JP2000146751A - Method for observing optical fiber - Google Patents

Method for observing optical fiber

Info

Publication number
JP2000146751A
JP2000146751A JP33496898A JP33496898A JP2000146751A JP 2000146751 A JP2000146751 A JP 2000146751A JP 33496898 A JP33496898 A JP 33496898A JP 33496898 A JP33496898 A JP 33496898A JP 2000146751 A JP2000146751 A JP 2000146751A
Authority
JP
Japan
Prior art keywords
optical fiber
image
brightness
luminance
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33496898A
Other languages
Japanese (ja)
Inventor
Koji Osawa
孝治 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP33496898A priority Critical patent/JP2000146751A/en
Publication of JP2000146751A publication Critical patent/JP2000146751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate the presence or absence and the size of cracks by adjusting the focusing position of an optical system for flattening the brightness distribution of an optical fiber image and obtaining the brightness distribution of an end part for the optical fiber image. SOLUTION: An area value when there are cracks at a level for influencing a connection loss in the end face of an optical fiber is examined in advance. More specifically, a focusing position is kept as it is, an observation position is shifted to the end part of an optical fiber image, a window is set in a range where the crack parts can be fully accommodated, and a brightness distribution as shown in figure (c) is obtained for a plurality of cursors in the window. A, B, and D indicate a portion with lower brightness than a lower-limit threshold, while C indicates a portion with higher brightness than an upper-limit threshold. A and D indicate a portion with a low brightness even without any cracks. Therefore, the number of pixels included in B and C becomes that of pixels in the brightness distribution. By obtaining the total area value of the pixels of cracks in the brightness distribution of all cursors in the window, a connection loss after the fusion connection of a normal optical fiber is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光ファイバの融
着接続に際して行う、光ファイバの観察方法に関するも
ので、特に画像処理によって光ファイバ端面の「欠け」
を観察する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for observing an optical fiber at the time of fusion splicing of an optical fiber.
And a method for observing.

【0002】[0002]

【従来の技術】光ファイバを融着接続する際、ファイバ
の端面状態が悪いと、接続損失に影響を及ぼす。端面状
態の判定項目として、以下のものが挙げられる。 切断角度(図4参照) 端面に付着したゴミ(図5参照) 端面の欠け(図6参照)
2. Description of the Related Art When an optical fiber is fusion spliced, if the state of the end face of the fiber is poor, the splice loss is affected. The following are examples of the judgment items of the end face state. Cutting angle (see Fig. 4) Dirt adhering to the end face (see Fig. 5) Chipping of the end face (see Fig. 6)

【0003】これらのうち、の切断角度は、画像処理
により測定できるので、良否の判定は容易である。
[0003] Of these, the cutting angle can be measured by image processing, so that it is easy to determine the quality.

【0004】のゴミは、大きさ、位置により良否を判
定するのであるが、これらを定量化するのは難しい。し
かし、ゴミの存在自体は目視により認知しやすいので、
作業者による判断も、それほど困難でない。
The quality of the dust is determined based on the size and position, but it is difficult to quantify the dust. However, the presence of garbage is easy to visually recognize,
The judgment by the operator is not so difficult.

【0005】[0005]

【発明が解決しようとする課題】ところが、の欠けに
ついては、次の点が問題となる。
However, the following problems arise with respect to chipping.

【0006】光ファイバの融着接続前に、調心と上記の
コア端面の良否判定を行うが、そのときの光学系の焦点
位置は、通常、コア部を観察するのに適した位置に合わ
せる。図4〜図6がそのときの光ファイバ像であり、コ
ア部を含む中心付近が明るく、両端部は暗い。上記の
の切断角度とのゴミに関しては、この状態で観察、測
定が容易である。
Prior to fusion splicing of the optical fiber, alignment and the quality of the core end face are determined. At this time, the focal position of the optical system is usually set to a position suitable for observing the core. . FIGS. 4 to 6 show optical fiber images at that time. The vicinity of the center including the core is bright, and both ends are dark. Regarding the dust having the above-mentioned cutting angle, observation and measurement are easy in this state.

【0007】しかし、の欠けの場合は、事情が異な
る。すなわち、図6について述べると、ファイバ像の明
るい部分に欠けがあると目視で認知できるが、暗い部分
に欠けがあっても、目視で認知できない。
However, the situation is different in the case of the lack. That is, referring to FIG. 6, it can be visually recognized that there is a chip in a bright part of the fiber image, but cannot be visually recognized even if there is a chip in a dark part.

【0008】また、上記のファイバ像では、画像処理に
より、欠けの大きさを定量化するのが、非常に難しい。
その理由を、以下に述べる。画像処理は、輝度(明る
さ)の違いを利用するのが最も一般的である。図6の場
合、明るい部分にある欠けは、人間の眼では分かる。し
かし、輝度の違いは、ほとんどない。また、暗い部分で
は、輝度の違いが分からない(欠けが存在するかもしれ
ないのに)。以上のようなわけで、画像処理で、欠けと
判定するのは難しい。
In the above-mentioned fiber image, it is very difficult to quantify the size of the chip by image processing.
The reason is described below. Image processing most commonly utilizes differences in brightness (brightness). In the case of FIG. 6, the chip in the bright part can be recognized by human eyes. However, there is almost no difference in luminance. Also, in the dark part, the difference in luminance is not known (although there may be chipping). For the reasons described above, it is difficult to determine a chip in image processing.

【0009】欠けのある状態のままで融着接続すると、
接続損失が悪化し、接続不良となる。
When fusion splicing is performed with a chipped state,
Connection loss worsens, resulting in poor connection.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の本発明
は、 ・光ファイバの透過光を、光学系により受光して光ファ
イバ像を得、当該 光ファイバ像を画像処理するに際し
て、 ・光学系の焦点位置を調節して、光ファイバ像の輝度分
布が、ほぼ平坦になるようにし、 ・そのようにした光ファイバ像について、端部の輝度分
布を求めること、を特徴とする。
Means for Solving the Problems The present invention according to claim 1 is characterized by the following: When light transmitted through an optical fiber is received by an optical system to obtain an optical fiber image and image processing of the optical fiber image is performed, The focus position of the optical system is adjusted so that the luminance distribution of the optical fiber image becomes substantially flat. The luminance distribution at the end of the optical fiber image is obtained.

【0011】上記の中の、「光学系の焦点位置を調節し
て、輝度分布がほぼ平坦なるようにする」というのは、
輝度分布が図1(b)のように、極端な高低がない、す
なわち、最大値と最小値との開きが小さい分布状態にす
るということである。
In the above description, “the focal position of the optical system is adjusted to make the luminance distribution substantially flat”
As shown in FIG. 1B, the luminance distribution does not have an extreme height, that is, a distribution state in which the difference between the maximum value and the minimum value is small.

【0012】なお、これに対して、通常のコア観察の場
合の輝度分布は、図7(ファイバ像は図4〜図6)のよ
うに、際だって高い(明るい)部分がある。
On the other hand, the luminance distribution in the case of normal core observation has a remarkably high (bright) portion as shown in FIG. 7 (fiber images are shown in FIGS. 4 to 6).

【0013】輝度分布が図1(b)のような場合のファ
イバ像は、図1(a)のようであり、コア部分の輝度
は、通常のコア観察の場合よりはるかに低く、かつファ
イバ像が全体として薄暗い。
FIG. 1A shows a fiber image when the brightness distribution is as shown in FIG. 1B. The brightness of the core portion is much lower than that in the normal core observation, and the fiber image is obtained. But dim as a whole.

【0014】そして、欠けが存在すると、その部分の透
過光の屈折率の仕方が変化するため、図1(a)のよう
に、その部分が、他の部分に比べて明るく見たり、ある
いは暗く見えたりする。すなわち、その部分の輝度が異
なるので、欠けのある部分(光ファイバ像端部)を画像
処理して輝度分布を求めると、例えば図1(c)のよう
な曲線が得られる。Bが暗い部分で、cが明るい部分で
ある(後でまた詳しく述べる)。これから、欠けの有無
及びその大きさの推定が可能になる。
If a chip is present, the refractive index of the transmitted light in that portion changes, so that the portion looks brighter or darker than the other portions as shown in FIG. You can see. That is, since the brightness of the portion is different, if a brightness distribution is obtained by performing image processing on a portion having a chip (the end of the optical fiber image), a curve as shown in FIG. 1C is obtained, for example. B is a dark part and c is a light part (more on this later). From this, it is possible to estimate the presence or absence of a chip and its size.

【0015】また、焦点位置の調節機構は、通常、光フ
ァイバ融着機にあるので、それを利用し、欠け観察時の
み焦点を動かし、その他は、通常の焦点位置にする。ゆ
えに、本発明の実施のために特別の機構を付加する必要
はない。
The mechanism for adjusting the focal position is usually provided in the optical fiber fusion splicer, so that the mechanism is used to move the focal point only at the time of chipping observation, and to set the other focal points to the normal focal position. Therefore, it is not necessary to add a special mechanism for implementing the present invention.

【0016】上記の焦点位置の調整は、光ファイバ画像
の変化を見ながら行うことができるが、請求項2に記載
のように、図1(b)に示す輝度分布における、最大値
と最小値の差が、ある「所定輝度値」以下になるところ
に焦点位置を合わせるようにすると、自動的に焦点位置
の調整を行えるようになる。
The focus position can be adjusted while observing the change in the optical fiber image. As described in claim 2, the maximum value and the minimum value in the luminance distribution shown in FIG. If the focal position is adjusted so that the difference between them becomes a certain "predetermined luminance value" or less, the focal position can be automatically adjusted.

【0017】なお、上記の「ある所定輝度値」というの
は、その融着装置として、欠けを見分けるのに最適と判
断し得る値を、予め求め、設定しておく値である。
The above-mentioned "certain predetermined brightness value" is a value which is determined and set in advance as a value which can be determined to be optimal for discriminating a chip as the fusion device.

【0018】なお、端面付近は欠けがあるかもしれない
ので、ファイバ内部輝度の最大最小値が安定しておら
ず、焦点位置調整には使えない。よって上記の焦点位置
の調整は、端面からできるだけ離れた位置の輝度分布を
利用する。
Since there may be a chip near the end face, the maximum and minimum values of the internal brightness of the fiber are not stable and cannot be used for adjusting the focal position. Therefore, the above-mentioned adjustment of the focal position utilizes a luminance distribution at a position as far as possible from the end face.

【0019】また、欠けの面積は、請求項2に記載し、
図2に示すように、光ファイバ像10の端部における、
上限閾値より輝度の高い部分の面積と下限閾値より輝度
の低い部分の面積との和を求め、当該面積の和と「所定
面積値」と比較するようにすると、欠けに基づく端面の
良否を、自動識別できるようになる。
Further, the area of the chip is defined in claim 2,
As shown in FIG. 2, at the end of the optical fiber image 10,
If the sum of the area of the portion having a higher luminance than the upper threshold and the area of the portion having a lower luminance than the lower threshold is obtained, and the sum of the areas is compared with the `` predetermined area value '', the quality of the end face based on the chipping is determined. Automatic identification becomes possible.

【0020】なお、上記の面積の求め方は、後で説明す
る。また、 ・上限閾値は、例えば図1(b)の最大値とし、 ・下限閾値は、例えば図1(b)の、最大値*0.2+最
小値*0.8とする。
The method for determining the area will be described later. The upper threshold value is, for example, the maximum value in FIG. 1B, and the lower threshold value is, for example, the maximum value * 0.2 + the minimum value * 0.8 in FIG. 1B.

【0021】また、上記の「所定面積値」というのは、
いろいろの大きさの欠けを持つ光ファイバについて、予
め後記の方法により面積の和を調べ、接続損失に影響が
出るレベルの面積値をもって、設定値とするのである。
The “predetermined area value” is defined as
For optical fibers having various sizes of chips, the sum of the areas is checked in advance by the method described later, and the set value is set to the area value at a level that affects the connection loss.

【0022】[0022]

【発明の実施の形態】自動的に欠けの良否判定を行う場
合について説明する。まず、上記[0016][001
7]で述べた「ある所定輝度値」を次のようにして求め
ておく。すなわち、光ファイバ観察の焦点位置を、通常
の軸合わせ等を行う位置から動かして、コアの明るい光
ファイバ部分がほとんどなくなって、全体として薄暗く
なるようにする。そして、欠けを示す明るい部分や暗い
部分が最もよく見えるようにし、そうしておいて、光フ
ァイバ像の端部から若干離れたい位置における輝度分布
を求める(図1(b))。そして、そのときの輝度の最
大値と最小値の差を求め、この値を、その装置の「所定
輝度値」とするのである。またそのときの、輝度の最大
値と最小値より、下限閾値と上限閾値とを求める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case where the quality of a chip is automatically determined will be described. First, [0016] [001]
7] is determined in the following manner. That is, the focus position of the optical fiber observation is moved from the position where the normal axis alignment or the like is performed, so that the optical fiber portion of the core is almost eliminated and the core becomes dim as a whole. Then, a bright portion or a dark portion indicating a chip is made to be most visible, and a luminance distribution at a position slightly away from the end of the optical fiber image is obtained (FIG. 1B). Then, a difference between the maximum value and the minimum value of the luminance at that time is obtained, and this value is set as a “predetermined luminance value” of the device. Further, a lower limit threshold and an upper limit threshold are obtained from the maximum value and the minimum value of the luminance at that time.

【0023】また、上記[0021]で述べた、光ファ
イバ端面に接続損失に影響が出るレベルの欠けがある場
合の面積値(所定面積値)を予め調べておく。それは、
次のようにする。すなわち、図2のように、焦点位置を
前記のままにしておいて、光ファイバ像10の端部に観
察位置を移動して、欠けの部分が十分納まるような適当
範囲で、ウインドウ20を設定し、その中の複数本(例
えば16本)のカーソル22について、図1(c)のよう
な輝度分布を求める。図1(c)における、A,B,D
が下限閾値より輝度の低い部分で、Cが上限閾値より高
い部分である。A,Dは、欠けが無くても輝度の低くな
る部分である。
Further, the area value (predetermined area value) in the case where the end face of the optical fiber has a lack of a level which affects the connection loss as described in the above [0021] is checked in advance. that is,
Do the following: That is, as shown in FIG. 2, while keeping the focus position as described above, the observation position is moved to the end of the optical fiber image 10, and the window 20 is set within an appropriate range so that the chipped portion can be sufficiently accommodated. Then, a luminance distribution as shown in FIG. 1C is obtained for a plurality (for example, 16) of the cursors 22 therein. A, B, D in FIG. 1 (c)
Is a portion where the luminance is lower than the lower threshold, and C is a portion where the luminance is higher than the upper threshold. A and D are portions where luminance is low even if there is no chipping.

【0024】よって、B,Cの部分に含まれる画素の数
が、この輝度分布での欠けの画素の数となる。ウインド
ウ20内の、全カーソル22の輝度分布での、上記欠け
の画素の合計面積値を求める。そして、種々の大きさの
欠けを有する多数の光ファイバ端部の面積値を求めてお
き、正常な光ファイバとの融着接続後の接続損失を測定
し、接続損失に影響が手始める大きさの面積値を求め、
これを「所定面積値」とする。
Therefore, the number of pixels included in the portions B and C is the number of missing pixels in the luminance distribution. The total area value of the missing pixels in the luminance distribution of all the cursors 22 in the window 20 is obtained. Then, the area values of the ends of a large number of optical fibers having chips of various sizes are determined, and the splice loss after fusion splicing with a normal optical fiber is measured. Find the area value of
This is defined as a “predetermined area value”.

【0025】なお、これまでの設定は、その融着機につ
いて1回行うだけでよい。以下が、接続のたびに行う欠
けの自動判定となる(図3参照)。
The setting up to now only needs to be performed once for the fusing machine. The following is the automatic determination of chipping performed each time connection is made (see FIG. 3).

【0026】融着機に光ファイバセットし、端面間隔
を設定する。 光ファイバ端部から離れた位置で、光ファイバ内部
の、輝度の最大値と最小値の差が上記の「所定輝度値」
となるようにして、焦点位置を合わせる(欠け観察の位
置)。またそのときの、輝度の最大値と最小値から、上
限閾値と下限閾値とを求める。
An optical fiber is set in the fusion splicer, and the end face interval is set. At a position away from the end of the optical fiber, the difference between the maximum value and the minimum value of the brightness inside the optical fiber is the above-mentioned "predetermined brightness value".
The focus position is adjusted in such a manner as described below (the position of the missing observation). In addition, an upper threshold and a lower threshold are obtained from the maximum and minimum luminance values at that time.

【0027】上記のようにして、焦点位置をそのまま
にして、ファイバ端部に観察位置を移動して、下限閾値
より輝度の低い部分の面積と上限閾値より輝度の高い部
分の面積の総和(欠けの面積)を求める。そして、上記
「所定面積値」と比較し、小さいときは、「欠け無し」
と判断し、次の融着動作に進む。また、大きいときは、
「欠けあり」と判断し、かつ「欠けあり」を表示して、
融着動作は停止する。作業者は、光ファイバを再度口出
しし直して、再度融着動作をはじめから再開する。
As described above, the observation position is moved to the end of the fiber while the focal position is kept as it is, and the sum of the area of the part having a luminance lower than the lower limit threshold and the area of the part having the luminance higher than the upper threshold (missing part) is obtained. Area). Then, when compared with the above “predetermined area value”, when it is smaller, “no chipping”
It proceeds to the next fusion operation. When it is big,
Judge as "Missing" and display "Missing"
The fusing operation stops. The operator again draws out the optical fiber and restarts the fusion operation from the beginning.

【0028】上記の欠けの観察は、ファイバ間隔設定後
であれば、調心前、調心後のどちらでもよい。しかし、
調心後に、欠けありとの判定が出ると、口出しし直す必
要が生じ、調心が無駄になるので、調心前が好ましい。
The above-described observation of the chipping may be performed before or after the alignment as long as the fiber interval is set. But,
If it is determined that there is a chip after the alignment, it is necessary to re-start the operation, and the alignment is useless.

【0029】上記の方法は、光ファイバの切断機の性能
試験における欠けの判定にも利用できる。
The above method can also be used to determine chipping in a performance test of an optical fiber cutting machine.

【0030】[0030]

【発明の効果】欠けを見やすい位置に焦点を合わせる
ので、通常の焦点位置では、分かり難いファイバ像の暗
い部分の欠けも見付けられる。 端面の欠けを見逃しにくくなるので、欠けによる接続
不良発生の可能性がきわめて低くなる。 光ファイバの欠けの有無を、融着接続機に定量的に自
動判断させて、作業者の目に頼らずに、常に同じ判定基
準で端面の良否を判定することが可能となる。 光ファイバ切断機の性能試験に使用する際、端面観察
の時間を短縮できる。
Since the focus is focused on a position where the chip is easy to see, the dark part of the fiber image which is difficult to understand can be found at the normal focus position. Since it is difficult to overlook the chipping of the end face, the possibility of occurrence of connection failure due to the chipping is extremely low. It is possible to make the fusion splicer quantitatively and automatically determine the presence or absence of the chipping of the optical fiber, and to always determine the quality of the end face based on the same determination criterion without relying on the eyes of the operator. When used for a performance test of an optical fiber cutting machine, the time required for end face observation can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るもので、(a)は欠けを見易いよ
うに焦点位置を調節したときの光ファイバ像の写真、
(b)はそのときの、欠けのない部分の輝度分布、
(c)は欠けのある部分の輝度分布。
1 (a) is a photograph of an optical fiber image when a focus position is adjusted so that a chip is easily seen,
(B) is a luminance distribution of a portion without a chip at that time,
(C) is a luminance distribution of a part with a chip.

【図2】本発明における欠けの面積の求め方を示すもの
で、(a)は写真、(b)は説明図。
FIGS. 2A and 2B are diagrams showing a method for obtaining a chipped area according to the present invention, wherein FIG. 2A is a photograph and FIG.

【図3】本発明の欠け判定の流れ図。FIG. 3 is a flowchart of chipping determination according to the present invention.

【図4】通常の光ファイバ観察における、切断角の大き
い場合の写真。
FIG. 4 is a photograph when a cutting angle is large in a normal optical fiber observation.

【図5】通常の光ファイバ観察における、端面にゴミの
ある場合の写真。
FIG. 5 is a photograph of a normal optical fiber observation when there is dust on the end face.

【図6】通常の光ファイバ観察における、端面に欠けの
ある場合の写真。
FIG. 6 is a photograph showing a case where an end face is chipped in a normal optical fiber observation.

【図7】通常の光ファイバ観察における、光ファイバ像
の輝度分布。
FIG. 7 is a luminance distribution of an optical fiber image in normal optical fiber observation.

【符号の説明】[Explanation of symbols]

10 光ファイバ像 20 ウインドウ 22 カーソル 10 Optical fiber image 20 Window 22 Cursor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバの透過光を、光学系により受
光して前記光ファイバの像を得、当該光ファイバ像を画
像処理するに際して、前記光学系の焦点位置を調節し
て、前記光ファイバ像の輝度分布がほぼ平坦になるよう
にし、そのようにした光ファイバ像について、端部の輝
度分布を求めることを特徴とする、光ファイバの観察方
法。
An optical fiber receives light transmitted through an optical fiber, obtains an image of the optical fiber, and adjusts a focal position of the optical system when processing the image of the optical fiber. A method for observing an optical fiber, wherein the luminance distribution of the image is made substantially flat, and the luminance distribution at the end of the optical fiber image is obtained.
【請求項2】 光ファイバの透過光を、光学系により受
光して前記光ファイバの像を得、当該光ファイバ像を画
像処理するに際して、前記光学系の焦点位置を調節し
て、前記光ファイバ像の輝度の最大値と最小値の差が、
所定輝度値以下となるようにし、そのようにした光ファ
イバ像の輝度分布より上限閾値と下限閾値を求めて、前
記上限閾値より輝度の高い部分の面積と前記下限閾値よ
り輝度の低い部分の面積との和を求め、当該面積の和と
所定面積値とを比較することを特徴とする、光ファイバ
の観察方法。
2. The optical fiber according to claim 1, wherein the transmitted light of the optical fiber is received by an optical system to obtain an image of the optical fiber, and when the image of the optical fiber is processed, the focal position of the optical system is adjusted. The difference between the maximum and minimum values of the image brightness is
In order to be equal to or less than a predetermined luminance value, the upper threshold and the lower threshold are obtained from the luminance distribution of the optical fiber image in such a manner, and the area of a part having a higher luminance than the upper threshold and the area of a part having a lower luminance than the lower threshold are obtained. An optical fiber observation method, wherein a sum of the area and a predetermined area value are compared with each other.
JP33496898A 1998-11-10 1998-11-10 Method for observing optical fiber Pending JP2000146751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33496898A JP2000146751A (en) 1998-11-10 1998-11-10 Method for observing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33496898A JP2000146751A (en) 1998-11-10 1998-11-10 Method for observing optical fiber

Publications (1)

Publication Number Publication Date
JP2000146751A true JP2000146751A (en) 2000-05-26

Family

ID=18283249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33496898A Pending JP2000146751A (en) 1998-11-10 1998-11-10 Method for observing optical fiber

Country Status (1)

Country Link
JP (1) JP2000146751A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031439A (en) * 2003-07-14 2005-02-03 Fujikura Ltd Optical fiber end face processing method and apparatus therefor, and optical fiber fusion splicing method and apparatus therefor
US7519469B2 (en) * 2005-04-28 2009-04-14 Alpine Electronics, Inc. Display method and apparatus for navigation system
JP2014106328A (en) * 2012-11-27 2014-06-09 Fujitsu Telecom Networks Ltd Image analysis device and optical fiber fusion connection system
CN108227078A (en) * 2017-12-29 2018-06-29 诺仪器(中国)有限公司 Method for Inspecting Optic Fiber End and system based on FPGA
WO2021230115A1 (en) * 2020-05-12 2021-11-18 住友電工オプティフロンティア株式会社 Deterioration estimation method and deterioration estimation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031439A (en) * 2003-07-14 2005-02-03 Fujikura Ltd Optical fiber end face processing method and apparatus therefor, and optical fiber fusion splicing method and apparatus therefor
US7519469B2 (en) * 2005-04-28 2009-04-14 Alpine Electronics, Inc. Display method and apparatus for navigation system
JP2014106328A (en) * 2012-11-27 2014-06-09 Fujitsu Telecom Networks Ltd Image analysis device and optical fiber fusion connection system
CN108227078A (en) * 2017-12-29 2018-06-29 诺仪器(中国)有限公司 Method for Inspecting Optic Fiber End and system based on FPGA
CN108227078B (en) * 2017-12-29 2019-12-24 一诺仪器(中国)有限公司 Optical fiber end face detection method and system based on FPGA
WO2021230115A1 (en) * 2020-05-12 2021-11-18 住友電工オプティフロンティア株式会社 Deterioration estimation method and deterioration estimation system

Similar Documents

Publication Publication Date Title
JP4367597B2 (en) Fusion splicing device and splicing splicing method
US20160216448A1 (en) Optical fiber fusion splicer and optical fiber fusion splicing method
CN103460094B (en) Fusion splicer and optical fiber method of discrimination
CN104897370A (en) Fiber welding quality monitoring method and system
JP5863190B2 (en) Image analysis apparatus and optical fiber fusion splicing system
CN116128881B (en) Lens detection system and method for defect product synchronous marking
CN204594663U (en) A kind of optical fiber fusion quality monitoring system
WO2020179927A1 (en) Optical fiber fusing and connecting machine and optical fiber fusing and connecting method
CN116148978A (en) Method and device for connecting high-density multi-core optical fibers and computer readable storage medium
JP2000146751A (en) Method for observing optical fiber
EP0702227A1 (en) Terminated cable portion inspection device for stripped terminal crimping machine
JPS59219707A (en) Method for aligning core of single mode optical fiber
JP2000205997A (en) Detecting method of core center position in optical fiber
CN103424808A (en) Optical fiber propelling control method of optical fiber fusion splicer and optical fiber fusion splicer
JP2006184467A (en) Optical fiber heating intensity detecting method, and fusion splicing method and apparatus
CN211652599U (en) Image acquisition system for acquiring standard images
JP4318168B2 (en) Optical fiber end face inspection equipment
JP4785041B2 (en) Method for measuring the outer diameter of the linear object to be measured
JPS6229763B2 (en)
JP2001305372A (en) Optical fiber core measuring device, fusion splicer, focal position setting method for splicer, and optical fiber identifying method
JPS6049307A (en) Fiber connecting device
JP3287700B2 (en) Optical fiber fusion splicer
KR101735356B1 (en) Non-contact type apparatus of measuring insertion loss of optical connector and method of measuring the loss
JP2001183309A (en) Apparatus and method for evaluating homogeneity of transparent panel
JP2002258160A (en) Method for positioning focusing point in confocal laser microscope, and method of measuring height of surface of object to be measured