JPS6095506A - Aligning device for optical fiber axis - Google Patents

Aligning device for optical fiber axis

Info

Publication number
JPS6095506A
JPS6095506A JP20442783A JP20442783A JPS6095506A JP S6095506 A JPS6095506 A JP S6095506A JP 20442783 A JP20442783 A JP 20442783A JP 20442783 A JP20442783 A JP 20442783A JP S6095506 A JPS6095506 A JP S6095506A
Authority
JP
Japan
Prior art keywords
optical fiber
microscope
light source
axis
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20442783A
Other languages
Japanese (ja)
Other versions
JPH0360087B2 (en
Inventor
Osamu Kawada
修 河田
Koichi Hoshino
星野 光一
Hiroshi Ishihara
石原 浩志
Takeshi Yamada
剛 山田
Ko Watanabe
渡辺 興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujikura Ltd
Priority to JP20442783A priority Critical patent/JPS6095506A/en
Publication of JPS6095506A publication Critical patent/JPS6095506A/en
Publication of JPH0360087B2 publication Critical patent/JPH0360087B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To align the axes of cores to each other accurately by making a position adjustment by jogging a microscope and a light source so that the microscope and light source has invariably the same position relation. CONSTITUTION:The light source 11 and microscope 14 are jogged and positioned in an (y) direction for vertical observation so that the light source 11, optical fiber 11, and microscope 14 are arranged vertically in a line. Then, the microscope is jogged in an (x) direction and positioned so that the distance between fiber center points is f0 determined by the focal length. There are two optical fibers 1 and 2 to be connected and their relative axis shift is normally several microns, so only one optical fiber is adjusted. In this state, the core positions of the two fibers are observed to detect the axis shift extent of the cores, and an optical fiber support base 4 is moved so that the axis shift is eliminated, attaining the alignment.

Description

【発明の詳細な説明】 本発明は高精度な」j′核検出lア@合わけを11う光
フアイバ軸調心装置に関りるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber optic axis alignment system for highly accurate nuclear detection.

コア径の小さい光ファイバ、例えは、!1− t−ド光
ファイバの18続にあたってでの損失を低減りるために
は、接続される2木の光ノi?イバの一1ツノの中心間
のずれ(軸ずれ…)を最小にりる心間があり、これを軸
合わけ、ま/、:l;L軸調心どいつ(いる。
For example, an optical fiber with a small core diameter! In order to reduce the loss in connecting 18 1-T-doped optical fibers, it is necessary to connect 2 optical fibers. There is a center distance that minimizes the deviation between the centers of the two horns (axis misalignment...), and this is aligned.

従来の光ファイバのコア軸合せ方法を第1図に示す。接
続すべぎ光ファイバの片方1を支持台3にに固定し、他
の光ファイバを同図に示すようなx、y、zの各方向に
微動可能な移動装置5に連結した支持箱41こ固定し、
光′tA6の光を光ファイバ1に入0=Iさせ、光ファ
イバ1お」、び2を透過して受光器7に到達する光のパ
ワが最大どなるように支持台4を移動装置5によって動
かし、]アの軸合わぜを行う。しかし、この方法では、
一般に光を入射させる場所、接続場所、光パワをモニタ
する場所が異なるため、互いに連絡する装置を必要とし
たり、それぞれの場所に作業員を配置する必要があり、
特に光源場所、七二り場所と接続場所が遠隔の場合、作
業上大変不便である。
A conventional method for aligning the core axis of an optical fiber is shown in FIG. One side 1 of the optical fibers to be connected is fixed to a support stand 3, and the other optical fiber is connected to a support box 41 that can be moved slightly in each of the x, y, and z directions as shown in the figure. fixed,
The light 'tA6 enters the optical fiber 1 with 0=I, and the support base 4 is moved by the moving device 5 so that the power of the light that passes through the optical fibers 1 and 2 and reaches the light receiver 7 becomes maximum. Move and align the axis of A. However, with this method,
In general, the location where the light enters, the location where the light is connected, and the location where the optical power is monitored are different, so devices that communicate with each other are required, and workers need to be stationed at each location.
This is particularly inconvenient when the light source location, 72-day location, and connection location are remote.

