JPS63301908A - Optical fiber aligning machine - Google Patents

Optical fiber aligning machine

Info

Publication number
JPS63301908A
JPS63301908A JP13869387A JP13869387A JPS63301908A JP S63301908 A JPS63301908 A JP S63301908A JP 13869387 A JP13869387 A JP 13869387A JP 13869387 A JP13869387 A JP 13869387A JP S63301908 A JPS63301908 A JP S63301908A
Authority
JP
Japan
Prior art keywords
optical fiber
tip
light emitting
emitting source
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13869387A
Other languages
Japanese (ja)
Other versions
JP2602653B2 (en
Inventor
Shinya Kobayashi
小林 伸矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP62138693A priority Critical patent/JP2602653B2/en
Publication of JPS63301908A publication Critical patent/JPS63301908A/en
Application granted granted Critical
Publication of JP2602653B2 publication Critical patent/JP2602653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To prevent a collision of an optical fiber and a light emission source by photographing a projected image which has been magnified by a microscope, by a video camera, and giving exact position information to a control computer, while looking at a display. CONSTITUTION:An image of an object to be observed, which has been magnified and projected by a microscope means 21 by which the top of an optical fiber 11 and a light emission source 14 such as laser diode are object to be observed, respectively is photographed by a video camera means 24, and its photographed image is displayed on a video indicator 27. By aligning a cross-hair cursor with the tip of the optical fiber 11 and the light emission source 14, respectively on the display surface video indicator 27, by operating an input means, position information of the tip of the optical fiber 11 and position information of the light emission source 14 are obtained. By both these position information, a control computer 19 moves automatically a position of the tip of the optical fiber 11 and a position of the light emission source 14, to a state determined in advance, and the tip of the optical fiber 11 and the light emission source 14 are aligned. In such a way, a collision of the optical fiber 11 and the light emission source 14 is not generated.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明はレーザダイオードなどの発光源からの光が、
光ファイバに最も効率よく入射されるように位置合せを
行う光ファイバ調芯機に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention is based on the invention in which light from a light emitting source such as a laser diode is
The present invention relates to an optical fiber centering machine that aligns the optical fiber so that it is most efficiently incident on the optical fiber.

「従来の技術」 パッケージにレーザダイオードが搭載され、そのパッケ
ージに光ファイバの一端が固定され、レーザダイオード
からの光を光ファイバに入射させて光ファイバを通じて
外部に導出されるようにされたものはレーザダイオード
モジュールと呼ばれている。このレーザダイオードモジ
ュールを製造する場合に、レーザダイオードからの光が
光ファイバに最も効率よく入射されるようにレーザダイ
オードと光ファイバとを光ファイバ調芯機で位置合わせ
している。
"Prior art" A laser diode is mounted in a package, one end of an optical fiber is fixed to the package, and the light from the laser diode is made to enter the optical fiber and is led out through the optical fiber. It is called a laser diode module. When manufacturing this laser diode module, the laser diode and the optical fiber are aligned using an optical fiber centering machine so that the light from the laser diode is most efficiently incident on the optical fiber.

従来の光ファイバ調芯機はレーザダイオードが搭載され
たパッケージ(レーザダイオードパッケージと呼ばれる
)と光ファイバとをそれぞれ微動台上に配し、作業者が
実体顕微鏡で光ファイバの先端位置と、レーザダイオー
ドとを目視し、あらかじめ決められた位置まで微動台を
手動で動じて両者の位置合せを行うものであった。
Conventional optical fiber alignment machines place a package equipped with a laser diode (called a laser diode package) and an optical fiber on fine movement tables, and an operator uses a stereo microscope to determine the position of the tip of the optical fiber and the position of the laser diode. The positioning of the two was performed by visually observing the two and manually moving the fine movement table to a predetermined position.

このように手動で位置合せを行うため、あらかじめ決め
られた位置にセットする際に、光ファイバとレーザダイ
オードとを衝突させてこれらを破壊してしまう問題があ
った。
Since the alignment is performed manually in this manner, there is a problem in that the optical fiber and the laser diode collide and are destroyed when they are set at a predetermined position.

