 1, CeO
, a heat-resistant coating layer was formed to obtain a heat-resistant structure of the present invention.

得られた耐熱構造体に関し、高温耐久性を確認するため
に、次のような評価試験を行った。
Regarding the obtained heat-resistant structure, the following evaluation test was conducted in order to confirm high-temperature durability.

酸化試験・・・実施例1及び実施例2で得られた耐熱構
造体を大気中で1080℃炉中保持 し、肉眼によ)亀裂発生が観察される までの時間を測定した。
Oxidation test: The heat-resistant structures obtained in Examples 1 and 2 were held in a furnace at 1080° C. in the atmosphere, and the time until cracks were observed (to the naked eye) was measured.

結果を第3表に示す。The results are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

以上に詳述したとおシ、本発明の耐熱構造体は従来のセ
ラミック耐熱構造体に比べ、高温耐久性が格段に優れて
おシ、その工業的価値は極めて大である。
As detailed above, the heat-resistant structure of the present invention has much better high-temperature durability than conventional ceramic heat-resistant structures, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1、 耐熱合金から力る構造体と、該構造体表面に結合
層を介して設けられた酸化セリウム被覆層とから成ると
とを特徴とする耐熱構造体。 2゜該被覆層が、溶射法にょ多形成されたものである特
許請求の範囲第1項記載の耐熱構造体。 3、該結合層が、10〜350 Torr の不活性雰
囲気下で溶射法によ多形成されたものである特許請求の
範囲第1項又は第2項記載の耐熱構造体。
[Claims] 1. A heat-resistant structure comprising a structure made of a heat-resistant alloy and a cerium oxide coating layer provided on the surface of the structure via a bonding layer. 2. The heat-resistant structure according to claim 1, wherein the coating layer is formed by a thermal spraying method. 3. The heat-resistant structure according to claim 1 or 2, wherein the bonding layer is formed by thermal spraying in an inert atmosphere of 10 to 350 Torr.
JP58201007A 1983-10-28 1983-10-28 Heat resistant structure Pending JPS6096751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201007A JPS6096751A (en) 1983-10-28 1983-10-28 Heat resistant structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201007A JPS6096751A (en) 1983-10-28 1983-10-28 Heat resistant structure

Publications (1)

Publication Number Publication Date
JPS6096751A true JPS6096751A (en) 1985-05-30

Family

ID=16433944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201007A Pending JPS6096751A (en) 1983-10-28 1983-10-28 Heat resistant structure

Country Status (1)

Country Link
JP (1) JPS6096751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156103A (en) * 1989-11-10 1991-07-04 Toyota Motor Corp Relative displacement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156103A (en) * 1989-11-10 1991-07-04 Toyota Motor Corp Relative displacement device

Similar Documents

Publication Publication Date Title
JP3983323B2 (en) Method for coating a metal part with a metal adhesion layer for a thermal sprayed ceramic insulation layer and a metal adhesion layer
JP3151778B2 (en) Coated ceramic products
JPH0251978B2 (en)
JPH0967662A (en) Ceramic-coated member
US20080166589A1 (en) Component having a coating
KR101681195B1 (en) Thermal Barrier Coating System with Self-Healing Ability
JP3700766B2 (en) Thermal barrier coating member and thermal spraying powder
JPS63118059A (en) Adiabatic coating method and gas turbine combustor
JPH06306640A (en) High temperature exposure material
WO1992005298A1 (en) Columnar ceramic thermal barrier coating with improved adherence
JP3219594B2 (en) Thermal barrier coating method for high temperature oxidation prevention
JPH0563555B2 (en)
JPS62210329A (en) Ceramic coated heat-resistant material and manufacture thereof
JPS62211387A (en) Production of ceramic coated heat resistant member
JPS6096751A (en) Heat resistant structure
He et al. Development of refractory silicate-yttria-stabilized zirconia dual-layer thermal barrier coatings
JPS62211390A (en) Ceramic coated heat resistant member and its production
JPS61243164A (en) Formation of heat resistant coating
JPH05263212A (en) Heat-resistant coating
JP3876176B2 (en) Ceramic composition for heat shielding coating film
JPH0978257A (en) Thermal insulation coating material
JPS6028903B2 (en) Surface treatment method for metal materials
JPS62211386A (en) Ceramic coated heat resistant member and its production
JPS60243259A (en) Heat resisting structural body
JP2002294428A (en) Thermal barrier coating and manufacturing method therefor