一方、接続場所のみで容易に軸合わせの出来る方法どし
て、ファイバ中のコアを視覚的に観察し、被接続ファイ
バの軸ずれがないように調心することが考えられている
。第2図はそのような方法の一例を示す。光ファイバ1
,2の軸に直交する×。
On the other hand, it has been considered that a method of easily aligning the axis only at the connection location involves visually observing the core in the fiber and aligning the fiber to be connected so that there is no axis deviation. FIG. 2 shows an example of such a method. optical fiber 1
, × perpendicular to the axis of 2.

y軸の延長線上に光源11.12を置き、y軸方向につ
い゛て【よ光フF 4バを通1ノでミラー13で原註・
1ざ1!、X軸方向に″)いては光ファイバを通してi
I!llR1−ぞれ6のW、ツノ・イバ像を顕微鏡14
で拡大J−るど、第ζ1図に承り影像が得られ、光ファ
イバの中心(・1近にや亡黒・)ば<−」ア像20が観
察される。l、/、:が−)(、被接続ノアイバ両方の
コア像のずれを11祝(゛検出し、手動ぐ光ノアイバ支
持台4を移動装置α!’i lL: 、1、り動かリ−
か、または顕微鏡14に取すイ・口J7ご1最像具ie
’l ’I !]τ゛得た画像信号をテレビ16 ’C
’EニタJ−るどとも1.二、この信号から画像処即装
置17に、1、リ−1ツノの位]dを検出し、その結果
求められた軸ずれ泪分を無くずように移動装置5を駆動
させること(J。1、っ(対向り−る光ファイバの軸合
わせを行うことができる。
The light sources 11 and 12 are placed on the extension line of the y-axis, and the light source 11 and 12 are placed on the extension line of the y-axis.
1 za 1! , in the X-axis direction'') through the optical fiber i
I! llR1 - 6 W each, horn and iba image under microscope 14
When the image is enlarged, an image shown in FIG. ζ1 is obtained, and an image 20 is observed near the center of the optical fiber. l, /, :ga-)(, Detects the deviation of the core images of both connected core images, and manually moves the optical fiber support base 4 to the moving device α!'i lL: , 1, moves the
Or, take the first image into the microscope 14.
'l'I! ]τ゛The obtained image signal is sent to the TV 16 'C.
'Enita J-rudotomo 1. 2. From this signal, the image processing device 17 detects the 1, Li-1 horn order] d, and drives the moving device 5 so as to eliminate the axis deviation determined as a result (J. 1. (The axes of opposing optical fibers can be aligned.

このJ、うな方法で二1アを観察り−る場合には、光〕
7/イバが円柱であるために、そのレンズ効果によって
コアの人さくきが一般に実際の大きざより大きくなり、
観察される位置1)実際の位置とは異なってくる。第4
図に承りようiこ観察方向に対して直交Jる面内で、]
 77の軸がファイバの中心に対してdだけ離れている
場合、コア結像面に正lノく焦点を合わせた時(第4図
(a))には、コアの中心はファイバの中心に対してフ
ァイバの屈折率xd= D oだけ離れた位置に観察さ
れることになる。
When observing 21A in this J, method, light]
7/ Since the rivet is cylindrical, its lens effect generally makes the core's diameter larger than its actual size.
Observed position 1) Will differ from the actual position. Fourth
As shown in the figure, in a plane perpendicular to the observation direction,]
If the axis of 77 is separated by d from the center of the fiber, the center of the core will be at the center of the fiber when the core is focused exactly l on the imaging plane (Fig. 4(a)). On the other hand, it will be observed at a position separated by the refractive index xd=D o of the fiber.

しかし、顕微鏡の焦点がそれ以外の位置に置かれた時(
第4図(b))には、観察されるコアの偏心IDはり。
However, when the focus of the microscope is placed elsewhere (
FIG. 4(b)) shows the eccentric ID beam of the observed core.

と異なってくる。第5図は焦点位置を移動させた時のD
の変化を示す。数+71 IIIの焦点位置の変化によ
ってコアの観察位置には大きな変化が一トしる。
It will be different. Figure 5 shows D when the focal position is moved.
shows the change in Due to the change in the focal position of number +71 III, there is a large change in the observation position of the core all at once.

