JPS62208008A - Deciding method for optical fusion splicing condition - Google Patents

Deciding method for optical fusion splicing condition

Info

Publication number
JPS62208008A
JPS62208008A JP5184186A JP5184186A JPS62208008A JP S62208008 A JPS62208008 A JP S62208008A JP 5184186 A JP5184186 A JP 5184186A JP 5184186 A JP5184186 A JP 5184186A JP S62208008 A JPS62208008 A JP S62208008A
Authority
JP
Japan
Prior art keywords
optical fiber
light intensity
intensity distribution
state
splicing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5184186A
Other languages
Japanese (ja)
Inventor
Tadashi Haibara
灰原 正
Mitsuru Miyauchi
宮内 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5184186A priority Critical patent/JPS62208008A/en
Publication of JPS62208008A publication Critical patent/JPS62208008A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To easily and speedily decides whether a connection is made normally or not by extracting the image of a welding part at the time of the fusion, and deciding the splicing condition from position shifts of the rising and falling parts of the light intensity distribution at a specific position. CONSTITUTION:When an optical fiber is fused, the light intensity distribution perpendicular to the axial direction of the fiber 1 is extracted at the connection center 13 of an area which is heated and seen brightly through a television camera and positions 12 and 14 at distance of about the diameter of the fiber 1 from the center 13 to both sides. Position shifts of rise parts ya,u, yb,u, and yc,u and fall parts ya,l, yb,l, and yc,l are observed. When the connection is made normally, those parts do not shift in position. If, however, an air bubble 5 is generated at the connection part 31, the interval between ya,u and ya,l of the light intensity distribution 25 at the center 13 increases and the air bubble can be detected. When the air bubble bursts or when the splicing part becomes a sphere, they can be detected from position shifts. In this way, whether the connection is normal or not is speedily and easily decided, so the method is effectively used to automatic connecting operation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバを融着接続するにあたって、光フ
ァイバ接続部の品質を判別する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for determining the quality of an optical fiber splice when fusion splicing optical fibers.

[従来の技術] 周知の光ファイバを融着接続する場合に、接続の失敗と
判断されるものには、大別して次の3つの形態が考えら
れる。
[Prior Art] When fusion splicing known optical fibers, the following three types of connection failures can be considered.

(1)接続しようとする一対の光ファイバの端面間隔を
過大に設定したこと、あるいは、過大な放電パワーに起
因して、第1O図に示すように、外形りの光ファイバ1
の端部2が直径d1の玉状になり、接続されない。第1
図において3は玉状端部2の中心である。
(1) Due to excessive setting of the distance between the end faces of the pair of optical fibers to be connected, or due to excessive discharge power, the optical fiber 1
The end 2 of is shaped like a bead with a diameter d1 and is not connected. 1st
In the figure, 3 is the center of the beaded end 2.

(2)接続中心に気泡5が入り、第11図に示すように
、接続部4が半径d2の風船状になったり、あるいはそ
の気泡5が噴出して、第12図に示すように風船がしぼ
んだ外形d3の接続部6の状態になる。
(2) An air bubble 5 enters the center of the connection, and the connection part 4 becomes a balloon shape with a radius d2 as shown in FIG. 11, or the air bubble 5 blows out and becomes a balloon as shown in FIG. 12. The connection portion 6 has a deflated outer shape d3.

(3)接続損失が1dB以上である。(3) Connection loss is 1 dB or more.

ところで、周知の多モードファイバの融着接続において
は、第1項および第2項の状態が発生しない場合、通常
、接続損失は1dB以下であり、接続失敗の判断は第1
項に示した玉の発生と第2項に示した気泡の発生で判断
できる。
By the way, in the well-known fusion splicing of multimode fibers, if the conditions in the first and second terms do not occur, the splice loss is usually 1 dB or less, and the determination of splice failure is based on the first
This can be determined by the formation of balls shown in Section 1 and the formation of bubbles shown in Section 2.

さて、従来、この玉の検出や気泡の検出に用いられてい
る自動化技術は、一般的に次のように複雑である。すな
わち、接続時の放電加熱中の様子をテレビカメラで観察
し、第13図(A)に示すように、ある瞬間T1の時点
での状態をマトリックス状に静止画像7としてメモリー
8内に蓄積する。
Now, the automation technology conventionally used to detect balls and bubbles is generally complicated as described below. That is, the state of discharge heating during connection is observed with a television camera, and the state at a certain moment T1 is stored in the memory 8 as a still image 7 in a matrix shape, as shown in FIG. 13(A). .

次に、当該静止画像の濃淡の度合に、ある一定のスレッ
シュホールドを設定し、その静止画像の微分を行なって
5第13図(B)に示すよう輪郭抽出を行い、さらにこ
のようにして抽出した輪郭9のマトリックス内の各点に
対して、第13図(C)に示すように、あらかじめ良好
な場合であると設定しておいた基準の線10からのずれ
d−またはdTLを計算する。ここで、サフィックスi
はi番目のずれを示し、Uは光ファイバ輪郭の上側をL
は下側を示す。このずれの度合によって、光ファイバが
玉になっているのか、あるいは気泡が混入しているのか
を判断できる。
Next, a certain threshold is set for the degree of shading of the still image, and the still image is differentiated to extract the outline as shown in Figure 13 (B). For each point in the matrix of the contour 9, the deviation d- or dTL from the reference line 10, which has been set in advance as a good case, is calculated, as shown in FIG. 13(C). . Here, the suffix i
indicates the i-th deviation, and U indicates the upper side of the optical fiber contour as L.
indicates the lower side. Depending on the degree of this deviation, it can be determined whether the optical fiber is a ball or whether air bubbles are mixed in.

しかし、このような計算に用いられる計算機としては、
いわゆる通常のミニコン程度の大きい計算機が必要であ
り、しかも、静止画像を蓄積するためのメモリーが必要
であり、例えば、マンホール内等の実用的な作業場所で
は使用できない。さらにまた、計算時間についても、分
解能を上げる稈長時間を必要とするが、通常は、数十秒
の処理時間を必要とし、リアルタイムで判断を要求され
る現場での要求に応じきれないという欠点を有する。さ
らに加えて、静止画として蓄積される画像情報は時刻T
1のものであり、T1以後に発生する玉や気泡をその都
度処理するためには、膨大な処理時間を必要とするとい
う欠点を有する。
However, the calculator used for such calculations is
It requires a computer as large as a so-called ordinary minicomputer, and also requires memory for storing still images, so it cannot be used in practical work locations such as inside manholes. Furthermore, regarding calculation time, although it requires a long time to improve the resolution, it usually requires a processing time of several tens of seconds, which has the disadvantage of not being able to meet the demands of on-site judgments that require real-time judgment. have In addition, image information stored as a still image is stored at time T.
1, and has the disadvantage that it requires an enormous amount of processing time to treat the balls and bubbles that occur after T1 each time.

従って、この技術を用いる場合、通常は、融着接続が完
了してから、静止画像を蓄積して判断を行うが、それに
しても、数十秒の処理時間を要することは現実的ではな
く、光ファイバの接続作業を自動化する上での判断技術
として使用するのには不可能である。
Therefore, when using this technology, the judgment is usually made by accumulating still images after the fusion splicing is completed, but even then, it is unrealistic to require several tens of seconds of processing time, and the optical fiber It is impossible to use it as a judgment technique in automating the connection work.

[発明が解決しようとする問題点] そこで、本発明の目的は、光ファイバの融着接続時間に
遅滞を生じせしめることなく、光ファイバの加熱時に、
高速に接続部の状態を判断する光ファイバ融着接続状態
判別方法を提供することにある。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to solve the problem when heating an optical fiber without causing a delay in the fusion splicing time of the optical fiber.
An object of the present invention is to provide an optical fiber fusion splicing state determination method that quickly determines the state of a spliced part.

[問題点を解決するための手段] このような目的を達成するために、本発明は、光ファイ
バの融着接続時に、接続中心と、該中心から両側に光フ
ァイバ1の直径程度離れた2個所の位置の合計3個所で
、光ファイバの軸に垂直方向に光ファイバが加熱された
ときに発生する光の強度分布をリアルタイムで線状に取
り込み、その強度分布の背景からの立上がり部分と立下
がり部分の2点の位置の変動から、光ファイバがどのよ
うな状態で接続されているか判断する。
[Means for Solving the Problems] In order to achieve such an object, the present invention provides a splicing center and two splices on both sides of the splicing center, which are approximately the diameter of the optical fiber 1, when fusion splicing optical fibers. The intensity distribution of the light generated when the optical fiber is heated in the direction perpendicular to the axis of the optical fiber is captured in a linear manner in real time at a total of three locations, and the rising part from the background and the rising part of the intensity distribution are The state in which the optical fibers are connected is determined from the fluctuation in the positions of the two points on the descending portion.