「問題点を解決するための手段」 この発明によれば光ファイバの先端及びレーザダイオー
ドのような発光源をそれぞれ被観察物体とする顕微鏡手
段が設けられ、その顕微鏡手段により拡大投影された被
観察物体の像がビデオカメラ手段により撮影され、その
撮影された像はビデオ表示器に表示される。光ファイバ
は第1微動台により移動自在とされ、発光源は第2微動
台により移動自在とされ、顕微鏡手段は第3微動台によ
り光ファイバ及び発光源の配列方向に移動自在とされる
。これら微動台の制御は制御コンピュータにより行われ
、その制御コンピュータはビデオ表示器に表示されたク
ロスヘアカーソルと顕微鏡手段とを連動とし、また入力
手段の操作に応じて顕微鏡手段を移動させる手段を備え
、更に顕微鏡手段を光ファイバの先端及び発光源に対し
てそれぞれ位置決めすることにより光ファイバ先端位置
情報及び発光源の位置情報を得、これら得られた両位置
情報にもとづき所定の演算を行い、その演算結果に応し
て光ファイバの先端位置と発光源の位置とを予め決めら
れた状態に自動的に相対的に移動させる手段を含むもの
である。
"Means for Solving the Problem" According to the present invention, a microscope means is provided in which the tip of an optical fiber and a light emitting source such as a laser diode are objects to be observed, and the object to be observed is enlarged and projected by the microscope means. An image of the object is captured by video camera means and the captured image is displayed on a video display. The optical fiber is movable by the first fine movement table, the light emitting source is movable by the second fine movement table, and the microscope means is movable by the third fine movement table in the direction in which the optical fibers and the light emitting sources are arranged. Control of these fine movement tables is performed by a control computer, which controls a crosshair cursor displayed on a video display and a microscope means, and also includes a means for moving the microscope means in accordance with the operation of the input means, Further, by positioning the microscope means with respect to the tip of the optical fiber and the light emitting source, the optical fiber tip position information and the light emitting source position information are obtained, and predetermined calculations are performed based on both of the obtained position information. It includes means for automatically and relatively moving the tip position of the optical fiber and the position of the light emitting source to predetermined states in accordance with the result.

このように構成されているから、入力手段を操作して、
ビデオ表示器の表示面上でクロスヘアカーソルを光ファ
イバ先端及び発光源にそれぞれ位置合せすることにより
、光ファイバ先端位置情報及び発光源の位置情報が得ら
れ、これら両位置情報により制御コンピュータは光ファ
イバの先端位置と発光源位置とを予め決められた状態に
自動的に行なって、光ファイバの先端と発光源との位置
合せが行われる。このように入力手段を手動操作してク
ロスヘアカーソルを光ファイバの先端及び発光源にそれ
ぞれ位置合せすると、制御コンピュータに光ファイバ先
端の位置情報と発光源の位置情報とが得られ、これら位
置情報を用いて制御コンピュータが光ファイバの先端と
発光源との相対的位置を制御するため、光ファイバと発
光源とを衝突させるようなことは生じない。
Since it is configured like this, by operating the input means,
By aligning the crosshair cursor with the optical fiber tip and the light emitting source on the display surface of the video display, the optical fiber tip position information and the light source position information can be obtained, and the control computer uses these two position information to The tip of the optical fiber and the light source are aligned by automatically adjusting the tip position of the optical fiber and the light source to predetermined positions. When the crosshair cursor is aligned with the tip of the optical fiber and the light emitting source by manually operating the input means in this way, the positional information of the tip of the optical fiber and the positional information of the light emitting source are obtained in the control computer. Since the control computer controls the relative position between the tip of the optical fiber and the light source, there is no possibility of collision between the optical fiber and the light source.