また、同様の現象は、第6図に示すようIこ顕微鏡14
、光ファイバ1を結ぶ線に対して光源11がずれた場合
にも生ずる。第7図は、第6図の光軸ずれど観察される
コア位置との関係を示すもので、やはり敬白f1mの光
軸ずれで観察位置には大きな変化を生じる。
Furthermore, a similar phenomenon occurs at the microscope 14 as shown in FIG.
This also occurs when the light source 11 is shifted from the line connecting the optical fibers 1. FIG. 7 shows the relationship between the optical axis shift in FIG. 6 and the observed core position. As expected, the optical axis shift of f1m causes a large change in the observed position.

このにうに顕微鏡の焦点位置のずれや光源の光軸ずれが
発生すると観察されるコア位置に大きな影響を受け、真
のコア位置を推定することどが極めて困難であり、その
、(、ま軸合わせの誤差となる5− ことがわかる。
In this case, when the focal position of the microscope or the optical axis of the light source shifts, the observed core position is greatly affected, and it is extremely difficult to estimate the true core position. It can be seen that the error in alignment is 5-.

−1)、通常の光ノアイバの軸合わUtこおいては、第
8図(a )に承りように光ファイバのセラ1〜におい
て4:l Fj 1”れが牛し、本来21にあるべき光
ファイバが22の斜線部に1Nかれたり、第8図(11
)に示1−ようにlr lこミラー13を介して像を観
測する際、ミラーの超電に八〇の狂いが生じると光ファ
イバや光lIg+のミラー・による虚像位置が本来の位
置23,24から2り、26にそれぞれ変化し、何れに
1ノても焦点イ)7買のり“や光軸ずれはどうしても避
lJられイrい、。
-1), in the normal optical fiber axis alignment Ut, as shown in Figure 8(a), at the optical fiber cellars 1 to 4:l Fj 1", it should be at 21. If the optical fiber is connected to the shaded area of 22 at 1N or
) When observing an image through the lr l mirror 13 as shown in 1-1-, if an 80 degree deviation occurs in the superelectricity of the mirror, the virtual image position due to the optical fiber or the mirror of the light lIg+ will be at the original position 23, The focus changes from 24 to 2, and then to 26, and in either case, the focus is 1) 7" and the optical axis shift cannot be avoided.

また、第33図(())に承りように直接のファイバ像
(!li−直1)向)とミラーを介するファイバ像(水
平方向)を同時に観察−リ−る場合にも、両方の像J、
での距離が異な61、二め両りの焦点を合わせることは
不可r+rである1゜ 以上述べたように、被接続光ファイバのコアを直接観察
りる2:とに1J、−)でE−7軸合わlを行う場合に
は、児ノj!イバと顕微鏡、光源との位置関係に誤差変
動があるどl )jの観察位置外大きく影響=6= を受り、正確なコア軸合わせができないという欠点があ
った。
Also, as shown in Fig. 33 (()), when observing a direct fiber image (!li-direction 1) and a fiber image via a mirror (horizontal direction) at the same time, both images can be viewed simultaneously. J.
61, it is impossible to focus the two at different distances r + r. As mentioned above, the core of the optical fiber to be connected can be directly observed. - When performing 7-axis alignment l, child no j! There was a drawback that accurate core axis alignment was not possible due to error fluctuations in the positional relationship between the fiber, the microscope, and the light source.

本発明は上記の事情に鑑みてなされたもので、正確なコ
アの軸合わせを行うことのできる光フアイバ軸調心装置
を提供することを目的とするものであり、顕微鏡、光源
が常に同一の位置関係となるように、顕微鏡および光源
を微動させる位置調整を設()たことを特徴とするもの
である。
The present invention was made in view of the above circumstances, and aims to provide an optical fiber axis alignment device that can accurately align the core axis. It is characterized by the provision of position adjustment for slightly moving the microscope and light source so that the positional relationship is achieved.

以下、本発明を図面に示す実施例に基づい−C詳細に説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第9図は本発明の実施例を示す図であり、この図におい
て第1図、第2図と同一の構成要素には同一符号を付し
である。この図に示す装置は、顕微鏡1.4をファイバ
軸に直交するX軸、V軸方向へ微動さI!る位置調整装
置31ど、光源11,12をそれぞれy軸、x軸方向/
\微動さける位置調整装置32.33どを具備して構成
されている。
FIG. 9 is a diagram showing an embodiment of the present invention, and in this figure, the same components as in FIGS. 1 and 2 are given the same reference numerals. The apparatus shown in this figure allows the microscope 1.4 to be moved slightly in the X-axis and V-axis directions perpendicular to the fiber axis. The position adjustment device 31, etc., moves the light sources 11 and 12 in the y-axis and x-axis directions, respectively.
It is configured to include position adjustment devices 32 and 33 for fine movement.

第9図は装置を光フン・イバ1,2の軸方向から見た図
であり、光ファイバ1.2の支持部分の構造を省略しで
ある。この装置においても、光ファイバ1.2は、第2
図と同様支持台3およびx、y。
FIG. 9 is a view of the apparatus viewed from the axial direction of the optical fibers 1 and 2, and the structure of the supporting portion of the optical fiber 1.2 is omitted. In this device as well, the optical fiber 1.2 is
Support stand 3 and x, y as shown.

l軸方向に微動可能な支持台4にそれぞれ保持されてい
る。
They are each held on a support stand 4 that can be moved slightly in the l-axis direction.

上記の装置により光ファイバ軸の調心を行うには、まず
、垂直方向の観察を行うべく、光源11、光ファイバ1
および顕微鏡14とが垂直に一直線上に配置されるよう
光源11および顕微鏡14をVTj向に微動さけ、位置
を合わける。モして、顕微鏡とノア!イバ中心点間距離
を焦点距離できまる[。になるよう顕微鏡をX方向に微
動し位置を合わせる。被接続光)1イバは、1,2と2
本あるが、それらの相対的な軸ずれは、通常数ミクロン
程度であるため、上記調整はいずれか一方の光ファイバ
についてのみ行なえばよい。この状態で、2本のファイ
バのそれぞれのコア位置の観察を行い、」アの軸ずれ川
を検出し、ぞの軸ずれをなくづように光フアイバ支持台
4を移動させて軸合せを行う。
To align the optical fiber axis using the above device, first, the light source 11, the optical fiber 1
The light source 11 and the microscope 14 are slightly moved in the VTj direction so that the light source 11 and the microscope 14 are aligned vertically in a straight line. Mo, microscope and Noah! The distance between the center points of the fibers can be determined by the focal length [. Move the microscope slightly in the X direction to align the position. Connected light) 1 fiber is 1, 2 and 2
Although there are many optical fibers, the relative axis deviation between them is usually on the order of several microns, so the above adjustment only needs to be performed for one of the optical fibers. In this state, observe the core position of each of the two fibers, detect the misalignment of the two fibers, and align the fibers by moving the optical fiber support 4 to eliminate the misalignment of the other axes. .

次に、光源12により光ファイバを水平方向に通る光を
ミラー13で直角方向に観察づる場合には、ミラーにに
る光ファイバの虚像34および光源の虚像35が垂直に
一直線上に配置されるよう、光源12をX方向に、また
顕噂鏡14をX方向に位置調整し、また顕微鏡と光ファ
イバの虚像34間の距離が[0になるように顕微鏡をX
方向に位置調整し、2本の光ファイバのコア位置の観察
を行い、垂直方向の場合と同様に軸ずれ量の検出と軸合
せを行う。
Next, when the light passing horizontally through the optical fiber from the light source 12 is observed in the perpendicular direction with the mirror 13, the virtual image 34 of the optical fiber and the virtual image 35 of the light source on the mirror are arranged vertically in a straight line. Adjust the position of the light source 12 in the X direction and the microscope 14 in the X direction, and move the microscope in the X direction so that the distance between the microscope and the virtual image 34 of the optical fiber is
The position is adjusted in the direction, the core positions of the two optical fibers are observed, and the amount of axis deviation is detected and the alignment is performed in the same way as in the case of the vertical direction.

このような手順により垂直方向および水平方向について
、それぞれ焦点位置および光軸を一致させれば、焦点ず
れや、光軸ずれによる誤差のない正確なコア位置および
軸ずれの検出が可能となり、正確な軸合せができる。
By aligning the focal position and optical axis in the vertical and horizontal directions using these steps, it becomes possible to accurately detect the core position and axis deviation without errors due to focal deviation or optical axis deviation. Axis alignment is possible.

第10図は、第9図の説明で述べたような位置調整を正
確に行うための実施例であり、第2図と同様顕微鏡14
にとりつけた撮像装置15で得た画像信号を画像処理装
置41により焦点状態の情報と光軸ずれの情報を抽出し
請求めたデータに応じて制御装置42により位置調整装
置31〜33を駆動して光源11.12および顕微鏡1
4を移9− 勅ざlるJ、うに構成さtしτいる。
FIG. 10 shows an embodiment for accurately adjusting the position as described in the explanation of FIG.
An image processing device 41 extracts focal state information and optical axis deviation information from an image signal obtained by an imaging device 15 attached to the camera, and a control device 42 drives position adjustment devices 31 to 33 according to the requested data. light source 11.12 and microscope 1
4 to 9- The command is J, and the sea urchin is composed of τ.

光ノアイバ像を軸と曲角li向に走査した時の信号の代
表例は第11図のにうになり、ファイバの上部縁と下部
縁近傍に1Bレベルのバンド51,52があり、コア部
に相当づる位置に若干のレベルの落ら込みが存在する。
A typical example of the signal when the optical fiber image is scanned in the direction of the axis and bending angle li is shown in Fig. 11. There are 1B level bands 51 and 52 near the upper and lower edges of the fiber, and there are 1B level bands 51 and 52 in the core part. There is a slight drop in level at the corresponding position.

光ファイバと光源間の光軸にずれがある場合には暗1ノ
ベルバンド51,52の幅が上下で異なる。また、顕微
鏡と光フアイバ間の光軸ずれがある場合は全画面の中心
にファイバ像がこない。ざらに、焦点位置に対しては、
暗1ノベルの両件側の明レベルから暗レベルへの落り込
みが画像のシ1r−プさによってその傾斜が異なってく
るため、この傾斜53.54をモニタすれば焦点位置を
知ることがぐきる。
If there is a misalignment in the optical axis between the optical fiber and the light source, the widths of the dark 1 novel bands 51 and 52 will differ between the upper and lower sides. Furthermore, if there is an optical axis misalignment between the microscope and the optical fiber, the fiber image will not be centered on the entire screen. Roughly speaking, regarding the focal position,
The slope of the fall from the bright level to the dark level on both sides of the dark 1 novel differs depending on the shape of the image, so by monitoring this slope 53.54, you can know the focal point. Gulp.

第12図は、4111図にお【)る光軸ずれΔyと昭レ
ベルバンド!li 1 、52の幅W1.W2の化W1
/W2との関係を示しI、:4)ので、ΔyがOの時に
1の値となり、それからはり゛れるとWl/W2の値は
その方向に31、す1より人きくなるか1より小(\く
なる。
Figure 12 shows the optical axis deviation Δy in Figure 4111 and the Showa level band! li 1 , 52 width W1. The transformation of W2 into W1
/W2 shows the relationship with I, :4), so when Δy is O, it has a value of 1, and if it goes beyond that, the value of Wl/W2 will be 31 in that direction, becoming more popular than S1 or smaller than 1. (\becomes.

−10− したがって、画像信号の入力とその演算を行う画像処理
装置41によって前記明レベルバンドの幅を検出1ノ、
その比を1とするように、また画面中心にファイバ中心
が来るように制御装置42により光源および顕微鏡の各
位置調整装置を制御すればよい。Wl/W2が1±0.
05であれば光軸ずれは±50μm以内に抑えられる。
-10- Therefore, the width of the bright level band is detected by the image processing device 41 that inputs the image signal and performs the calculation.
The control device 42 may control the position adjustment devices of the light source and the microscope so that the ratio is 1 and the center of the fiber is located at the center of the screen. Wl/W2 is 1±0.
05, the optical axis deviation can be suppressed to within ±50 μm.

第13図は、焦点ずれ△f、と明レベルから暗レベルへ
の傾斜(微係数)との関係を示したもので、ファイバの
中心に焦点を合わせた時を八f。
FIG. 13 shows the relationship between the defocus Δf and the slope (differential coefficient) from the bright level to the dark level. When the fiber is focused at the center, it is 8 f.

−〇とするとファイバの手前側に焦点がずれるど(Δf
o〉0)傾斜が急になり微係数が増加し、ファイバの東
側に焦点がずれると(Δ10<0>傾斜が緩かになり微
係数は減少する。したがって、微係数を例えば0.06
5±o、oi程度に設定すると、少なくとも焦点位置ず
れは±15μm以内に抑えられる。こうして微係数を一
定値になるように制御装置により、顕微鏡の位置調整装
置を制御すれば、焦点位置は常に一定に保たれることに
なる。
−〇, the focus shifts to the front side of the fiber (Δf
o〉0) If the slope becomes steeper and the differential coefficient increases, and the focus shifts to the east side of the fiber (Δ10<0> the slope becomes gentler and the differential coefficient decreases. Therefore, the differential coefficient is set to 0.06, for example.
When set to approximately 5±o, oi, at least the focal position shift can be suppressed to within ±15 μm. If the position adjustment device of the microscope is controlled by the control device so that the differential coefficient becomes a constant value in this way, the focal position will always be kept constant.

なお、微係数の舶の設定飴は、特に0.065にJる必
要番、1イ「(、画像信号からコアの検出が容易に%る
J:うな焦点状態に対応する時の微係数にJoればJ:
い。lJだし、この場合は必ずしも前述した。1:うに
観察」ア偏心吊「)ど実際の」ア偏心(idとの関係は
第5図に示りJ、うに単に屈折率倍でなくなる。ぞの1
=め、ぞの111の焦点状態に応じた倍率M(1)・M
ll)に。1、−)で]アの真の位置を推定することが
必曹である。
In addition, the setting value of the differential coefficient is particularly the necessary number of 0.065, 1, which makes it easy to detect the core from the image signal, and the differential coefficient corresponding to the focal state. If you say J:
stomach. Since it is lJ, in this case it is not necessarily as mentioned above. 1: Observation of sea urchins, eccentricity () and actual eccentricity (id) are shown in Figure 5.
=Magnification M(1)・M according to the focal state of Me, Zono 111
ll) to. 1, -)] It is necessary to estimate the true position of A.

こう【ノ(、画像信V」の光ファイバの縁にお(〕る暗
暗レベルパンの幅の化および明レベルから暗レベルへの
1…斜を1−タケることによって、容易に最適り光軸お
、J、び焦点状態を与λるような顕微鏡およ(F光源の
移動がi’iT fil≦であり、:]ア位置の検出し
iE確になる。これらの操作は処理装置41、制御装b
’f42にNI III Wを用いることにより容易に
自動化することもiil能となる。
By changing the width of the dark-dark level pan and adding a diagonal from the bright level to the dark level on the edge of the optical fiber of the image signal V, it is easy to obtain the optimum light. The movement of the light source is such that the axes O, J, and the focal state are given λ, and the movement of the light source is i'iT fil≦. , control unit b
By using NI III W in 'f42, it is possible to easily automate the process.

また画像す1埋装fR41は、第2図で説明した:]ア
位置検出用の画像処理装置17の機能も合わせ持つこと
が出来るので、ぞの処理結果から正確な]ア位置を抽出
し、被接続光フアイバ間の軸ずれ口をめてそれを無くす
ように光フアイバ支持台4を移動させる移動装置5を制
御すれば高精度な軸調心装置が実現できる。
In addition, the image embedding fR41 can also have the function of the image processing device 17 for detecting the position described in FIG. A highly accurate axis alignment device can be realized by controlling the moving device 5 that moves the optical fiber support base 4 so as to eliminate the misalignment between the optical fibers to be connected.

以上説明したように本発明によれば、光フアイバ中のコ
アを観察する系にお【プる焦点位置を一定化し、光源お
よび光ファイバ、顕微鏡を結ぶ光軸を一直線にするよう
顕微鏡および光源を微動させる位置調整@置を設けたか
ら、常【こ]ア観察条件を一定にでき、正しいコア位置
の検出が行え、これによって被接続光フアイバ相互間の
軸ずれを正確にめることができ、それを無くするよう光
ファイバの固定台を移動させることによって極めて正確
なコアの軸合せを行うことができる。
As explained above, according to the present invention, the focal position applied to the system for observing the core in the optical fiber is made constant, and the microscope and the light source are adjusted so that the optical axis connecting the light source, the optical fiber, and the microscope is aligned. By providing a position adjustment position for fine movement, the core observation conditions can be kept constant, the correct core position can be detected, and the axis misalignment between the optical fibers to be connected can be accurately determined. By moving the optical fiber fixing stand to eliminate this, extremely accurate core alignment can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光パワモニタ法を用いた光ファイバの軸
調心装置の説明図、第2図はコア直接観察系を持った光
フアイバ軸調心装置の説明図、第3図は光フアイバ像の
一例を示す図、第4図(a )、(b)は焦点位置ずれ
によるコア観察位置の変13− 化の説明図、第5図はぞの実4−結果を示す図、第6図
は軸調心時tJお口る光軸ずれの説明図、第7図は光軸
ずれ14二J、る:]ア観察位置の変化の実証図、第8
図は)に軸ずれ、焦点ずれの起こる場合の説明図、第9
図、り110図番、1いずれも本発明の実施例どしC承
した光フン・イバ軸調心装置の概略構成図、第11図は
観察される光ノアイバ画像信号の1例を示り一波形図、
第12図、第13図はいずれも本発明の効Tを承り6タ
1明図である。 1.2・・・・・・光−ノノ・イバ、3,4・・・・・
・光フアイバ支持台、5・・・・・・移!’JJ装跨、
11.12・・・・・・光源、13・・・・・・ミラー
、14・−・・−・顕微鏡、15・・・・・・撮像装置
?!?、if’i・・・・・・−1\1117・・・・
・・画像処理装置、20・・・・・・1ノ1部、31.
32.33・・・・・・位置調整装置& 、 ll ’
1・・・・・・画像処理装置、42・・・・・・制御装
置。 出願人 日本電信電話公社
Fig. 1 is an explanatory diagram of an optical fiber axis alignment device using the conventional optical power monitoring method, Fig. 2 is an explanatory diagram of an optical fiber axis alignment device with a core direct observation system, and Fig. 3 is an explanatory diagram of an optical fiber axis alignment device using a conventional optical power monitoring method. Figure 4 (a) and (b) are diagrams showing changes in the core observation position due to focal position shift; The figure is an explanatory diagram of the optical axis deviation at tJ when the axis is aligned, and Figure 7 is a demonstration diagram of the change in the observation position.
The figure is an explanatory diagram of the case where axis shift and focus shift occur in ), No. 9
Figures 110 and 1 are all examples of the present invention. Fig. 11 shows an example of the observed optical fiber image signal. One waveform diagram,
Both FIGS. 12 and 13 are six-dimensional diagrams showing the effects of the present invention. 1.2...Hikari-Nono Iba, 3,4...
・Optical fiber support stand, 5...Move! 'JJ outfit,
11.12...Light source, 13...Mirror, 14...Microscope, 15...Imaging device? ! ? , if'i...-1\1117...
...Image processing device, 20...1 part 1, 31.
32.33...Position adjustment device &ll'
1... Image processing device, 42... Control device. Applicant Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)直線状に突き合わせた2本の接続対象となる光フ
ァイバの突き合わ1部近傍で光ファイバ軸に直交する位
置に置いた顕微鏡ど光ファイバをはさむ反対側に置いた
光源およびミラーを介在させて光ファイバ軸の他の直交
方向に置いた光源の何れか一方、もしくは両方により光
ファイバを観察して光ファイバのコア位置を検出し、該
被接続光ファイバを保持する光フアイバ固定台を移動す
ることにより光ファイバのコア軸を合わせる装置におい
て、該光源、光ファイバおよび顕微鏡もしくは光源、光
ファイバ、ミラーおよび顕微鏡が一直線上もしくはミラ
ーの反射角を考慮した直線上に配置せられ、かつ光ファ
イバの所定の位置に顕微鏡の焦点位置が合致するよう光
源および顕微鏡を微vJさlる位置調整装置を設【Jた
ことを特徴とする光フアイバ軸調心装置。
(1) A microscope placed at a position perpendicular to the optical fiber axis near the butt part of two optical fibers to be connected in a straight line. A light source and a mirror placed on the opposite side of the optical fiber are interposed. The core position of the optical fiber is detected by observing the optical fiber using one or both of the light sources placed in the other orthogonal direction of the optical fiber axis, and the optical fiber fixing table that holds the optical fiber to be connected is installed. In a device that aligns the core axis of an optical fiber by moving, the light source, the optical fiber, and the microscope or the light source, the optical fiber, the mirror, and the microscope are arranged in a straight line or in a straight line taking into account the reflection angle of the mirror, and An optical fiber axis alignment device, characterized in that a position adjustment device is installed to adjust the light source and the microscope slightly so that the focal point of the microscope matches a predetermined position of the fiber.
(2)顕微鏡にJ:って得たツノ・イバ像を搬像りる撮
像装置と、この搬像)!i置で1!11こノj・イバ像
の軸に直角方向に走査した画像信号のノj・イム土部縁
および下部縁におりる明レベルから113レベルへ落ち
込む傾斜角ど両部の明パンF幅の比を検出する画像処理
装置と、前記傾斜11を1;め定めlこ一定11r1に
かつ該暗バンド幅比を1になるように顕微鏡J3よび光
咋を微動させるイ1”l買調整装同を制御I ?lる制
御装置をf1加したことを特徴とする特f!’f 請求
の範囲第(1)項記載の光フアイバ軸調心装置、。
(2) An imaging device that transports the horn/horn image obtained by J: onto a microscope, and this transport image)! The brightness of the image signal scanned in the direction perpendicular to the axis of the image at the i position is 1!11. an image processing device that detects the ratio of the pan F width; The optical fiber shaft alignment device according to claim 1, further comprising a control device for controlling the adjustment device.
JP20442783A 1983-10-31 1983-10-31 Aligning device for optical fiber axis Granted JPS6095506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20442783A JPS6095506A (en) 1983-10-31 1983-10-31 Aligning device for optical fiber axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20442783A JPS6095506A (en) 1983-10-31 1983-10-31 Aligning device for optical fiber axis

Publications (2)

Publication Number Publication Date
JPS6095506A true JPS6095506A (en) 1985-05-28
JPH0360087B2 JPH0360087B2 (en) 1991-09-12

Family

ID=16490354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20442783A Granted JPS6095506A (en) 1983-10-31 1983-10-31 Aligning device for optical fiber axis

Country Status (1)

Country Link
JP (1) JPS6095506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301908A (en) * 1987-06-01 1988-12-08 Japan Aviation Electronics Ind Ltd Optical fiber aligning machine
JPH01221707A (en) * 1988-02-29 1989-09-05 Sumitomo Electric Ind Ltd Device for observing end face state of optical fiber
JPH05142448A (en) * 1991-11-25 1993-06-11 Sumitomo Metal Mining Co Ltd Waveguide type optical device, and method for positioning optical waveguide and optical fiber in same optical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049307A (en) * 1983-08-29 1985-03-18 Nippon Telegr & Teleph Corp <Ntt> Fiber connecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049307A (en) * 1983-08-29 1985-03-18 Nippon Telegr & Teleph Corp <Ntt> Fiber connecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301908A (en) * 1987-06-01 1988-12-08 Japan Aviation Electronics Ind Ltd Optical fiber aligning machine
JPH01221707A (en) * 1988-02-29 1989-09-05 Sumitomo Electric Ind Ltd Device for observing end face state of optical fiber
JPH05142448A (en) * 1991-11-25 1993-06-11 Sumitomo Metal Mining Co Ltd Waveguide type optical device, and method for positioning optical waveguide and optical fiber in same optical device
JP2570036B2 (en) * 1991-11-25 1997-01-08 住友金属鉱山株式会社 Waveguide-type optical device and method for positioning optical waveguide and optical fiber in the optical device

Also Published As

Publication number Publication date
JPH0360087B2 (en) 1991-09-12

Similar Documents

Publication Publication Date Title
JPH0234002B2 (en)
JPS6095506A (en) Aligning device for optical fiber axis
US4878933A (en) Apparatus for fusion splicing optical fibers
US6148639A (en) Splicing an optical fiber having twin cores
JPS6215843B2 (en)
JPS62220909A (en) Optical connection of end of optical fiber to another optical element
JPS6229763B2 (en)
JPH0534646B2 (en)
JPS59136708A (en) Automatic connecting device for optical fiber
JPH0360086B2 (en)
JP3418296B2 (en) Detecting the amount of misalignment of optical fibers of different diameters
JPS6061703A (en) Method for detecting core shaft shift of fiber
JPH0625809B2 (en) Optical fiber core observation device
JP2938317B2 (en) How to align optical fiber with V-groove
JP3642849B2 (en) Fusion splicing method of optical fiber
JP2888730B2 (en) Optical fiber observation method and observation apparatus
JPH043291Y2 (en)
JPS6022322Y2 (en) Visual alignment device for small-core optical fiber
JPH05341148A (en) Method for adjusting axis of polarization of polarization keeping optical fiber and optical component
JPS62189409A (en) Measuring method for optical fiber axial shift
JPH03208399A (en) Ic positioning device
JPH08313775A (en) Optical axis matching detecting device
JPH0511191A (en) Optical device for microscope
JPH0216492B2 (en)
JPH04199011A (en) Connecting position adjusting method for optical connector connecting device