JP3418296B2 - Detecting the amount of misalignment of optical fibers of different diameters - Google Patents

Detecting the amount of misalignment of optical fibers of different diameters

Info

Publication number
JP3418296B2
JP3418296B2 JP20352996A JP20352996A JP3418296B2 JP 3418296 B2 JP3418296 B2 JP 3418296B2 JP 20352996 A JP20352996 A JP 20352996A JP 20352996 A JP20352996 A JP 20352996A JP 3418296 B2 JP3418296 B2 JP 3418296B2
Authority
JP
Japan
Prior art keywords
optical fibers
amount
optical fiber
core
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20352996A
Other languages
Japanese (ja)
Other versions
JPH1047939A (en
Inventor
明夫 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP20352996A priority Critical patent/JP3418296B2/en
Publication of JPH1047939A publication Critical patent/JPH1047939A/en
Application granted granted Critical
Publication of JP3418296B2 publication Critical patent/JP3418296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、異径光ファイバの
軸ずれ量検出方法に関する。 【0002】 【従来の技術】例えば図2(a),(b)に示すよう
に、それぞれ、コア層1S,1Lと、該コア層1S,1
Lの外側に形成されたクラッド層2S,2Lとからな
り、かつ互いにクラッド層2S,2L同士の外径が異な
る一対の光ファイバ3S,3Lを端面同士で融着接続す
る方法の一例として、予め、これら光ファイバ3S,3
Lのコア層1S,1Lの軸ずれ量ΔCOREを検出し、
その上で、この軸ずれ量ΔCOREをもとに光ファイバ
3S,3L同士を調心し、該光ファイバ3S,3L同士
を融着接続する方法がある。尚、光ファイバ3Sは小径
のもの、光ファイバ3Lは大径のものを示す。 【0003】ここで図3に、このような異径の光ファイ
バ3S,3Lにおいてコア層1S,1L同士の軸ずれ量
ΔCOREを検出する方法の従来例として、光ファイバ
3S,3Lの軸方向をx軸、該x軸に直交する一軸をy
軸( 図面においては紙面に対して垂直な軸)、前記x軸
と前記y軸とにそれぞれ直交する一軸をz軸とした場合
に、y軸方向においてコア層1S,1Lの軸ずれ量ΔC
OREを検出する例を示す。 【0004】この図3において、符号4は、光ファイバ
3S,3L側方(ここではz軸方向)に配置された光源
であり、符号5は、光ファイバ3S,3Lを挟んで光源
4の反対側に配置された撮像機である。この撮像機5
は、例えばレンズと、該レンズにより拡大された像を受
像するCCDカメラとからなり、直動ベアリング機構等
によってz軸方向に往復移動できるようになっている。
またこの例では、光ファイバ3S,3L同士で、クラッ
ド層2S,2Lの外径がそれぞれ90μm、125μm
と異なっており、かつコア層1S,1Lの外径が8μm
と同じであるものを示している。 【0005】まず図3に示すように、光ファイバ3S,
3Lをそれぞれ端面同士向かい合わせ状態に配置する。 【0006】そして両光ファイバ3S,3Lに光源4か
ら光を照射し、かつ撮像機5を光軸方向(z軸方向)で
移動させて両光ファイバ3S,3Lのうちいずれか一方
(ここでは光ファイバ3S)に焦点を合わせる。 【0007】しかる後、このように光ファイバ3Sに焦
点を合わせた状態で、撮像機5によって、図4(a)に
示すように、前記光源4からの光が光ファイバ3S,3
Lそれぞれを透過してできた透過像6S,6Lを観測す
る。 【0008】ここで図4(a)、および後述の図4
(b)に示す透過像6S,6Lについて図5を参照して
説明する。図5に示すように、光源4から照射された光
に対して光ファイバ3S,3Lはそれぞれ円柱レンズの
役割を果たし、光ファイバ3S,3Lの置かれた雰囲
気、コア層1S,1L、およびクラッド層2S,2Lの
屈折率がそれぞれ異なるため、光は符号a〜hで示す線
のように屈折する。 【0009】このうち符号a,hで示す線は、光ファイ
バ3S,3Lと、該光ファイバ3S,3Lの置かれた雰
囲気との境界において雰囲気側を通過する光を示す。ま
た符号b,gで示す線はクラッド層2S,2Lを通過
し、撮像機5の中に入る光の限界位置を示す。すなわ
ち、これら線aと線bとの間、および線hと線gとの間
を通過する光は、屈折角が大きいため、撮像機5の中に
は入らない。従って、例えば図5の符号αや符号βで示
す位置に焦点を合わせると、線aと線bとの間、および
線hと線gとの間の部分は、それぞれ、図4(a),
(b)では符号8S,8Lで示す暗部となる。これらの
暗部を外側暗部8S,8Lと称する。尚、外側暗部8
S,8Lはそれぞれ2本ずつ見える。 【0010】そして図5において、符号c,fで示す線
はコア層1S,1Lとクラッド層2S,2Lとの境界に
おいてクラッド層2S,2L側を通過する光を示す。ま
た符号d,eで示す線はコア層1S,1Lとクラッド層
2S,2Lの境界においてコア層1S,1L側を通過す
る光を示す。これら線cと線dとの間、および線eと線
fとの間には光が通過しない部分ができるので、例えば
図5の符号αや符号βで示す位置に焦点を合わせると、
線cと線dとの間、および線eと線fとの間の部分は、
それぞれ、図4(a),(b)では符号7S,7Lで示
す暗部となる。これらの暗部をそれぞれ内側暗部7S,
7Lと称する。尚、内側暗部7S,7Lも、外側暗部8
S,8Lと同様、それぞれ2本ずつ見える。 【0011】このように内側暗部7S,7Lは、それぞ
れコア層1Sとクラッド層2Sとの境界、およびコア層
1Lとクラッド層2Lとの境界を示している。 【0012】そこで上述のように光ファイバ3Sに焦点
を合わせた状態で、図4(a)に示すように、両透過像
6S,6Lを観測した際、焦点の合っている光ファイバ
3Sを示す透過像6Sにおいて、コア層1Sの位置とし
て、前記内側暗部7S,7S同士の中点位置CORESS
を測定する。 【0013】ただしこの状態では、他方の光ファイバ3
Lに焦点が合っていないため、コア層1Lの位置を示す
内側暗部7L,7Lを明瞭に見ることはできず、このコ
ア層1Lの位置を正確に測定することは困難である。 【0014】そのため、上述のようにして一方の光ファ
イバ3Sにおいてコア層1Sの位置CORESSを測定し
た後、他方の光ファイバ3Lについても、図4(b)に
示すように、焦点を合わせて内側暗部7L,7Lを明瞭
に見ることができるようにした上で、コア層1Lの位置
として内側暗部7L,7L同士の中点位置CORELL
測定する。 【0015】しかる後、これら両光ファイバ3S,3L
のコア層1S,1Lの位置からコア層1S,1Lの軸ず
れ量ΔCOREを、下記(1)式で決定する。 ΔCORE=CORESS−CORELL ・・・(1) 【0016】さて、このようにして異径の光ファイバ3
S,3Lにおけるコア層1S,1Lの軸ずれ量ΔCOR
Eを検出する装置において、撮像機5の移動軸と光源4
からの光軸とは、できるだけ平行になるように構成した
方がよい。 【0017】しかし実際には、これら装置各部を完全に
平行になるように構成することは非常に困難であり、図
6に示すように、撮像機5の移動軸(図6中の太い両矢
印線)と光源4からの光軸(図6中の細い矢印線)とは
平行にならない場合がほとんどである。 【0018】 【発明が解決しようとする課題】従って、このような場
合、それぞれの光ファイバ3S,3Lに焦点を合わせる
ために撮像機5をz軸方向に移動させた際、この撮像機
5で観測される透過像6S,6Lが画面内で移動してず
れてしまい、そのためにコア層1S,1Lの軸ずれ量Δ
COREの値に誤差が生じていた。 【0019】このため、例えば前記誤差を含んだコア層
1S,1Lの軸ずれ量ΔCOREをもとに光ファイバ3
S,3L同士を融着接続すると、光ファイバ3S,3L
同士の融着接続部分における光伝送損失が増加する等、
問題が生じていた。 【0020】このような問題は、両光ファイバ3S,3
L同士の外径差が大きくなってくるにつれ、コア層1
S,1Lの軸ずれ量ΔCOREの誤差も大きくなるた
め、深刻なものになっていた。 【0021】本発明は前記課題を解決するためになされ
たもので、その目的は、コア層の軸ずれ量をより正確に
測定できる異径光ファイバの軸ずれ量検出方法を提供す
ることにある。 【0022】 【課題を解決するための手段】本願請求項1記載の発明
の異径光ファイバの軸ずれ量検出方法は、それぞれ、コ
ア層と、該コア層の外側に形成されたクラッド層とから
なり、かつ互いに前記クラッド層同士の外径が異なる一
対の光ファイバを、端面同士向かい合わせ状態に配置
し、両光ファイバの側方に配置した撮像機の焦点を一方
の光ファイバに合わせた上で、該撮像機により、この光
ファイバのコア層の位置を測定し、前記撮像機の焦点を
他方の光ファイバに合わせた上で、該撮像機により、こ
の光ファイバのコア層の位置を測定し、これら両コア層
の位置の差から該両コア層の軸ずれ量を決定する異径光
ファイバの軸ずれ量検出方法であって、光ファイバ相互
に撮像機の焦点を合わせた状態それぞれにおいて、いず
れか一方の光ファイバについてクラッド層の位置を測定
し、これらクラッド層の位置の差から求められるクラッ
ド層の位置変化量で前記両コア層の軸ずれ量を補正する
ことを特徴とする。 【0023】上記本願請求項1記載の発明の異径光ファ
イバの軸ずれ量検出方法では、光ファイバ相互に撮像機
の焦点を合わせた状態それぞれにおいて、いずれか一方
の光ファイバについてクラッド層の位置を測定し、これ
らクラッド層の位置の差から求められるクラッド層の位
置変化量で両コア層の軸ずれ量を補正する。 【0024】このクラッド層の位置変化量は、一方の光
ファイバから他方の光ファイバへと撮像機の焦点を変え
る際、該光源からの光軸と撮像機の移動軸とが平行にな
っていないことによって生じるもので、具体的には、撮
像機の画像における透過像全体の移動量を示し、コア層
の軸ずれ量を検出する場合、誤差となる。従って、コア
層の軸ずれ量は、クラッド層の位置変化量で補正するこ
とによって、より正確に検出される。 【0025】また、撮像機の移動前後におけるクラッド
層の位置変化量は、コア層の位置変化量に比べて正確に