「実施例J 光ファイバ11は治具12により第1微動台13に支持
され、レーザダイオードのような発光源14は容器(パ
ッケージ)15に収められ、その容器15は第2微動台
16に保持されている。制御線17.18をそれぞれ通
じて制御コンピュータ19が第1.第2微動台13.1
6を制御して光ファイバ11、発光源14をそれぞれ、
光ファイバの軸方向(Z軸と呼ぶ)と、Z軸に垂直で水
平面内にある方向(X軸と呼ぶ)と鉛直方向(Y軸と呼
ぶ)との3軸方向に動かすことができ、更に光ファイバ
11をZ軸まわりに回動させることができる。
Embodiment J The optical fiber 11 is supported by a first fine movement table 13 by a jig 12, a light emitting source 14 such as a laser diode is housed in a container (package) 15, and the container 15 is held in a second fine movement table 16. The control computer 19 controls the first and second fine movement tables 13.1 through control lines 17.18, respectively.
6 to control the optical fiber 11 and the light emitting source 14, respectively.
It can be moved in three axes: the axial direction of the optical fiber (called the Z-axis), the direction perpendicular to the Z-axis and in the horizontal plane (called the X-axis), and the vertical direction (called the Y-axis). The optical fiber 11 can be rotated around the Z axis.

なお、発光源14はケーブル20を介して駆動電力が制
御コンピュータ19から供給されて発光する。
Note that the light emitting source 14 emits light by being supplied with driving power from the control computer 19 via the cable 20.

光ファイバ11の先端近辺及び発光源14近辺をそれぞ
れ被観察物体とする顕微鏡手段21が設けられる。この
例で光ファイバ用に顕微鏡21aが、発光源用に顕微鏡
21bがそれぞれ設けられた場合であるが、1つの顕微
鏡を用いてもよい。
A microscope means 21 is provided which uses the vicinity of the tip of the optical fiber 11 and the vicinity of the light emitting source 14 as objects to be observed. In this example, the microscope 21a is provided for the optical fiber, and the microscope 21b is provided for the light source, but one microscope may be used.

顕微鏡21a、21bは第3微動台22に保持され、制
御コンピュータ19は制御線23を通じて第3微動台2
2を制御して顕微鏡21a、21bをそれぞれ、光ファ
イバ11、発光源14の配列方向、つまりZ軸に沿って
移動させることができる。
The microscopes 21a and 21b are held on a third fine movement table 22, and the control computer 19 is connected to the third fine movement table 2 through a control line 23.
2, the microscopes 21a and 21b can be moved in the direction in which the optical fibers 11 and the light emitting sources 14 are arranged, that is, along the Z axis.

顕微鏡手段21で拡大投影された被観察物体の像はビデ
オカメラ手段24で撮影される。この例ではDi鏡21
a、21bと対してビデオカメラ24a、24bがセン
トされている。制御コンピュータ19からのカーソル信
号が導線25を介してビデオカメラ24a、24bの各
ビデオ出力に供給合成される。ビデオカメラ24a、2
4bの各ビデオ出力はビデオ信号切替器26で切替えら
れてビデオ表示器27へ供給される。ビデオ信号切換器
26の切替えは制御コンピュータ19により行われる。
The image of the object to be observed enlarged and projected by the microscope means 21 is photographed by the video camera means 24. In this example, Di mirror 21
Video cameras 24a and 24b are sent to cameras 24a and 21b. A cursor signal from control computer 19 is fed and combined via conductor 25 to each video output of video cameras 24a, 24b. Video camera 24a, 2
Each video output of 4b is switched by a video signal switch 26 and supplied to a video display 27. Switching of the video signal switch 26 is performed by the control computer 19.

ビデオ表示器27には光ファイバ11の先端近辺又は発
光源14の近辺とクロスヘアカーソルとが表示される。
The video display 27 displays the vicinity of the tip of the optical fiber 11 or the vicinity of the light emitting source 14 and a crosshair cursor.

クロスヘアカーソルの移動と顕微鏡21a、21bの移
動とが連動するように制御コンピュータ19は第3微動
台22を制御する。
The control computer 19 controls the third fine movement table 22 so that the movement of the crosshair cursor and the movement of the microscopes 21a and 21b are linked.