従来技術のように平面的濃淡画像を計算機のメそり−内
で処理する方法とは大きく異なる。
This method is significantly different from the conventional method in which a planar grayscale image is processed within a computer system.

[作 用コ。[Materials]

本発明によれば、高速にかつ簡単に光ファイバ融着接続
状態の良否を判別できるから、光ファイバ接続作業を自
動化する上で、人間に代り接続部の様子を観察し、良否
を判断する判別技術として有効に使用できる利点がある
According to the present invention, it is possible to quickly and easily determine whether the state of the optical fiber fusion splicing is good or bad, so when automating the optical fiber splicing work, it is possible to determine whether the state of the spliced part is good or bad by observing the state of the spliced part instead of humans. It has the advantage that it can be used effectively as a technology.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一つの実施例を示す概略図であり、こ
こで、11は加熱時に光ファイバ1が熱せられて、テレ
ビカメラ内で明るく見える領域を示し、この場合は良好
な接続部を示す。12,13.14は、光の強度分布を
取り出すための接続中心と、該中心から両側に光ファイ
バ1の直径程度離れた2個所の位置の合計3個所のX方
向の位置a。
FIG. 1 is a schematic diagram showing one embodiment of the invention, where 11 indicates the area where the optical fiber 1 is heated during heating and appears bright in the television camera, in this case a good connection. shows. Reference numerals 12, 13, and 14 indicate a total of three positions a in the X direction, including the connection center for extracting the light intensity distribution and two positions on both sides of the connection center about the diameter of the optical fiber 1.

b、cを示す線である。These are lines indicating b and c.

第2図は、X方向の線12,13.14におけるX方向
の光強度分布15,16.17を示すものであり、各々
の最大の光強度はIa、Ib、Icである。
FIG. 2 shows the light intensity distributions 15, 16, 17 in the X direction on the lines 12, 13, 14 in the X direction, and the maximum light intensities of each are Ia, Ib, and Ic.

このように良好に接続されている場合には、融着時間内
、たとえば、安定放電時間内を通じて各点での光強度分
布の立上がり位置ycL、□;yb、1.L;yo、u
および立下がり位置yユ、L;y   ;ybpJI 
    C,1 は変動しない。
When the connection is good in this way, the rising position of the light intensity distribution at each point ycL, □; yb, 1. L;yo, u
and falling position yyu, L; y; ybpJI
C,1 does not change.

次に、光ファイバ端部が玉になった場合のテレビカメラ
像を第3図に示し、位置12,13.14における光強
度分布を第4図に示す。ここで、18.18°は玉状の
部分であり、この領域が、加熱されて明るく見える。1
9,20.21は位置12,13.14の各々における
光強度分布である。
Next, FIG. 3 shows a television camera image when the end of the optical fiber becomes a bead, and FIG. 4 shows the light intensity distribution at positions 12, 13, and 14. Here, 18.18° is a bead-shaped region, and this region is heated and appears bright. 1
9, 20.21 are the light intensity distributions at positions 12, 13.14, respectively.

第4図に示すように、光ファイバ1の両端が玉になった
場合、中央位置13の光強度分布20は背景と同レベル
になり、他方、両側の位置12.14の光強度分布19
.21では、立上がり部と立下がり部との間隔は、光フ
ァイバ径りの1.4倍となり、玉の直径d1にほぼ等し
い。従って、玉の状態を検出することが可能となる。
As shown in FIG. 4, when both ends of the optical fiber 1 are beaded, the light intensity distribution 20 at the center position 13 will be at the same level as the background, while the light intensity distribution 19 at the positions 12 and 14 on both sides will be at the same level as the background.
.. In No. 21, the distance between the rising part and the falling part is 1.4 times the diameter of the optical fiber, which is approximately equal to the diameter d1 of the ball. Therefore, it becomes possible to detect the state of the ball.

第5図は、一方の側の位置14での光強度分布の時間的
変動を表わしたものであり、ここで、22は加熱初期の
分布を示し、光ファイバは玉になっていない。立上がり
と立下がりの間隔は光ファイバ径りに等しい。
FIG. 5 shows the temporal variation of the light intensity distribution at the position 14 on one side, where 22 indicates the distribution at the initial stage of heating, and the optical fiber is not beaded. The interval between the rising edge and the falling edge is equal to the diameter of the optical fiber.

23は玉になりはじめたときの分布であり、立上がりと
立下がりの間隔は少し広がりつつある。21は完全に玉
になワた状態での分布を示す。
23 is the distribution when it starts to form a ball, and the interval between the rise and fall is becoming slightly wider. 21 shows a completely loose distribution.

このように、1つの位置での光強度分布の時間変動を観
察することによって、玉の検出を行なうことができる。
In this way, a ball can be detected by observing the temporal variation of the light intensity distribution at one position.

次に、気泡が発生した場合のテレビカメラ像を第6図に
、および光強度分布を第7図に示す。
Next, FIG. 6 shows a television camera image when bubbles are generated, and FIG. 7 shows a light intensity distribution.

第6図において、31は加熱されて明るく見える気泡5
のある接続部分を示し、第7図において、24.25.
26は各点12,13.14での光強度分布である。
In FIG. 6, 31 is a bubble 5 that is heated and appears bright.
24.25. in FIG. 7.
26 is the light intensity distribution at each point 12, 13, and 14.

気泡が発生した場合、中央部13での光強度分布25の
立上がりと立下がりの間隔のみが広がるので、この差異
より気泡を検出することができる。ここで、光強度分布
25の立上がりと立下がりの間隔が、融着接続時間、た
とえば安定放電時間内において、加熱融着初期の間隔に
比へて±20%以上変動したときに接続部31に気泡5
が発生したものと判断することができる。
When bubbles are generated, only the interval between the rise and fall of the light intensity distribution 25 in the central portion 13 widens, so that the bubbles can be detected from this difference. Here, when the interval between the rise and fall of the light intensity distribution 25 fluctuates by ±20% or more compared to the interval at the initial stage of heat fusion during the fusion splicing time, for example during the stable discharge time, the connection part 31 bubble 5
It can be determined that this has occurred.

もちろん、玉が発生する場合の例のように、中央部13
の光強度分布25の時間変動を観察してもよい。
Of course, as in the case where a ball is generated, the central part 13
You may also observe temporal fluctuations in the light intensity distribution 25.

次に、第8図に気泡が発生し、さらに噴出してつぶれた
場合のテレビカメラ像を、および第9図に光強度分布を
示す。
Next, FIG. 8 shows a television camera image when bubbles are generated and then ejected and collapsed, and FIG. 9 shows a light intensity distribution.

第8図において、27は気泡がつぶれて明るく見える領
域を示す、第9図において、28,29.30は各点1
2,13.14での光強度分布を示す。
In Fig. 8, 27 indicates an area where bubbles are collapsed and appear bright.In Fig. 9, 28, 29, and 30 indicate each point 1.
2, 13, and 14 are shown.

この場合には、中央部13の光強度分布29の立上がり
と立下がりの間隔のみが狭くなるので、かかる気泡のつ
ぶれを検出できる。
In this case, only the interval between the rise and fall of the light intensity distribution 29 in the central portion 13 becomes narrower, so that the collapse of the bubble can be detected.

以上説明したように、光ファイバの加熱中心とその両側
に光ファイバの直径程度離れた位置において光ファイバ
の軸方向に対して垂直な方向において線状に光強度分布
を観察することによって、(1)光ファイバが良好に接
続された場合、(2)光ファイバの両端が玉状になり、
接続されなかった場合、(3)接続部に気泡が発生した
場合の、3つの状態を判別できる。
As explained above, by observing the light intensity distribution linearly in the direction perpendicular to the axial direction of the optical fiber at the heating center of the optical fiber and the positions on both sides thereof, which are about the diameter of the optical fiber, ) When the optical fiber is well connected, (2) both ends of the optical fiber become beaded,
Three states can be distinguished: (3) when no connection is made and (3) when bubbles are generated at the connection.

ところで、このようなテレビカメラ内の光強度分布は、
一般に広く市販されているテレビ信号処理装置(例えば
浜松ホトニクス社C−1000等)を使用することによ
って容易に観察できる。さらに、立上がり、立下がり位
置は、座標として、汎用のマイクロコンピュータにリア
ルタイムで転送できる。従って、各点の位置のずれ具合
は、次々に送られてくる座標を比較することによって検
出することができる。時間的なオーダとしては、1回の
座標取り込みについて数m5ecと考えればよい。この
時間は、前述した従来技術の約1710000になる。
By the way, the light intensity distribution inside such a TV camera is
It can be easily observed by using a commonly available television signal processing device (for example, Hamamatsu Photonics C-1000, etc.). Furthermore, the rise and fall positions can be transferred as coordinates to a general-purpose microcomputer in real time. Therefore, the degree of displacement of each point can be detected by comparing the coordinates sent one after another. In terms of time order, one coordinate capture can be considered to take several m5ec. This time is approximately 1,710,000 in the prior art described above.

従って、本発明では、簡単な装置により、光ファイバ融
着接続部の良否を高速度で判断することが可能となる。
Therefore, in the present invention, it is possible to judge the quality of an optical fiber fusion splicer at high speed using a simple device.

[発明の効果] 以上説明したように、本発明によれば、高速にかつ簡単
に光ファイバ融着接続状態の良否を判別できるから、光
ファイバ接続作業を自動化する上で、人間に代り接続部
の様子を観察し、良否を判断する判別技術として有効に
使用できる利点がある。
[Effects of the Invention] As explained above, according to the present invention, it is possible to quickly and easily determine whether the state of the optical fiber fusion splicing is good or bad. It has the advantage that it can be effectively used as a discrimination technology to observe the state of the product and judge whether it is good or bad.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜第9図は本発明の実施例を用いて、各種の光ファ
イバ接続部を観察したときの様子を示すもので、 第1図は良好な接続部のテレビカメラ像を示す模式図、 第2図は本発明による光強度分布を示す分布図、 第3図は接続部が玉になった場合のテレビカメラ像を示
す模式図、 第4図はその場合の各点の光強度分布を示す分布図、 第5図はその片側の光強度分布の時間変動を示す図、 第6図は気泡が発生した場合のテレビカメラ像を示す模
式図、 第7図はそのときの光強度分布を示す分布図、第8図は
7気泡がつぶれた場合のテレビカメラ像を示す模式図、 第9図はその光強度分布を示す分布図、第1O図は玉状
になりた光ファイバ接続部を示す模式図、 第11図は気泡が発生した接続部を示す模式図、第12
図は気泡がつぶれた場合の接続部を示す模式図、 第13図(A)〜(C)は従来技術において、接続部の
画像を静止画として計算機のメモリー内に取り入れ、さ
らにこの情報を微分してから基準位置からのずれを求め
る様子を示す概念図である。 1・・・光ファイバ、 2・・・玉状になった光ファイバ端部、3・・・玉の中
心、 4・・・気泡が発生した接続部、 5・・・気泡、 6・・・気泡が発生し、さらに気泡が噴出してっぷれた
接続部、 7・・・計算機のメモリー8内に蓄積された光ファイバ
の静止画、 9・・・光ファイバの輪郭、 10・・・基準線、 11・・・良好な接続時に明るく見える領域、12.1
3.14・・・光強度分布測定位置、15.16.17
・・・光強度分布、 18.18°・・・玉状になって明るく見える領域、1
9.20,21,22,23.24,25,26.28
2930・・・光強度分布、 27・・・気泡が発生し、さらに噴出してつぶれ明るく
見える領域、 31・・・気泡が発生し、明るく見える領域。
Figures 1 to 9 show how various optical fiber connections are observed using the embodiments of the present invention; Figure 1 is a schematic diagram showing a television camera image of a good connection; Fig. 2 is a distribution diagram showing the light intensity distribution according to the present invention, Fig. 3 is a schematic diagram showing a television camera image when the connection part becomes a ball, and Fig. 4 shows the light intensity distribution at each point in that case. Figure 5 is a diagram showing the temporal variation of the light intensity distribution on one side of the diagram, Figure 6 is a schematic diagram showing the television camera image when bubbles occur, and Figure 7 is the light intensity distribution at that time. Figure 8 is a schematic diagram showing the TV camera image when seven bubbles are collapsed, Figure 9 is a distribution diagram showing the light intensity distribution, and Figure 1O is a diagram showing the optical fiber connection part that has become bead-shaped. Figure 11 is a schematic diagram showing the connection where bubbles have occurred, Figure 12 is a schematic diagram showing the connection where bubbles have occurred.
The figure is a schematic diagram showing a connection when a bubble collapses. Figures 13 (A) to (C) are conventional techniques in which images of the connection are captured as still images into the computer's memory, and this information is then differentiated. FIG. 3 is a conceptual diagram showing how the deviation from the reference position is calculated after the calculation is performed. DESCRIPTION OF SYMBOLS 1... Optical fiber, 2... Ball-shaped end of optical fiber, 3... Center of ball, 4... Connection where bubbles are generated, 5... Air bubbles, 6... 7. A still image of the optical fiber stored in the memory 8 of the computer. 9. Outline of the optical fiber. 10. Standard. Line, 11... Area that appears bright when there is a good connection, 12.1
3.14...Light intensity distribution measurement position, 15.16.17
...Light intensity distribution, 18.18°...A region that appears bright in a bead shape, 1
9.20, 21, 22, 23.24, 25, 26.28
2930...Light intensity distribution, 27...A region where bubbles are generated and further squirted and appear bright, 31...A region where bubbles are generated and appear bright.

Claims (1)

【特許請求の範囲】 1)光ファイバを融着接続するときの接続状態を判別す
るにあたり、 その融着接続時に、前記光ファイバの融着部分の画像を
取り出し、当該融着部分の画像において、前記融着部分
の接続中心および該接続中心から前記光ファイバの直径
程度両側に離れた2位置において、前記光ファイバの軸
方向に垂直な方向における光強度分布を抽出し、該光強
度分布の立上がり部および立下がり部の位置変動を観察
して前記光ファイバの融着接続状態を判別することを特
徴とする光ファイバ融着接続状態判別方法。 2)特許請求の範囲第1項記載の光ファイバ融着接続状
態判別方法において、前記光ファイバを放電によって加
熱融着して接続し、その安定放電時間内において、前記
光強度分布の立上がり部および立下がり部の位置変動を
観察することを特徴とする光ファイバ融着接続状態判別
方法。 3)特許請求の範囲第1項または第2項に記載の光ファ
イバ融着接続状態判別方法において、前記接続中心から
両側に前記光ファイバの直径程度離れた位置での光強度
分布の立上がりおよび立下がり部の位置の間隔が、融着
開始時に比べて、1.4倍以上になった場合に、前記光
ファイバは接続されなかったと判断することを特徴とす
る光ファイバ融着接続状態判別方法。 4)特許請求の範囲第1項または第2項に記載の光ファ
イバ融着接続状態判別方法において、接続中心での光強
度分布の立上がりおよび立下がり部の位置の間隔が、融
着接続時間内において初期間隔に比べ±20%以上変動
した場合に、前記接続部に気泡が入ったと判断すること
を特徴とする光ファイバ融着接続状態判別方法。 5)特許請求の範囲第1項または第2項に記載の光ファ
イバ融着接続状態判別方法において、前記接続中心およ
び該接続中心から前記光ファイバの直径程度両側に離れ
た2位値において観察した光強度分布の立上がりおよび
立下がり位置の間隔が融着接続時間内において変動しな
かったときに良好な接続が行なわれたと判断することを
特徴とする光ファイバ融着接続状態判別方法。
[Claims] 1) In determining the connection state when fusion splicing optical fibers, an image of the fused portion of the optical fiber is taken out during the fusion splicing, and in the image of the fused portion, Extract the light intensity distribution in the direction perpendicular to the axial direction of the optical fiber at the connection center of the fused portion and at two positions separated from the connection center by about the diameter of the optical fiber, and determine the rise of the light intensity distribution. 1. A method for determining an optical fiber fusion splicing state, characterized in that the fusion splicing state of the optical fiber is determined by observing positional fluctuations of a falling part and a falling part. 2) In the method for determining the state of optical fiber fusion splicing as set forth in claim 1, the optical fibers are connected by heating and fusion by electric discharge, and within the stable discharge time, the rising part of the light intensity distribution and A method for determining the state of an optical fiber fusion splice, characterized by observing a change in the position of a trailing edge. 3) In the method for determining the state of optical fiber fusion splicing according to claim 1 or 2, the rise and rise of the light intensity distribution at positions spaced about the diameter of the optical fiber on both sides from the center of the connection A method for determining an optical fiber fusion splicing state, comprising: determining that the optical fiber has not been spliced when the distance between the positions of the descending portions is 1.4 times or more compared to when the fusion was started. 4) In the optical fiber fusion splicing state determination method according to claim 1 or 2, the interval between the positions of the rising and falling parts of the light intensity distribution at the splicing center is within the fusion splicing time. A method for determining the state of an optical fiber fusion splice, characterized in that it is determined that a bubble has entered the splicing portion when the spacing varies by ±20% or more compared to an initial spacing. 5) In the method for determining the state of optical fiber fusion splicing according to claim 1 or 2, observation is made at the splicing center and a second position spaced from the splicing center on both sides by about the diameter of the optical fiber. A method for determining the state of optical fiber fusion splicing, characterized in that it is determined that a good splice has been made when the interval between the rising and falling positions of the light intensity distribution does not vary within the fusion splicing time.
JP5184186A 1986-03-10 1986-03-10 Deciding method for optical fusion splicing condition Pending JPS62208008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5184186A JPS62208008A (en) 1986-03-10 1986-03-10 Deciding method for optical fusion splicing condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5184186A JPS62208008A (en) 1986-03-10 1986-03-10 Deciding method for optical fusion splicing condition

Publications (1)

Publication Number Publication Date
JPS62208008A true JPS62208008A (en) 1987-09-12

Family

ID=12898080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5184186A Pending JPS62208008A (en) 1986-03-10 1986-03-10 Deciding method for optical fusion splicing condition

Country Status (1)

Country Link
JP (1) JPS62208008A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238404A (en) * 1990-02-15 1991-10-24 Nec Corp Method for splicing optical fiber
JP2004506177A (en) * 2000-06-20 2004-02-26 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Determination of optical fiber type

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160113A (en) * 1983-03-04 1984-09-10 Nippon Telegr & Teleph Corp <Ntt> Melt sticking and connecting method of optical fiber using image pickup device
JPS59219707A (en) * 1983-05-27 1984-12-11 Fujikura Ltd Method for aligning core of single mode optical fiber
JPS6061703A (en) * 1983-09-16 1985-04-09 Nippon Telegr & Teleph Corp <Ntt> Method for detecting core shaft shift of fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160113A (en) * 1983-03-04 1984-09-10 Nippon Telegr & Teleph Corp <Ntt> Melt sticking and connecting method of optical fiber using image pickup device
JPS59219707A (en) * 1983-05-27 1984-12-11 Fujikura Ltd Method for aligning core of single mode optical fiber
JPS6061703A (en) * 1983-09-16 1985-04-09 Nippon Telegr & Teleph Corp <Ntt> Method for detecting core shaft shift of fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238404A (en) * 1990-02-15 1991-10-24 Nec Corp Method for splicing optical fiber
JP2004506177A (en) * 2000-06-20 2004-02-26 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Determination of optical fiber type
JP4856840B2 (en) * 2000-06-20 2012-01-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Determining the type of optical fiber

Similar Documents

Publication Publication Date Title
CN102567745B (en) Automatic detection method of optical fiber fusion quality
JP2002365235A (en) Defect inspection method and apparatus
JP6421348B2 (en) Optical fiber fusion splicing device and optical fiber fusion splicing method
EP2629127A1 (en) Method for fusion splicing optical fibers
US7900480B2 (en) Method of determining heating amount, method of fusion splicing, and fusion splicer
JPS62208008A (en) Deciding method for optical fusion splicing condition
JPS59219707A (en) Method for aligning core of single mode optical fiber
JP2001070455A (en) Method for inspecting pattern width of stent surface
CN204594663U (en) A kind of optical fiber fusion quality monitoring system
CA2454198A1 (en) Method and device for detecting flaw of work
CN116148978A (en) Method and device for connecting high-density multi-core optical fibers and computer readable storage medium
JP2000205997A (en) Detecting method of core center position in optical fiber
JPH02129607A (en) Fusion splicing device for optical fiber
JP3459171B2 (en) Core alignment method for optical fiber
JP2001305372A (en) Optical fiber core measuring device, fusion splicer, focal position setting method for splicer, and optical fiber identifying method
JP2000146751A (en) Method for observing optical fiber
JP3287700B2 (en) Optical fiber fusion splicer
JPH0915088A (en) Method and equipment for detecting defective assembly of multicore optical connector
JPH0439045B2 (en)
CN116523915B (en) Method, equipment and storage medium for detecting defects of carbon fiber joints
JPH07218385A (en) Method and apparatus for inspecting polished surface of optical connector
JP3078913B2 (en) Alignment and Number of Hearts Confirmation Method by Image Processing of Optical Fiber
JP2022146021A (en) Optical circuit manufacturing method
JP2674664B2 (en) Optical fiber connection status display method
JP3124320B2 (en) Fusion splicing method of multi-core optical fiber