測定できる。これは、次のような理由である。まず第一
に、図5に示すように、光ファイバ内を透過する光(図
5の線b〜gを参照)は屈折光になるので、撮像機の焦
点位置を動かすと、少なくとも焦点位置を動かす前後い
ずれかでクラッド層−コア層の境界を示す像(図4
(a),(b)では内側暗部7S,7L)は不明瞭にな
るため、コア層の位置はあまり正確に測定できない。こ
れに対し、クラッド層の位置を示す、光ファイバが置か
れている雰囲気−クラッド層の境界は、光ファイバを透
過しないまま撮像機に入射する平行光(図5の線a、h
を参照)の端部を示す像(図4(a),(b)では外側
暗部8S,8Lの外側線)から測定できるので、撮像機
の焦点位置を変化させても明瞭に観測することができ、
その位置を、より正確に測定できる。 【0026】第二に、図5に示すように、焦点位置が符
号αの破線位置の場合と、焦点位置が符号βの破線位置
の場合とで比較した場合、符号βの破線位置の場合の方
が、線aと線bと間隔および線gと線hとの間隔はそれ
ぞれ広くなっている。これらの線の間隔は外側暗部の幅
を示していることから、撮像機をz軸方向に移動させて
焦点位置を変えることにより、外側暗部の幅も変わるこ
とが分かる(図4(a),(b)参照)。従って、特に
小径の光ファイバにおいて、外側暗部の幅が広くなった
際、外側暗部と内側暗部との間隔が狭くなってしまい
(図4(b)参照)、内側暗部の位置、すなわちコア層
の位置を正確に測定するのは困難になる。これに対し、
クラッド層の位置として、例えば外側暗部の外側線の位
置を測定する場合には、このような問題は生じないの
で、より正確な測定を行うことができる。 【0027】以上のように本発明によれば、何も補正し
ない場合やコア層の位置変化量で補正する場合よりも正
確に、異径光ファイバのコア層同士の軸ずれ量を検出す
ることができる。 【0028】 【発明の実施の形態】以下、本発明の実施の形態を図面
に従って詳細に説明する。尚、ここで示す光ファイバ3
S,3Lおよび光源4や撮像機5等の装置類は図2〜図
6において説明したものをそのまま使用しているので説
明を省略する。 【0029】図3に示すように、まず従来通り、両光フ
ァイバ3S,3Lを配置し、光源4から光を両光ファイ
バ3S,3Lに照射する。そして一方の光ファイバ3S
に撮像機5の焦点を合わせ、この状態で、図1(a)に
示すように、この光ファイバ3Sを示す透過像6Sにお
いて、コア層1Sの位置として、内側暗部7S,7S同
士の中点位置CORESS(図面上、一点鎖線の部分)を
測定し、かつクラッド層2Sの位置として、外側暗部8
Sの外側線の位置CLADSSを測定する。尚、外側暗部
8Sの外側線とは、外側暗部8Sにおいて透過像6Sの
軸線方向側の輪郭をなしている両線を示し、ここでは特
に図面上、上側の線を選んで測定している。 【0030】次に他方の光ファイバ3Lに撮像機5の焦
点を合わせ、この状態で、図1(b)に示すように、こ
の光ファイバ3Lを示す透過像6Lにおいて、コア層1
Lの位置として、内側暗部7L,7L同士の中点位置C
ORELLを測定し、かつもう一方の光ファイバ3Sを示
す透過像6Sにおいて、クラッド層2Sの位置として、
外側暗部8Sの外側線の位置CLADLSを測定する。 【0031】そしてコア層1S,1Lの軸ずれ量ΔCO
REを下記(2)式で決定する。 ΔCORE=〔CORESS+(CLADLS−CLADSS)〕−CORELL ・・・(2) 【0032】ここで上記(2)式中の(CLADLS−C
LADSS)という項は、撮像機5の移動による透過像6
Sの位置変化量に関する補正項であり、この補正項によ
りコア層1S,1Lの軸ずれ量ΔCOREはより正確に
求められる。 【0033】さて、上記(2)式で求めた軸ずれ量ΔC
OREを使用した場合と、従来例の(1)式で求めた軸
ずれ量ΔCOREを使用した場合とで、そのΔCORE
を元にして光ファイバ3S,3L同士を調心した上で融
着接続し、融着接続部分において光伝送損失量がどの程
度になったか各10回ずつ調べて、その結果を平均値に
して表1に示した。 【0034】 【表1】 【0035】表1から分かる通り、コア層1S,1Lの
軸ずれ量ΔCOREをクラッド層2Sの位置変化量で補
正した場合(本実施形態例の(2)式)の方が、クラッ
ド層2Sの位置変化量で補正しなかった場合(従来例の
(1)式)に比べて、光ファイバ3S,3Lの融着接続
部分における光伝送損失量が小さくなっていることが分
かる。 【0036】これはコア層1S,1Lの軸ずれ量ΔCO
REをクラッド層2Sの位置変化量で補正した場合の方
が、正確にコア層1S,1Lの軸ずれ量ΔCOREを定
量できるため、と考えられる。以上のように、本発明の
異径の光ファイバ3S,3Lの軸ずれ量検出方法が従来
方法に比べて、より正確にコア層1S,1Lの軸ずれ量
ΔCOREを検出できることが確認された。 【0037】尚、本実施の形態の一例では、コア層1
S,1Lの位置検出を、小径の光ファイバ3S、大径の
光ファイバ3Lという順序で行った例を示したが、本発
明においてコア層1S,1Lの位置検出を行う順序はこ
れに限定されるものではなく、大径の光ファイバ3Lが
先であってもよい。 【0038】そして本実施の形態の一例では、クラッド
層2Sの位置を測定する処理を、コア層1S,1Lの位
置を測定する処理とともに行ったが、本発明における処
理手順はこれに限定されるものではなく、コア層1S,
1Lの位置測定と、該コア層1S,1L位置補正のため
のクラッド層2S,2Lの位置測定とを別々の処理にお
いて行ってもよい。 【0039】さらに本実施の形態の一例では、y軸方向
についてのみコア層1の軸ずれ量ΔCOREを検出した
例を示したが、通常の光ファイバ3S,3L同士の融着
接続等の場合には、y軸方向に加えて、z軸方向につい
てもコア層1S,1Lの軸ずれ量ΔCOREを検出し、
この測定値をもとに光ファイバ3S,3L同士を調心し
た方がよいことは言うまでもない。 【0040】そして本実施の形態の一例では、測定する
クラッド層2Sの位置として、外側暗部8Sの外側線の
位置を求めたが、本発明において測定するクラッド層2
Sの位置はこれに限定されるものではなく、例えば外側
暗部8S,8Sの外側線同士の中点位置であってもよ
い。 【0041】また本実施の形態の一例では、小径の光フ
ァイバ3Sで軸ずれ量ΔCOREの補正を行ったが、本
発明においては、大径の光ファイバ3Lで軸ずれ量ΔC
OREの補正を行ってもよいし、両光ファイバ3S,3
Lで補正値を求め、その平均値をとってもよい。 【0042】そして本実施の形態の一例では、上記
(2)式に示すように、クラッド層2の位置変化量によ
る補正項を(CLADLS−CLADSS)で与えたが、本
発明のクラッド層2の位置変化量による補正項はこれに
限定されず、例えばこの補正項(CLADLS−CLAD
SS)に他の補正係数を乗じた数であってもよい。 【0043】また本実施の形態の一例では、y軸方向の
数値でコア層1S,1Lの軸ずれ量ΔCOREを検出す
る例を示したが、本発明では、例えば光ファイバ3S,
3Lの軸線方向が互いに一致しない場合や、これら光フ
ァイバ3S,3Lの軸線方向(x軸方向)と撮像機5の
画像のラスタ方向(例えばx´軸方向とする)とが一致
しない場合等には、内側暗部7S,7Lや外側暗部8
S,8Lの中心軸線や輪郭線等を、撮像機5の画像の両
軸、x´軸とy´軸において直線y´=ax´+b
(a、b:画像における線の位置や傾き等で決まる定
数)で近似し、これらを用いて光ファイバ3S,3Lの
軸ずれ量ΔCOREの補正、検出を行ってもよい。 【0044】さらに本実施の形態の一例では、コア層1
S,1L同士の外径が同じである例を示したが、本発明
における光ファイバ3S,3Lは、コア層1S,1Lの
外径が異なるもの同士であってもよいことは言うまでも
ない。 【0045】 【発明の効果】本発明の異径光ファイバの軸ずれ量検出
方法によれば、何も補正しない場合やコア層の位置変化
量で補正する場合よりも正確に、異径光ファイバのコア
層同士の軸ずれ量を検出することができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a method for detecting the amount of misalignment of optical fibers having different diameters. 2. Description of the Related Art As shown in FIGS. 2A and 2B, for example, core layers 1S and 1L and core layers 1S and 1L, respectively.
As an example of a method of fusion-splicing a pair of optical fibers 3S, 3L having clad layers 2S, 2L formed outside of L and having different outer diameters of the clad layers 2S, 2L at their end faces, , These optical fibers 3S, 3
The axis deviation ΔCORE of the L core layers 1S, 1L is detected,
Then, there is a method of aligning the optical fibers 3S and 3L based on the amount of axis deviation ΔCORE and fusion-splicing the optical fibers 3S and 3L. The optical fiber 3S has a small diameter and the optical fiber 3L has a large diameter. [0003] FIG. 3 shows a conventional example of a method of detecting the axial deviation ΔCORE between the core layers 1S, 1L in such optical fibers 3S, 3L having different diameters. x axis, one axis orthogonal to the x axis is y
Axis (the axis perpendicular to the plane of the paper in the drawing), and the axis orthogonal to the x-axis and the y-axis is the z-axis, and the axis shift amount ΔC of the core layers 1S and 1L in the y-axis direction.
The example which detects ORE is shown. In FIG. 3, reference numeral 4 denotes a light source disposed on the side of the optical fibers 3S and 3L (here, the z-axis direction), and reference numeral 5 denotes a light source opposite to the optical fibers 3S and 3L. It is an imaging device arranged on the side. This imaging device 5
Is composed of, for example, a lens and a CCD camera for receiving an image enlarged by the lens, and is capable of reciprocating in the z-axis direction by a direct-acting bearing mechanism or the like.
In this example, the outer diameters of the cladding layers 2S and 2L are 90 μm and 125 μm, respectively, between the optical fibers 3S and 3L.
And the outer diameter of the core layers 1S and 1L is 8 μm.
It shows what is the same as. First, as shown in FIG. 3, optical fibers 3S,
3L are arranged in a state where the end faces face each other. Then, light is emitted from the light source 4 to the two optical fibers 3S and 3L, and the image pickup device 5 is moved in the optical axis direction (z-axis direction) so that one of the two optical fibers 3S and 3L (here, Focus on the optical fiber 3S). Thereafter, with the optical fiber 3S focused, the light from the light source 4 is converted by the image pickup device 5 as shown in FIG.
The transmitted images 6S and 6L formed by transmitting the light beams L are observed. FIG. 4A and FIG.
The transmitted images 6S and 6L shown in (b) will be described with reference to FIG. As shown in FIG. 5, the optical fibers 3S and 3L respectively function as cylindrical lenses for the light emitted from the light source 4, and the atmosphere in which the optical fibers 3S and 3L are placed, the core layers 1S and 1L, and the cladding. Since the refractive indices of the layers 2S and 2L are different from each other, the light is refracted as shown by the lines a to h. Lines denoted by reference numerals a and h indicate light passing through the atmosphere side at the boundary between the optical fibers 3S and 3L and the atmosphere in which the optical fibers 3S and 3L are placed. The lines indicated by reference numerals b and g indicate the limit positions of light passing through the cladding layers 2S and 2L and entering the image pickup device 5. That is, light passing between the line a and the line b and between the line h and the line g does not enter the image pickup device 5 because of a large refraction angle. Therefore, for example, when focusing on the positions indicated by the reference numerals α and β in FIG. 5, the portions between the line a and the line b and the portions between the line h and the line g are respectively shown in FIGS.
In (b), dark portions indicated by reference numerals 8S and 8L are obtained. These dark portions are referred to as outer dark portions 8S and 8L. In addition, the outer dark portion 8
S and 8L can be seen two each. In FIG. 5, lines indicated by reference numerals c and f indicate light passing through the cladding layers 2S and 2L at the boundaries between the core layers 1S and 1L and the cladding layers 2S and 2L. Lines indicated by reference numerals d and e indicate light passing through the core layers 1S and 1L at the boundaries between the core layers 1S and 1L and the cladding layers 2S and 2L. Since there is a portion through which light does not pass between the line c and the line d and between the line e and the line f, for example, when focusing on the position indicated by the symbol α or β in FIG.
The portions between the lines c and d and between the lines e and f are:
In FIG. 4A and FIG. 4B, they are dark portions indicated by reference numerals 7S and 7L, respectively. These dark areas are respectively defined as inner dark areas 7S,
7L. Note that the inner dark portions 7S and 7L are also the outer dark portions 8.
As with S and 8L, two can be seen each. As described above, the inner dark portions 7S and 7L indicate the boundary between the core layer 1S and the cladding layer 2S and the boundary between the core layer 1L and the cladding layer 2L, respectively. Therefore, when both transmission images 6S and 6L are observed as shown in FIG. 4A in a state where the optical fiber 3S is focused as described above, the focused optical fiber 3S is shown. In the transmission image 6S, the midpoint position CORE SS between the inner dark portions 7S and 7S is set as the position of the core layer 1S.
Is measured. However, in this state, the other optical fiber 3
Since L is not focused, the inner dark portions 7L and 7L indicating the position of the core layer 1L cannot be clearly seen, and it is difficult to accurately measure the position of the core layer 1L. For this reason, after measuring the position CORE SS of the core layer 1S in one optical fiber 3S as described above, the other optical fiber 3L is also focused as shown in FIG. inner dark portion 7L, on which is be able to see 7L to clearly measure the inner dark portion 7L, a midpoint cORE LL of 7L between the position of the core layer 1L. Thereafter, these two optical fibers 3S, 3L
From the positions of the core layers 1S, 1L, the axis shift amount ΔCORE of the core layers 1S, 1L is determined by the following equation (1). ΔCORE = CORE SS −CORE LL (1) Now, the optical fiber 3 having the different diameter is thus obtained.
Axis shift ΔCOR of core layers 1S and 1L in S and 3L
In the device for detecting E, the moving axis of the imaging device 5 and the light source 4
It is better to make the optical axis as parallel as possible. In practice, however, it is very difficult to configure these units so that they are completely parallel. As shown in FIG. 6, the moving axis of the image pickup device 5 (the thick double arrow in FIG. 6) Line) and the optical axis from the light source 4 (the thin arrow line in FIG. 6) are not almost parallel in most cases. Therefore, in such a case, when the imaging device 5 is moved in the z-axis direction to focus on the respective optical fibers 3S and 3L, the imaging device 5 The observed transmission images 6S and 6L move and shift in the screen, and therefore, the axial shift Δ of the core layers 1S and 1L.
An error occurred in the value of CORE. For this reason, for example, the optical fiber 3 is determined on the basis of the axial deviation ΔCORE of the core layers 1S and 1L including the error.
When the S and 3L are fusion-spliced, the optical fibers 3S and 3L
Optical transmission loss at the fusion spliced part increases,
There was a problem. Such a problem is caused by both optical fibers 3S and 3S.
As the outer diameter difference between the Ls increases, the core layer 1
Since the error of the axis shift amount ΔCORE of S, 1L also becomes large, it becomes serious. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for detecting the amount of misalignment of an optical fiber having a different diameter, which can more accurately measure the amount of misalignment of a core layer. . According to a first aspect of the present invention, there is provided a method of detecting an amount of misalignment of an optical fiber having a different diameter, comprising the steps of: a core layer; a cladding layer formed outside the core layer; And a pair of optical fibers having different outer diameters of the clad layers are arranged in a state where the end faces face each other, and the focus of an image pickup device arranged on both sides of the two optical fibers is focused on one optical fiber. Above, the position of the core layer of this optical fiber is measured by the imager, and the focus of the imager is adjusted to the other optical fiber. Then, the position of the core layer of the optical fiber is measured by the imager. A method for detecting the amount of misalignment of optical fibers of different diameters, which measures and determines the amount of misalignment between the two core layers based on the difference between the positions of the two core layers, wherein each of the optical fibers is focused on an image pickup device. In any one The position of the clad layer is measured with respect to the optical fiber, and the axial deviation between the two core layers is corrected by the positional change amount of the clad layer obtained from the difference between the positions of the clad layers. In the method for detecting the amount of misalignment of optical fibers having different diameters according to the first aspect of the present invention, the position of the cladding layer is determined for any one of the optical fibers in a state where the optical fibers are mutually focused on the imaging device. Is measured, and the amount of axial deviation between the two core layers is corrected by the amount of change in the position of the clad layer obtained from the difference between the positions of the clad layers. When the focal point of the image pickup device is changed from one optical fiber to the other optical fiber, the position change amount of the clad layer is not parallel to the optical axis from the light source and the movement axis of the image pickup device. Specifically, it indicates the amount of movement of the entire transmitted image in the image of the image pickup device, and an error occurs when the amount of axial deviation of the core layer is detected. Therefore, the amount of axis deviation of the core layer can be detected more accurately by correcting with the amount of positional change of the cladding layer. Further, the amount of change in the position of the cladding layer before and after the movement of the imaging device can be measured more accurately than the amount of change in the position of the core layer. This is for the following reason. First, as shown in FIG. 5, light transmitted through the optical fiber (see lines b to g in FIG. 5) becomes refracted light, so that when the focal position of the imaging device is moved, at least the focal position is changed. Image showing the boundary between the cladding layer and the core layer before or after the movement (Fig. 4
In (a) and (b), the inner dark portions 7S and 7L) become unclear, so that the position of the core layer cannot be measured very accurately. On the other hand, the boundary between the atmosphere where the optical fiber is placed and the cladding layer, which indicates the position of the cladding layer, is parallel light (lines a and h in FIG. 5) incident on the imager without passing through the optical fiber.
4 (a) and 4 (b), it is possible to observe clearly even if the focus position of the image pickup device is changed. Can,
The position can be measured more accurately. Second, as shown in FIG. 5, when the focus position is compared with the broken line position indicated by the reference symbol α and the focus position is indicated by the broken line position indicated by the reference character β, The distance between the line a and the line b and the distance between the line g and the line h are wider. Since the interval between these lines indicates the width of the outer dark part, it can be seen that the width of the outer dark part also changes by moving the imaging device in the z-axis direction to change the focal position (FIG. 4A, (B)). Therefore, especially in a small-diameter optical fiber, when the width of the outer dark part is widened, the distance between the outer dark part and the inner dark part becomes narrower (see FIG. 4B), and the position of the inner dark part, that is, the position of the core layer, It becomes difficult to measure the position accurately. In contrast,
For example, when measuring the position of the outer line of the outer dark part as the position of the cladding layer, such a problem does not occur, so that more accurate measurement can be performed. As described above, according to the present invention, it is possible to detect the amount of axial misalignment between core layers of optical fibers of different diameters more accurately than when no correction is performed or when correction is performed using the amount of change in the position of the core layer. Can be. Embodiments of the present invention will be described below in detail with reference to the drawings. The optical fiber 3 shown here
Devices such as S, 3L, the light source 4, and the image pickup device 5 are the same as those described with reference to FIGS. As shown in FIG. 3, first, both optical fibers 3S and 3L are arranged as in the prior art, and light is emitted from the light source 4 to both optical fibers 3S and 3L. And one optical fiber 3S
In this state, as shown in FIG. 1A, in the transmission image 6S showing the optical fiber 3S, the position of the core layer 1S is set to the midpoint between the inner dark portions 7S and 7S. The position CORE SS (indicated by a dashed line in the drawing) was measured, and the position of the cladding layer 2S was determined as the outer dark portion 8.
The position CLAD SS of the outer line of S is measured. Note that the outer line of the outer dark portion 8S indicates both lines that form the contour on the axial direction side of the transmission image 6S in the outer dark portion 8S. Here, the upper line is particularly selected and measured in the drawing. Next, the imaging device 5 is focused on the other optical fiber 3L, and in this state, as shown in FIG. 1B, in the transmitted image 6L showing this optical fiber 3L, the core layer 1
As the position of L, the midpoint position C between the inner dark portions 7L and 7L
OLE LL was measured, and in the transmission image 6S showing the other optical fiber 3S, the position of the cladding layer 2S was defined as
The position CLAD LS of the outer line of the outer dark part 8S is measured. Then, the axial deviation ΔCO of the core layers 1S, 1L
RE is determined by the following equation (2). ΔCORE = [CORE SS + (CLAD LS −CLAD SS )] − CORE LL (2) where (CLAD LS −C in the above equation (2))
LAD SS ) is the transmission image 6 due to the movement of the imaging device 5.
This is a correction term related to the amount of change in the position of S. With this correction term, the axis shift amount ΔCORE of the core layers 1S and 1L can be obtained more accurately. Now, the amount of axis deviation ΔC obtained by the above equation (2)
In the case where the ORE is used, and in the case where the axis shift amount ΔCORE obtained by the conventional equation (1) is used, the ΔCORE is used.
After the optical fibers 3S and 3L are aligned with each other on the basis of the above, fusion splicing is performed, and the amount of optical transmission loss in the fusion spliced portion is examined ten times each, and the results are averaged. The results are shown in Table 1. [Table 1] As can be seen from Table 1, when the axial deviation ΔCORE of the core layers 1S and 1L is corrected by the amount of change in the position of the cladding layer 2S (Equation (2) of the present embodiment), It can be seen that the optical transmission loss at the fusion spliced portions of the optical fibers 3S and 3L is smaller than in the case where the correction is not performed using the position change amount (formula (1)). This is the amount of axis deviation ΔCO of the core layers 1S and 1L.
It is considered that the case where the RE is corrected by the amount of change in the position of the cladding layer 2S can accurately quantify the axis shift amount ΔCORE of the core layers 1S and 1L. As described above, it was confirmed that the method for detecting the amount of axial deviation of the optical fibers 3S and 3L of different diameters of the present invention can more accurately detect the amount of axial deviation ΔCORE of the core layers 1S and 1L as compared with the conventional method. In one example of the present embodiment, the core layer 1
Although the example in which the position detection of S and 1L is performed in the order of the small-diameter optical fiber 3S and the large-diameter optical fiber 3L has been described, the order in which the position detection of the core layers 1S and 1L is performed in the present invention is not limited thereto. Instead, a large-diameter optical fiber 3L may be used first. In the present embodiment, the processing for measuring the position of the cladding layer 2S is performed together with the processing for measuring the positions of the core layers 1S and 1L, but the processing procedure in the present invention is not limited to this. Not the core layer 1S,
The position measurement of 1L and the position measurement of the cladding layers 2S and 2L for correcting the positions of the core layers 1S and 1L may be performed in separate processes. Further, in the example of the present embodiment, an example is shown in which the axis shift amount ΔCORE of the core layer 1 is detected only in the y-axis direction. However, in the case of fusion splicing of ordinary optical fibers 3S, 3L, etc. Detects the axis shift amount ΔCORE of the core layers 1S and 1L in the z-axis direction in addition to the y-axis direction,
Needless to say, it is better to align the optical fibers 3S and 3L based on the measured values. In the example of the present embodiment, the position of the outer line of the outer dark portion 8S is determined as the position of the cladding layer 2S to be measured.
The position of S is not limited to this, and may be, for example, a midpoint position between the outer lines of the outer dark portions 8S, 8S. Further, in one example of the present embodiment, the axial deviation ΔCORE is corrected by the small-diameter optical fiber 3S. However, in the present invention, the axial deviation ΔC is corrected by the large-diameter optical fiber 3L.
The ORE may be corrected, or both optical fibers 3S, 3
The correction value may be obtained by L and the average value may be obtained. In the example of the present embodiment, as shown in the above equation (2), the correction term according to the position change amount of the cladding layer 2 is given by (CLAD LS -CLAD SS ). The correction term based on the position change amount of No. 2 is not limited to this. For example, this correction term (CLAD LS -CLAD
SS ) may be multiplied by another correction coefficient. In the present embodiment, an example has been shown in which the axis shift amount ΔCORE of the core layers 1S, 1L is detected by numerical values in the y-axis direction. However, in the present invention, for example, the optical fibers 3S,
When the axial directions of the 3L do not coincide with each other, or when the axial directions (x-axis direction) of the optical fibers 3S and 3L do not coincide with the raster direction of the image of the image pickup device 5 (for example, the x'-axis direction). Are the inner dark portions 7S and 7L and the outer dark portions 8
The center axis line and the contour line of S, 8L are represented by a straight line y ′ = ax ′ + b on both axes x ′ axis and y ′ axis of the image of the image pickup device 5.
(A, b: constants determined by the position and inclination of the line in the image), and the correction and detection of the axial deviation ΔCORE of the optical fibers 3S, 3L may be performed using these. Further, in one example of the present embodiment, the core layer 1
Although an example is shown in which the outer diameters of S and 1L are the same, it goes without saying that the optical fibers 3S and 3L of the present invention may have different outer diameters of the core layers 1S and 1L. According to the method for detecting the amount of misalignment of an optical fiber having a different diameter according to the present invention, the optical fiber having a different diameter can be more accurately corrected than when no correction is made or when the positional change of the core layer is used. Of the core layers can be detected.

【図面の簡単な説明】 【図1】 (a),(b)本発明の実施の形態の一例と
なる異径光ファイバの軸ずれ量検出方法において、撮像
機に写った画像を示す平面図。 【図2】 (a),(b)本発明の異径光ファイバの軸
ずれ量検出方法に関連する光ファイバ同士の融着接続の
実施態様を示す側面図。 【図3】 本発明に関連する異径光ファイバの軸ずれ量
検出を行う装置の構成を示す側面図。 【図4】 (a),(b)従来の異径光ファイバの軸ず
れ量検出方法の一例において、撮像機に写った画像を示
す平面図。 【図5】 光ファイバを側方から透過する光の屈折を説
明する側面図。 【図6】 本発明に関連する撮像機の移動軸と、光源か
らの光軸との関係を示す側面図。 【符号の説明】 1S,1L コア層 2S,2L クラッド層 3S,3L 光ファイバ 4 光源 5 撮像機 6S,6L 透過像 7S,7L 内側暗部 8S,8L 外側暗部
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 (a) and 1 (b) are plan views showing images captured by an image pickup device in a method of detecting an amount of misalignment of an optical fiber having a different diameter according to an embodiment of the present invention; . FIGS. 2A and 2B are side views showing an embodiment of fusion splicing of optical fibers related to the method of detecting the amount of axial deviation of optical fibers of different diameters according to the present invention. FIG. 3 is a side view showing the configuration of an apparatus for detecting the amount of axial deviation of optical fibers of different diameters related to the present invention. FIGS. 4A and 4B are plan views showing images captured by an image pickup device in an example of a conventional method of detecting the amount of axial deviation of optical fibers having different diameters. FIG. 5 is a side view for explaining refraction of light transmitted through the optical fiber from the side. FIG. 6 is a side view showing a relationship between a movement axis of an image pickup apparatus related to the present invention and an optical axis from a light source. [Description of Signs] 1S, 1L Core layer 2S, 2L Cladding layer 3S, 3L Optical fiber 4 Light source 5 Imager 6S, 6L Transmission image 7S, 7L Inner dark portion 8S, 8L Outer dark portion

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 11/27 G02B 6/255 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G01B 11/27 G02B 6/255

Claims (1)

(57)【特許請求の範囲】 【請求項1】 それぞれ、コア層と、該コア層の外側に
形成されたクラッド層とからなり、かつ互いに前記クラ
ッド層同士の外径が異なる一対の光ファイバを、端面同
士向かい合わせ状態に配置し、 両光ファイバの側方に配置した撮像機の焦点を一方の光
ファイバに合わせた上で、該撮像機により、この光ファ
イバのコア層の位置を測定し、 前記撮像機の焦点を他方の光ファイバに合わせた上で、
該撮像機により、この光ファイバのコア層の位置を測定
し、 これら両コア層の位置の差から該両コア層の軸ずれ量を
決定する異径光ファイバの軸ずれ量検出方法であって、 光ファイバ相互に撮像機の焦点を合わせた状態それぞれ
において、いずれか一方の光ファイバについてクラッド
層の位置を測定し、これらクラッド層の位置の差から求
められるクラッド層の位置変化量で前記両コア層の軸ず
れ量を補正することを特徴とする異径光ファイバの軸ず
れ量検出方法。
(57) Claims 1. A pair of optical fibers each comprising a core layer and a cladding layer formed outside the core layer, wherein the cladding layers have different outer diameters from each other. Are placed face-to-face with each other, and the focus of an image pickup device arranged on both sides of both optical fibers is adjusted to one optical fiber, and then the position of the core layer of the optical fiber is measured by the image pickup device. Then, after focusing on the other optical fiber of the imaging device,
The imaging device measures the position of the core layer of the optical fiber, and determines the amount of axis deviation between the two core layers from the difference between the positions of the two core layers. In each state in which the image pickup device is focused on the optical fibers, the position of the clad layer is measured for one of the optical fibers, and the position change amount of the clad layer obtained from the difference between the positions of the clad layers is used to measure the position of the clad layer. A method for detecting an amount of misalignment of an optical fiber having a different diameter, wherein the amount of misalignment of a core layer is corrected.
JP20352996A 1996-08-01 1996-08-01 Detecting the amount of misalignment of optical fibers of different diameters Expired - Lifetime JP3418296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20352996A JP3418296B2 (en) 1996-08-01 1996-08-01 Detecting the amount of misalignment of optical fibers of different diameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20352996A JP3418296B2 (en) 1996-08-01 1996-08-01 Detecting the amount of misalignment of optical fibers of different diameters

Publications (2)

Publication Number Publication Date
JPH1047939A JPH1047939A (en) 1998-02-20
JP3418296B2 true JP3418296B2 (en) 2003-06-16

Family

ID=16475673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20352996A Expired - Lifetime JP3418296B2 (en) 1996-08-01 1996-08-01 Detecting the amount of misalignment of optical fibers of different diameters

Country Status (1)

Country Link
JP (1) JP3418296B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049063B2 (en) * 2003-09-10 2008-02-20 株式会社デンソー Coaxiality measuring method and coaxiality measuring device
SE530854C2 (en) * 2005-12-30 2008-09-30 Ericsson Telefon Ab L M Alignment of optical fibers in their jointing
US8998511B2 (en) 2008-07-08 2015-04-07 Telefonaktiebolaget L M Ericsson (Publ) Cladding alignment for fusion splicing optical fibers

Also Published As

Publication number Publication date
JPH1047939A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
EP0909966B1 (en) Observation apparatus and fusion splicer for optical fibers
JP2977863B2 (en) Method and apparatus for aligning two fiber ends
JP3500850B2 (en) Method and apparatus for observing butted portion of ribbon-type optical fiber
JP2001194133A (en) Method and apparatus for measuring concentricity of cylindrical parts
JP3418296B2 (en) Detecting the amount of misalignment of optical fibers of different diameters
JP3654904B2 (en) Connecting optical fiber with twin core and fiber with single core
JP2010261730A (en) Method and device for observing optical fiber
JP3595117B2 (en) Array element inspection method and array element inspection apparatus
JPH0534646B2 (en)
JP3389595B2 (en) Optical fiber observation device and fusion splicing device
JP3609623B2 (en) Connection loss estimation method of different diameter core fiber connection and connection method of different diameter core fiber
JP4644983B2 (en) Method and apparatus for measuring end face shape of optical connector
CN114545645B (en) Periscope type integrated optical circuit assembling and adjusting method
JP2004125725A (en) Method and apparatus for measuring refractive index distribution of transparent body
JPH1114853A (en) Optical fiber fusion splicing method
JP3366728B2 (en) Optical fiber observation equipment
JPS62240910A (en) Position detecting method for optical fiber
JPH0625809B2 (en) Optical fiber core observation device
JPH0648323B2 (en) Optical fiber axis deviation measurement method
JPH1026510A (en) Method for detecting position of optical fiber
JP2810775B2 (en) