JPS6215843B2 - - Google Patents

Info

Publication number
JPS6215843B2
JPS6215843B2 JP3446583A JP3446583A JPS6215843B2 JP S6215843 B2 JPS6215843 B2 JP S6215843B2 JP 3446583 A JP3446583 A JP 3446583A JP 3446583 A JP3446583 A JP 3446583A JP S6215843 B2 JPS6215843 B2 JP S6215843B2
Authority
JP
Japan
Prior art keywords
optical fiber
optical fibers
core
end faces
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3446583A
Other languages
Japanese (ja)
Other versions
JPS59160113A (en
Inventor
Toshiaki Katagiri
Masao Tachikura
Masataka Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3446583A priority Critical patent/JPS59160113A/en
Publication of JPS59160113A publication Critical patent/JPS59160113A/en
Publication of JPS6215843B2 publication Critical patent/JPS6215843B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 本発明は撮像装置を用いて光フアイバを効率よ
く、低損失に接続する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently connecting optical fibers with low loss using an imaging device.

光フアイバの融着接続を行う場合には、光フア
イバのコアを軸合せし、光フアイバの端面間隔を
設定して、光フアイバ材料の軟化点温度で光フア
イバ端面を加熱しながら、光フアイバ同志を押し
付ける操作が必要である。従来のこの種の光フア
イバのコア軸合せ方法には、次のようなものがあ
る。
When performing fusion splicing of optical fibers, align the cores of the optical fibers, set the distance between the end faces of the optical fibers, and heat the end faces of the optical fibers at the softening point temperature of the optical fiber material. It is necessary to press the Conventional core alignment methods for this type of optical fiber include the following.

(1) 第1図はパワーモニタ法と呼ばれる光フアイ
バコアの軸合せ方法である。この方法は被接続
光フアイバ1,1′に光源2および受光器3を
配し、接続点の透過パワーが最大になるように
被接続光フアイバ1,1′のコアをx,y方向
に軸合せする方法である。しかし、この方法は
接続するための作業箇所が光源、接続点、受光
点の3箇所に分散するので、人員や機材が多
く、作業能率が悪い欠点があつた。
(1) Figure 1 shows an optical fiber core alignment method called the power monitor method. In this method, a light source 2 and a receiver 3 are arranged on the optical fibers 1 and 1' to be connected, and the cores of the optical fibers 1 and 1' are aligned in the x and y directions so that the transmitted power at the connection point is maximized. This is a method of matching. However, this method requires a large number of personnel and equipment, and has the drawback of poor work efficiency, since the work points for connection are distributed over three locations: the light source, the connection point, and the light receiving point.

(2) 文献、昭和57年度電子通信学会総合全国大会
934「単一モード光フアイバのコア軸合せ方
法」P.4―131に見られるよに、Geドープ光フ
アイバの紫外線励起による螢光現象を利用した
方法がある。しかしこの方法は、紫外領域のレ
ーザ光源を要するため装置が大形化する欠点が
あつた。
(2) Literature, 1985 National Conference of the Institute of Electronics and Communication Engineers
934 "Method for aligning the core axis of a single mode optical fiber", page 4-131, there is a method that utilizes the fluorescence phenomenon caused by ultraviolet excitation of a Ge-doped optical fiber. However, this method requires a laser light source in the ultraviolet region, which has the disadvantage of increasing the size of the apparatus.

(3) 文献、電子通信学会論文誌’82/5Vol.J65―
B,No.5 P.662「シングルモード光フアイバ
のモニター無し接続方法」などに見られるよう
に、光フアイバをそのクラツドと同じ屈折率の
液体で浸し、位相差顕微鏡でコアを検出しコア
を軸合せする方法がある。しかしこの方法は、
空気中でコアを検出できないことなどに欠点が
あつた。
(3) Literature, Journal of the Institute of Electronics and Communication Engineers '82/5Vol.J65-
B, No. 5, P. 662 ``Single-mode optical fiber connection method without a monitor'', the optical fiber is immersed in a liquid with the same refractive index as its cladding, and the core is detected using a phase contrast microscope. There is a way to align the axes. However, this method
The drawback was that the core could not be detected in the air.

(4) 微分干渉顕微鏡を使用して空気中で光フアイ
バのコアを検出し、コアを軸合せする方法があ
る。しかしこの方法は微分干渉顕微鏡という特
別な装置を必要とすることや、顕微鏡本体の大
きさにより光フアイバ軸合せ微動機構の設計が
制限される欠点がある。
(4) There is a method of detecting the core of an optical fiber in air using a differential interference microscope and aligning the core. However, this method has the disadvantage that it requires a special device called a differential interference microscope, and that the design of the fine movement mechanism for aligning the optical fiber is limited by the size of the microscope body.

ところで、被接続光フアイバの端面間隔は、作
業者が顕微鏡内に設けたマーカによつて光フアイ
バ端面間隔を目視観察しながら手作業で行う方法
か、または対向した被接続光フアイバの端面をい
つたん接触させた位置からマイクロメータなどの
ような微動機構で一定距離だけ引き離すことによ
り、作業者が目視観察しながら手作業で行う方法
がある。しかしこの方法は、手作業で行うので、
作業能率が悪く、熟練度により作業品質が悪化す
る欠点がある。
By the way, the distance between the end faces of optical fibers to be connected can be determined manually by an operator while visually observing the distance between the end faces of optical fibers using a marker installed in a microscope, or by determining when the end faces of opposite optical fibers to be connected are connected. There is a method in which the operator manually performs visual observation by separating the contact point by a certain distance using a fine movement mechanism such as a micrometer. However, this method is done manually, so
The disadvantage is that work efficiency is poor, and work quality deteriorates depending on skill level.

また第2図に示すように、被接続光フアイバ1
を一定の厚みをもつ突当て板4に突き当てること
により、端面間隔を設定する方法がある。しかし
この方法は、突当て板4を動かす特別な機構を必
要とすることや、突当て板4の両面に付着したほ
こりなどが被接続光フアイバ1,1′の接続端面
に付着し、接続損失が大きくなるなどの欠点があ
つた。
In addition, as shown in FIG. 2, the connected optical fiber 1
There is a method of setting the distance between the end faces by abutting the end face against an abutting plate 4 having a certain thickness. However, this method requires a special mechanism to move the abutment plate 4, and dust attached to both sides of the abutment plate 4 may adhere to the connection end surfaces of the optical fibers 1 and 1' to be connected, resulting in connection loss. There were disadvantages such as increased size.

また端面間の距離は、被接続光フアイバの押込
み量などから一定値に設定しているが、端面の粗
さや融着加熱温度によつて端面間の距離が変化す
るので、実質的な押込み量が変化し、接続の失敗
や接続品質の低下などの欠点があつた。
In addition, the distance between the end faces is set to a constant value based on the amount of push-in of the optical fiber to be connected, etc., but the distance between the end faces changes depending on the roughness of the end face and the fusion heating temperature, so the actual push-in amount has changed, resulting in drawbacks such as connection failures and poor connection quality.

一方、被接続光フアイバ端面の加熱温度は、光
フアイバ材料の軟化点温度、端面間隔、接続損失
の小さくなる温度などから一定値に設定している
が、気体放電の場合には、融着接続時の溶融フア
イバが放電電極に飛散し、加熱温度が変化するの
で、加熱装置の設定変更が何回か必要になる欠点
があつた。
On the other hand, the heating temperature of the end face of the optical fiber to be spliced is set to a constant value based on the softening point temperature of the optical fiber material, the end face spacing, the temperature that reduces splicing loss, etc. In the case of gas discharge, fusion splicing The disadvantage was that the heating device settings had to be changed several times because the molten fibers were scattered onto the discharge electrode and the heating temperature changed.

本発明はこれらの欠点を除去するため、気体放
電装置により融着加熱中、被接続光フアイバが発
光する像と光強度を撮像装置で検出し、コアの軸
合せ、押込み量の調節および光フアイバ接続部の
融着加熱温度の調節のうち、一つまたは複数の調
節を行いながら、光フアイバを融着接続するもの
で、その目的は接続損失の低減、接続失敗の低
減、接続能率の向上にある。以下図面により本発
明を詳細に説明する。
In order to eliminate these drawbacks, the present invention uses an imaging device to detect the image and light intensity emitted by the optical fiber to be connected during fusion heating using a gas discharge device, and to adjust the axis of the core, adjust the pushing amount, and adjust the optical fiber. Optical fibers are fusion spliced while adjusting one or more of the fusion heating temperature adjustments at the splicing part.The purpose is to reduce splice loss, reduce splice failures, and improve splicing efficiency. be. The present invention will be explained in detail below with reference to the drawings.

第3図は本発明の一実施例図であつて、1,
1′は被接続光フアイバ、5,5′は電動モータ、
6,6′は微動機構、7,7′は光フアイバ固定
台、8は気体放電回路、9,9′は放電電極、1
0は加熱放電部、11はフイルタ、12は対物レ
ンズ系、13はイメージセンサ、14はイメージ
センサ駆動装置、15は画像処理装置、16は制
御装置、17,17′は電動モータ駆動部であ
る。
FIG. 3 is a diagram showing one embodiment of the present invention, and shows 1,
1' is the optical fiber to be connected, 5 and 5' are the electric motors,
6, 6' are fine movement mechanisms, 7, 7' are optical fiber fixing bases, 8 is a gas discharge circuit, 9, 9' are discharge electrodes, 1
0 is a heating discharge unit, 11 is a filter, 12 is an objective lens system, 13 is an image sensor, 14 is an image sensor drive device, 15 is an image processing device, 16 is a control device, and 17 and 17' are electric motor drive units. .

これを動作するには、電動モータ5,5′で駆
動される微動機構6,6′によりx,y,z方向
に移動する光フアイバ固定台7,7′上に被覆除
去と切断の完了した被接続光フアイバ1,1′を
対向させて固定する。光フアイバ微動機構系5,
5′,6,6′,7,7′により被接続光フアイバ
1,1′をz方向に送り、被接続光フアイバ1の
接続部が、気体放電回路8で駆動される放電電極
9,9間に発生する加熱放電部10に達すると、
被接続光フアイバ1,1′のクラツド部とコア部
は熱により軟化すると同時に、Geドーパントを
含むコアが、気体放電中に発生する紫外光を吸収
して、可視波長域において第6図aに示すよう
に、相異なる位置に螢光20,20′を発生す
る。このとき、フイルタ11を介して、対物レン
ズ系12とイメージセンサ13とイメージセンサ
駆動装置14および画像処理装置15とから成る
撮像装置によつて、直交するx,y方向から被接
続光フアイバ1,1′のコアのx方向の位置は、
第6図aに示す光強度分布を、フイルタ11を介
して前記撮像装置で、y方向から観測することに
よつて検出できる。一方、x方向と直交するy方
向のコア位置も、第6図aと同様にして、前記撮
像装置でx方向から観測することによつて検出で
きる。さらに、対向した被接続光フアイバ1,
1′の端面間の距離は、第7図bに示すz方向の
光強度分布から、距離dとして、前記撮像装置に
よつて検出できる。さらにまた、被接続光フアイ
バ1,1′の接続部の加熱温度は、第7図bに示
すz方向の光強度分布から、光強度Pとして、前
記撮像装置によつて検出できる。以上のようにし
て、被接続光フアイバについて直交する2方向に
関するコア位置、端面間の距離、さらに加熱温度
を検出できる。この撮像装置を側面から見た図を
第4図に示す。この撮像装置からの信号により制
御装置16で電動モータ駆動部17,17′を制
御し、電動モータ5,5′、微動機構6,6′、光
フアイバ固定台7,7′を介して、直角2方向の
撮像系で被接続光フアイバ1,1′のx,y方向
の位置を、撮像装置から得られる第6図に示す螢
光20,20′の位置が一致するように調節する
ことにより、被接続光フアイバ1,1′のコアの
軸合せを行う。また残されたz方向の移動量、す
なわち被接続光フアイバ1,1′の押込み量を、
撮像装置から得られる第7図bに示す端面間の距
離dに基づいて撮像装置から得られる第7図に示
す加熱部10内にあるフアイバ1,1′の発光強
度Pが、所定の加熱温度に対応した光強度による
ように、気体放電回路8の電流を調節することに
より、加熱温度を一定に保つことができる。この
ため、被接続光フアイバ1の照明については、照
明装置は不要であり、また加熱温度が一定、すな
わち光フアイバの発光する光強度が一定であるの
で、光源の明るさを調節する必要もない。さらに
融着接続中、溶融フアイバが飛散し、気体放電電
極9,9′に付着しても直接、光の強度を検出し
ているので、加熱温度を一定に調節することがで
きる。なお気体放電自体から発光する光は、光フ
アイバを加熱して発生する光より光強度が小さい
ので、問題にする必要はない。
To operate this, the coated and cut fibers are placed on optical fiber fixing tables 7, 7' that are moved in the x, y, and z directions by fine movement mechanisms 6, 6' driven by electric motors 5, 5'. The optical fibers 1 and 1' to be connected are fixed facing each other. Optical fiber fine movement mechanism system 5,
5', 6, 6', 7, 7' send the optical fibers 1, 1' to be connected in the z direction, and the connecting portion of the optical fiber 1 to be connected is connected to the discharge electrodes 9, 9 driven by the gas discharge circuit 8. When reaching the heating discharge section 10 that occurs between
The cladding and core portions of the optical fibers 1 and 1' to be connected are softened by heat, and at the same time, the core containing Ge dopant absorbs the ultraviolet light generated during the gas discharge, causing the optical fibers in the visible wavelength range to appear as shown in Fig. 6a. As shown, fluorescent lights 20 and 20' are generated at different positions. At this time, the connected optical fiber 1, The position of the core of 1' in the x direction is
The light intensity distribution shown in FIG. 6a can be detected by observing it from the y direction with the imaging device through the filter 11. On the other hand, the core position in the y-direction orthogonal to the x-direction can also be detected by observing from the x-direction with the imaging device in the same manner as in FIG. 6a. Further, the opposed connected optical fibers 1,
The distance between the end faces 1' can be detected by the imaging device as a distance d from the light intensity distribution in the z direction shown in FIG. 7b. Furthermore, the heating temperature of the connecting portion of the optical fibers 1, 1' to be connected can be detected by the imaging device as the light intensity P from the light intensity distribution in the z direction shown in FIG. 7b. In the manner described above, the core position, the distance between the end faces, and the heating temperature of the optical fiber to be connected in two orthogonal directions can be detected. FIG. 4 shows a side view of this imaging device. The control device 16 controls the electric motor drive units 17, 17' based on the signal from this imaging device, and the right angle By adjusting the positions of the connected optical fibers 1 and 1' in the x and y directions in the two-direction imaging system so that the positions of the fluorescent lights 20 and 20' obtained from the imaging device as shown in FIG. 6 coincide with each other. , align the cores of the optical fibers 1, 1' to be connected. In addition, the remaining amount of movement in the z direction, that is, the amount of pushing of the optical fibers 1 and 1' to be connected, is
The emission intensity P of the fibers 1 and 1' in the heating section 10 shown in FIG. 7 obtained from the imaging device based on the distance d between the end faces shown in FIG. 7b obtained from the imaging device is determined at a predetermined heating temperature. By adjusting the current of the gas discharge circuit 8 according to the light intensity corresponding to the heating temperature, the heating temperature can be kept constant. Therefore, for illumination of the connected optical fiber 1, there is no need for a lighting device, and since the heating temperature is constant, that is, the light intensity emitted by the optical fiber is constant, there is no need to adjust the brightness of the light source. . Furthermore, even if the molten fiber is scattered and attached to the gas discharge electrodes 9, 9' during fusion splicing, the intensity of the light is directly detected, so that the heating temperature can be adjusted to a constant value. Note that the light emitted from the gas discharge itself has a lower light intensity than the light generated by heating the optical fiber, so there is no need to pose a problem.

なおこの実施例では撮像系11,12,13,
14をそれぞれ二つ用いたが、第5図に示すよう
に、2枚のミラー18,18′と1枚のハーフミ
ラー19を用いた光学系などを導入することによ
り、x,y2方向のうち1方向については、撮像
系11,12,13,14を省略することができ
る。
In this embodiment, the imaging systems 11, 12, 13,
14, but by introducing an optical system using two mirrors 18, 18' and one half mirror 19, as shown in FIG. For one direction, the imaging systems 11, 12, 13, and 14 can be omitted.

またこの実施例では、被接続光フアイバのコア
の軸合せ、押込み量、加熱温度の3者を、同時に
調節する場合について述べているが、シングルモ
ード光フアイバのときはコアの軸合せが必要であ
るが、マルチモード光フアイバの場合には、コア
の軸合せは不要になることもある。しかしマルチ
モード光フアイバの場合も、コアの位置検出は作
業品質のチエツクに利用できる。
Furthermore, in this example, a case is described in which the core alignment, push-in amount, and heating temperature of the optical fiber to be connected are adjusted at the same time, but in the case of a single mode optical fiber, core alignment is necessary. However, in the case of multimode optical fibers, core alignment may not be necessary. However, even in the case of multimode optical fibers, core position detection can be used to check the quality of the work.

この実施例において、被接続光フアイバ1,
1′の微動送り系5,5′,6,6′,7,7′の動
作速度が、融着接続速度に比較して遅いという問
題がある場合は、いわゆる予加熱放電をしたり、
または加熱時間、加熱断続時間、加熱温度など加
熱条件を設定することによつて解決できる。
In this embodiment, the connected optical fibers 1,
If there is a problem that the operating speed of the fine movement feed system 5, 5', 6, 6', 7, 7' of 1' is slow compared to the fusion splicing speed, perform so-called preheating discharge,
Alternatively, the problem can be solved by setting heating conditions such as heating time, heating intermittent time, and heating temperature.

以上説明したように、本発明の光フアイバ融着
接続方法は、光フアイバの加熱による発光を利用
しているので、光フアイバの照明装置が不要にな
るなど接続装置の構成が簡単になる利点のほか、
透過光や反射光による照明方法と比較し、被接続
光フアイバのレンズ効果による解像度低下などの
悪影響が少ない利点がある。
As explained above, since the optical fiber fusion splicing method of the present invention utilizes light emission by heating the optical fiber, it has the advantage that the configuration of the splicing device is simplified, such as eliminating the need for an illumination device for the optical fiber. others,
Compared to illumination methods using transmitted light or reflected light, this method has the advantage that there are fewer negative effects such as a decrease in resolution due to the lens effect of the connected optical fiber.

また気体放電中に発生する紫外光を利用しいて
るので、紫外領域の光源を必要としない。したが
つて接続装置自体を小形化、経済化できる利点が
ある。
Furthermore, since it uses the ultraviolet light generated during gas discharge, it does not require a light source in the ultraviolet region. Therefore, there is an advantage that the connecting device itself can be made smaller and more economical.

また被接続光フアイバのコアの軸合せ、押込み
量、接続部の加熱温度という基本的に重要な接続
条件を調節しているので、低損失で、接続の失敗
が少なく、作業能率のよい光フアイバの接続を実
現できる利点がある。
In addition, the fundamentally important connection conditions such as the alignment of the core of the optical fiber to be connected, the amount of push-in, and the heating temperature of the connection part are adjusted, resulting in optical fibers with low loss, fewer connection failures, and high work efficiency. It has the advantage of being able to realize connections between

したがつて光フアイバケーブルを用いた通信シ
ステムの実用化に大きく寄与するものである。
Therefore, it will greatly contribute to the practical application of communication systems using optical fiber cables.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のパワーモニタによる被接続光フ
アイバのコアの軸合せ方法の説明図、第2図は突
当て板を用いた被接続光フアイバの端面間隔設定
方法の説明図、第3図は本発明の一実施例図、第
4図は第3図における被接続光フアイバのコア検
出のための撮像装置を側面から見た図、第5図は
第4図の撮像系の1系統を光学系で代用した具体
例図、第6図aは光フアイバのコアが螢光を発生
する状況の説明図、第6図b,cは第6図aにお
ける融着接続部近傍のx―x線上およびx′―x′線
上の光強度分布を示す図、第7図aは光フアイバ
が高温になつたときに発光する状況の説明図、第
7図bは第7図aにおけるz―z線上の光強度分
布を示す図である。 1……被接続光フアイバ、2……光源、3……
受光器、4……突当て板、5,5′……電動モー
タ、6,6′……微動機構、7,7′……光フアイ
バ固定台、8……気体放電回路、9,9′……放
電電極、10……加熱放電部、11……フイル
タ、12……対物レンズ系、13……イメージセ
ンサ、14……イメージセンサ駆動装置、15…
…画像処理装置、16,16′……制御装置、1
7,17′……電動モータ駆動部、18,18′…
…ミラー、19……ハーフミラー、20,20′
……螢光、d……被接続光フアイバの端面間の距
離、P……発光強度。
Figure 1 is an explanatory diagram of how to align the cores of optical fibers to be connected using a conventional power monitor, Figure 2 is an explanatory diagram of how to set the distance between the end faces of optical fibers using an abutment plate, and Figure 3 is One embodiment of the present invention, FIG. 4 is a side view of the imaging device for detecting the core of the optical fiber to be connected in FIG. 3, and FIG. Figure 6a is an explanatory diagram of a situation in which the core of an optical fiber generates fluorescence, and Figures 6b and c are diagrams on the x-x line near the fusion splice in Figure 6a. and a diagram showing the light intensity distribution on the x'-x' line, Figure 7a is an explanatory diagram of the situation in which the optical fiber emits light when it becomes high temperature, and Figure 7b is a diagram showing the light intensity distribution on the z-z line in Figure 7a. FIG. 2 is a diagram showing a light intensity distribution of FIG. 1... Connected optical fiber, 2... Light source, 3...
Light receiver, 4... Abutment plate, 5, 5'... Electric motor, 6, 6'... Fine movement mechanism, 7, 7'... Optical fiber fixing base, 8... Gas discharge circuit, 9, 9' ... Discharge electrode, 10 ... Heating discharge section, 11 ... Filter, 12 ... Objective lens system, 13 ... Image sensor, 14 ... Image sensor drive device, 15 ...
...Image processing device, 16, 16'...Control device, 1
7, 17'...Electric motor drive section, 18, 18'...
...Mirror, 19...Half mirror, 20, 20'
...Fluorescence, d...Distance between the end faces of optical fibers to be connected, P...Emission intensity.

Claims (1)

【特許請求の範囲】[Claims] 1 対向した被接続光フアイバの端面を加熱して
相互に突き合わせることにより光フアイバを融着
接続する方法において、気体放電装置による融着
加熱接続中に、Geドーパントを含むコアが気体
放電中に発生する紫外光を吸収することによつて
螢光を発生する現象を利用して被接続光フアイバ
のコア位置を、熱によつて発光した光フアイバ像
から端面間の距離または加熱温度を撮影装置を用
いて検出することにより、対向した被接続光フア
イバのコアの軸合せ、押込み量の調節および光フ
アイバ接続部の融着加熱温度の調節のうち、一つ
または複数の調節を行いながら、光フアイバを融
着接続することを特徴とする撮像装置を用いた光
フアイバ融着接続方法。
1. In a method of fusion splicing optical fibers by heating and abutting the end faces of opposing optical fibers to be spliced, a core containing a Ge dopant is heated during fusion splicing using a gas discharge device. A photographing device that uses the phenomenon of generating fluorescence by absorbing the generated ultraviolet light to determine the core position of the optical fiber to be connected, and the distance between the end faces or the heating temperature from the image of the optical fiber emitted by heat. By detecting this using a An optical fiber fusion splicing method using an imaging device characterized by fusion splicing fibers.
JP3446583A 1983-03-04 1983-03-04 Melt sticking and connecting method of optical fiber using image pickup device Granted JPS59160113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3446583A JPS59160113A (en) 1983-03-04 1983-03-04 Melt sticking and connecting method of optical fiber using image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3446583A JPS59160113A (en) 1983-03-04 1983-03-04 Melt sticking and connecting method of optical fiber using image pickup device

Publications (2)

Publication Number Publication Date
JPS59160113A JPS59160113A (en) 1984-09-10
JPS6215843B2 true JPS6215843B2 (en) 1987-04-09

Family

ID=12414995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3446583A Granted JPS59160113A (en) 1983-03-04 1983-03-04 Melt sticking and connecting method of optical fiber using image pickup device

Country Status (1)

Country Link
JP (1) JPS59160113A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3500356A1 (en) * 1985-01-08 1986-07-10 Philips Patentverwaltung Gmbh, 2000 Hamburg DEVICE FOR POSITIONING AN OPTICAL WAVE GUIDE
JPS62208008A (en) * 1986-03-10 1987-09-12 Nippon Telegr & Teleph Corp <Ntt> Deciding method for optical fusion splicing condition
JPH0812304B2 (en) * 1986-12-16 1996-02-07 日本電信電話株式会社 Aligning device for multi-fiber optical fiber
JPH0820576B2 (en) * 1987-01-30 1996-03-04 日本電信電話株式会社 Method for fusion splicing of multi-core optical fiber ribbons
JPH01118808A (en) * 1987-10-31 1989-05-11 Fujikura Ltd Welding and connecting device for optical fibers
JPH0617923B2 (en) * 1987-12-16 1994-03-09 株式会社フジクラ Optical fiber heating measurement method
DE4004909C1 (en) * 1990-02-16 1991-01-31 Ant Nachrichtentechnik Gmbh, 7150 Backnang, De
DE102004054805A1 (en) * 2004-11-12 2006-05-24 CCS Technology, Inc., Wilmington Method for determining the eccentricity of a core of an optical waveguide, and method and device for connecting optical waveguides
JP2006184467A (en) * 2004-12-27 2006-07-13 Sumitomo Electric Ind Ltd Optical fiber heating intensity detecting method, and fusion splicing method and apparatus
JP2007185723A (en) * 2006-01-11 2007-07-26 Fujifilm Corp Apparatus and method for automatic alignment
CN106248349A (en) * 2016-10-10 2016-12-21 长飞光纤光缆股份有限公司 A kind of test optical fiber automatic coupler
JP7407697B2 (en) * 2020-12-23 2024-01-04 古河電気工業株式会社 fusion machine

Also Published As

Publication number Publication date
JPS59160113A (en) 1984-09-10

Similar Documents

Publication Publication Date Title
JPS6215843B2 (en)
EP0094125B1 (en) Method and device for positioning light-conducting fibres
JP2004318171A (en) Controlled permanent splice of optical fiber
JP2005518566A (en) PM fiber alignment
US11656410B2 (en) Optical fiber fusing and connecting machine and optical fiber fusing and connecting method
EP0788611B1 (en) Splicing an optical fiber having twin cores and a fiber having a single core
EP0091738B1 (en) Precise positioning of optical fibers
JPS6229763B2 (en)
EP0173345B1 (en) Method and apparatus for simultaneously observing a transparent object from two directions
EP0286165A1 (en) Apparatus for guiding laser energy into fibres
JPS59136708A (en) Automatic connecting device for optical fiber
JPH0534646B2 (en)
JPS59228221A (en) Hybrid lens
CN221039501U (en) End face imaging mechanism and graphite welding machine
CN216285811U (en) Optical fiber fusion splicer
JP2005173210A (en) Method for determining rotational reference position of plane of polarization keeping optical fiber and optical fiber fusion-splicing machine
JP3584277B2 (en) Illumination optical system, alignment optical system, and projection exposure apparatus
WO2023234403A1 (en) Fusion splicing device and fusion splicing method
KR102064838B1 (en) Fusion splicer for optical fiber
JP2859680B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JP3555120B2 (en) Optical axis alignment detection device
KR100631048B1 (en) Auto focusing apparatus for laser beam machining
KR20040009924A (en) Optical axis alignment equipment with vision device
JP2888730B2 (en) Optical fiber observation method and observation apparatus
JPS6095506A (en) Aligning device for optical fiber axis