顕微鏡218.21bの位置を初期化して所定の位置に
移動させ、またこれと対応してクロスヘアカーソルも表
示面上で所定の位置(例えば原点)に位置させる。この
状態から入力手段としてのキーボード28を操作し、ビ
デオ表示器27の表示面上でクロスヘアカーソルを光フ
ァイバ11の先端と一致させることにより、光ファイバ
11の先端の位置情報PIが制御コンピュータ19に得
られる。同様にクロスヘアカーソルを発光源14の右端
に一致させることにより、発光源14の位置情報P2が
得られる。
The position of the microscope 218.21b is initialized and moved to a predetermined position, and correspondingly, the crosshair cursor is also positioned at a predetermined position (for example, the origin) on the display surface. From this state, by operating the keyboard 28 as an input means and aligning the crosshair cursor with the tip of the optical fiber 11 on the display surface of the video display 27, the positional information PI of the tip of the optical fiber 11 is sent to the control computer 19. can get. Similarly, by aligning the crosshair cursor with the right end of the light source 14, position information P2 of the light source 14 can be obtained.

これら位置情apt、pmが得られると、制御コンピュ
ータ19はP+   Pt−αなる演算を行う。αは光
ファイバ11の先端と発光源14の右端とがとるべき間
隔を示す。この演算結果だけ光ファイバ11の先端と発
光源14とを相対的に移動させるように制御コンピュー
タ19は第1微動台13又は第2微動台16或はその両
者を制御する。なお入力手段としてのキーボード28を
操作して第1.第2微動台13.16をそれぞれ制御し
て光ファイバ11の先端及び発光源14をX軸方向、X
軸方向、Y軸方向にそれぞれ移動させることができ、ま
た光ファイバ11をZ軸まわりに回動させることができ
る。
When these positional information apt and pm are obtained, the control computer 19 performs the calculation P+Pt-α. α indicates the distance between the tip of the optical fiber 11 and the right end of the light emitting source 14. The control computer 19 controls the first fine movement table 13, the second fine movement table 16, or both so that the tip of the optical fiber 11 and the light emitting source 14 are relatively moved by the result of this calculation. Note that by operating the keyboard 28 as an input means, the first. The second fine movement table 13 and 16 are respectively controlled to move the tip of the optical fiber 11 and the light emitting source 14 in the X-axis direction and
The optical fiber 11 can be moved in the axial direction and the Y-axis direction, and the optical fiber 11 can be rotated around the Z-axis.

光ファイバ11の他端は光パワーメータ29に接続され
、パワーメータ29の測定出力は導線31を通して制御
コンピュータ19に入力される。制御コンピュータ19
はパワーメータ29の測定出力が最大となるように第1
.第2微動台13.16又はその一方のみを制御する。
The other end of the optical fiber 11 is connected to an optical power meter 29, and the measured output of the power meter 29 is input to the control computer 19 through a conductor 31. control computer 19
is the first one so that the measured output of the power meter 29 is maximized.
.. Control the second fine movement table 13, 16 or only one of them.

制御コンピュータ19に表示器31が接続され、操作者
に対する指示や現在位置、自動実行する時の状態などが
表示される。上述した各種の動作をするようなプログラ
ムが制御コンピュータ19に内蔵されている。
A display 31 is connected to the control computer 19, and displays instructions to the operator, the current position, the state at the time of automatic execution, etc. The control computer 19 has built-in programs that perform the various operations described above.

光ファイバ11の先端と発光源14との位置合せが終了
した後に、光ファイバ11のパイプを金具に溶接し、そ
の金具を容器15に溶接するが、その溶接用のYAGレ
ーザヘッドが図に示してないが顕微鏡21aに固定され
ている。また光ファイバ11の取付けや発光源14の取
付は時に、顕微鏡21a、21bをこれが邪魔にならな
いように退避させることができる。顕微鏡21a、21
bはその倍率を変えることができるものである。
After the end of the optical fiber 11 and the light emitting source 14 are aligned, the pipe of the optical fiber 11 is welded to a metal fitting, and the metal fitting is welded to the container 15. The YAG laser head for welding is shown in the figure. Although not shown, it is fixed to the microscope 21a. Further, when attaching the optical fiber 11 or the light emitting source 14, the microscopes 21a and 21b can be evacuated so that they do not get in the way. Microscopes 21a, 21
b is one whose magnification can be changed.

次に上述したこの発明の光ファイバ調芯機を用いて調芯
作業を行う手順の例を説明する。
Next, an example of a procedure for performing alignment work using the above-described optical fiber alignment machine of the present invention will be explained.

a0機械計等を初期化する。Initialize the a0 mechanical meter, etc.

b9表示器31に“LDパッケージを取付けて下さい”
と表示する。LDはレーザダイオードを示す。
“Please install LD package” on b9 display 31
is displayed. LD indicates a laser diode.

C9表示器31に“光ファイバを取付けて下さい”と表
示する。
``Please attach optical fiber'' is displayed on the C9 display 31.

d、顕微鏡21aを光ファイバの先端付近へ制御コンピ
ュータ19により自動的に移動させる。光ファイバ11
の保持は治具により数m11以下の精度でセットされ、
その位置は予め決まっている。
d. The microscope 21a is automatically moved near the tip of the optical fiber by the control computer 19. optical fiber 11
is held with a jig with an accuracy of several m11 or less,
Its position is predetermined.

C1表示器31に“キーボードを用いてビデオ表示器上
のクロスカーソルを光ファイバの先端に合せて下さい”
と表示する。この時X軸方向は第3微動台22を、X軸
及びY軸方向は微動台13を用いて制御する。
“Please use the keyboard to align the cross cursor on the video display with the tip of the optical fiber” on the C1 display 31.
is displayed. At this time, the X-axis direction is controlled using the third fine movement table 22, and the X-axis and Y-axis directions are controlled using the fine movement table 13.

f、この表示にもとづき、手動操作によりクロスヘアカ
ーソルを光フィバの先端に合せた後に、顕微鏡21aの
位置PIを制御コンピュータ19に読込む。
f. Based on this display, after manually aligning the crosshair cursor with the tip of the optical fiber, the position PI of the microscope 21a is read into the control computer 19.

g、顕微鏡21bをLDパッケージ中のLDチップ周辺
に制御コンピュータ19により自動的に移動させる。L
 Dパッケージ及びLDチップの相対位置は数■l以下
の精度である。
g. The microscope 21b is automatically moved around the LD chip in the LD package by the control computer 19. L
The relative position of the D package and the LD chip has an accuracy of several liters or less.

h8表示器31に“キーボードを用いてクロスカーソル
をL Dチップの右端に合せて下さい”と表示する。こ
の時Z軸方向は第3微動台22を、X軸及びY軸方向は
微動台16を用いて制御する。
The h8 display 31 displays "Use the keyboard to align the cross cursor with the right end of the LD chip." At this time, the Z-axis direction is controlled using the third fine movement table 22, and the X-axis and Y-axis directions are controlled using the fine movement table 16.

i、この表示にもとづき、手動操作によりクロスヘアカ
ーソルをLDチップ14の右端に合せた後、顕微鏡21
bの位置P2を制御コンピュータ19に読込む。
i. Based on this display, after manually aligning the crosshair cursor with the right end of the LD chip 14, move the microscope 21
The position P2 of b is read into the control computer 19.

j、第2徽動台】6を(PI  P2−α)1璽だけ光
ファイバ11方向へ動かす。
j. Move the second moving table] 6 by one angle (PI P2-α) in the direction of the optical fiber 11.

k、LDチップ14を発光させ、光ファイバ11に最大
の光が入射するように第2微動台16を自動的に3次元
制御する。
k. The LD chip 14 is caused to emit light, and the second fine movement stage 16 is automatically three-dimensionally controlled so that maximum light is incident on the optical fiber 11.

1、LDパッケージ15と光ファイバとを互に固定する
1. Fix the LD package 15 and the optical fiber to each other.

「発明の効果」 以上述べたようにこの発明によれば、顕微鏡で拡大した
投影像をビデオカメラで撮影し、そのビデオカメラの出
力をビデオ表示器に表示して、その表示を見ながら光フ
ァイバ先端、発光源に対しクロスヘアカーソルを合せる
ため、ビデオ表示器の表示面を大きくすることにより、
そのカーソル合せを容易に高精度で行うことができる。
"Effects of the Invention" As described above, according to the present invention, a projected image magnified by a microscope is photographed with a video camera, the output of the video camera is displayed on a video display, and while viewing the display, an optical fiber is By enlarging the display surface of the video display in order to align the crosshair cursor with the tip and light source,
The cursor alignment can be easily performed with high precision.

その後はその正確な位置情報PI、PKが制御コンピュ
ータ19に得られており、その情報にもとづいて、光フ
ァイバの先端と発光源との位置合せを制御コンピュータ
が行うため光ファイバと発光源とを衝突させるおそれは
ない。また顕微鏡を直接見ながら微動台を制御するとい
う作業から解放され、しかも単時間で比較的容易な光フ
ァイバの先端と発光源との位置合せを行うことができる
After that, the accurate position information PI and PK is obtained by the control computer 19, and based on that information, the control computer aligns the tip of the optical fiber and the light source, so the optical fiber and the light source are aligned. There is no risk of collision. Furthermore, the user is freed from the task of controlling the fine movement stage while looking directly at the microscope, and moreover, the tip of the optical fiber and the light emitting source can be relatively easily aligned in a short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による光ファイバ調芯機の一例を示す
ブロック図である。
FIG. 1 is a block diagram showing an example of an optical fiber centering machine according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)発光源からの光が、光ファイバに効率よく入射す
るようにこれら発光源と光ファイバとを相対的に移動さ
せる光ファイバ調芯機において、上記光ファイバの先端
近辺及び上記発光源の近辺をそれぞれ被観察物体とする
顕微鏡手段と、その顕微鏡手段に拡大投影された被観察
物体の像を撮影するビデオカメラ手段と、 そのビデオカメラ手段で撮影された像を表示するビデオ
表示器と、 上記光ファイバを移動自在とする第1微動台と、上記発
光源を移動自在とする第2微動台と、上記顕微鏡手段を
上記光ファイバ及び上記発光源の配列方向に移動自在と
する第3微動台と、上記ビデオ表示器に表示されたクロ
スヘアカーソルと上記顕微鏡手段とを連動させる手段と
、入力手段の操作に応じて上記顕微鏡手段を移動させる
手動移動手段と、上記顕微鏡手段を上記光ファイバの先
端及び上記発光源に対しそれぞれ位置決めすることによ
り光ファイバの先端位置情報及び発光源の位置情報を得
る手段と、これら得られた両位置情報にもとづき所定の
演算をする演算手段と、その演算結果に応じて光ファイ
バの先端位置と上記発光源の位置を予め決められた状態
に自動的に相対的に移動させる自動移動手段とを含む制
御コンピュータとを具備する光ファイバ調芯機。
(1) In an optical fiber centering machine that relatively moves the light emitting source and the optical fiber so that the light from the light emitting source enters the optical fiber efficiently, the area near the tip of the optical fiber and the light emitting source A microscope means whose vicinity is an object to be observed, a video camera means which takes an image of the object to be observed enlarged and projected onto the microscope means, and a video display device which displays the image taken by the video camera means; A first fine movement table that allows the optical fiber to move freely, a second fine movement table that allows the light emitting source to move freely, and a third fine movement table that allows the microscope means to move freely in the arrangement direction of the optical fiber and the light source. a stage, means for interlocking the crosshair cursor displayed on the video display with the microscope means, manual moving means for moving the microscope means in accordance with the operation of the input means, and a manual moving means for moving the microscope means in response to the operation of the input means; Means for obtaining positional information on the tip of the optical fiber and positional information on the light emitting source by positioning the tip and the light emitting source, respectively, calculating means for performing a predetermined calculation based on both of the obtained positional information, and the calculation result. 1. An optical fiber centering machine comprising: a control computer including automatic moving means for automatically relatively moving the tip position of the optical fiber and the position of the light emitting source to a predetermined state in accordance with the above.
JP62138693A 1987-06-01 1987-06-01 Optical fiber alignment machine Expired - Fee Related JP2602653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138693A JP2602653B2 (en) 1987-06-01 1987-06-01 Optical fiber alignment machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138693A JP2602653B2 (en) 1987-06-01 1987-06-01 Optical fiber alignment machine

Publications (2)

Publication Number Publication Date
JPS63301908A true JPS63301908A (en) 1988-12-08
JP2602653B2 JP2602653B2 (en) 1997-04-23

Family

ID=15227909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138693A Expired - Fee Related JP2602653B2 (en) 1987-06-01 1987-06-01 Optical fiber alignment machine

Country Status (1)

Country Link
JP (1) JP2602653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257982A (en) * 2004-03-11 2005-09-22 Topcon Corp Alignment method for minute alignment member and apparatus therefor
WO2014030564A1 (en) * 2012-08-23 2014-02-27 株式会社村田製作所 Method of manufacturing receptacle
CN112684559A (en) * 2021-01-21 2021-04-20 李晓强 Optical cable is observed and is used lens machine with fixed knot constructs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156811A (en) * 1980-05-09 1981-12-03 Fujitsu Ltd Coupling device
JPS59168409A (en) * 1983-03-16 1984-09-22 Hitachi Ltd Aligning method of optical axis
JPS6095506A (en) * 1983-10-31 1985-05-28 Nippon Telegr & Teleph Corp <Ntt> Aligning device for optical fiber axis
JPS6139006A (en) * 1984-07-31 1986-02-25 Sumitomo Electric Ind Ltd Method and apparatus for exciting optical fiber
JPS61151506A (en) * 1984-12-26 1986-07-10 Hitachi Ltd Optical axis aligning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156811A (en) * 1980-05-09 1981-12-03 Fujitsu Ltd Coupling device
JPS59168409A (en) * 1983-03-16 1984-09-22 Hitachi Ltd Aligning method of optical axis
JPS6095506A (en) * 1983-10-31 1985-05-28 Nippon Telegr & Teleph Corp <Ntt> Aligning device for optical fiber axis
JPS6139006A (en) * 1984-07-31 1986-02-25 Sumitomo Electric Ind Ltd Method and apparatus for exciting optical fiber
JPS61151506A (en) * 1984-12-26 1986-07-10 Hitachi Ltd Optical axis aligning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257982A (en) * 2004-03-11 2005-09-22 Topcon Corp Alignment method for minute alignment member and apparatus therefor
WO2014030564A1 (en) * 2012-08-23 2014-02-27 株式会社村田製作所 Method of manufacturing receptacle
CN112684559A (en) * 2021-01-21 2021-04-20 李晓强 Optical cable is observed and is used lens machine with fixed knot constructs
CN112684559B (en) * 2021-01-21 2022-11-29 安徽龙联智能光电有限公司 Optical cable is observed and is used lens machine with fixed knot constructs

Also Published As

Publication number Publication date
JP2602653B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
JPH01118106A (en) Method for centering and fixing optical fiber
EP3534199B1 (en) Mirror image microscopic imaging device, and microneedle attitude calibration system and method
CN106941065B (en) Sample position alignment method and charged particle beam device
JP3315358B2 (en) Lighting equipment for image processing and measuring machines
US5484982A (en) Beam axis adjusting method for a laser robot
US20020003997A1 (en) Manipulator/end effector head for robotic assembly
JP2602653B2 (en) Optical fiber alignment machine
SE524066C2 (en) Device for centering the laser beam in a laser processing system
Witham et al. Fiber-optic pigtail assembly and attachment alignment shift using a low-cost robotic platform
JP3476441B2 (en) Laser processing nozzle
JP3303418B2 (en) Optical coupling method and device for semiconductor laser and optical fiber
JPS6389254A (en) Observer for alignment
JP2817092B2 (en) Laser processing equipment
JP3010769B2 (en) Method and apparatus for assembling optical element module
JP2950874B2 (en) Laser diode module manufacturing equipment
JP2822314B2 (en) Laser processing equipment
CN221465786U (en) Optical fiber processing platform
JPH0219810A (en) Device for assembling parts of optical circuit
CN217930168U (en) Combined type imager
JP3203508B2 (en) Laser processing equipment
JP3555120B2 (en) Optical axis alignment detection device
JPH03106586A (en) Alignment device for articulated laser robot and its aligning method
JPS58161842A (en) Apparatus for measuring lens performance
KR840001176B1 (en) Electro mechanical display apparatus
JP2002307182A (en) Laser beam machining head of three-dimensional carbonic acid gas laser beam machining device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees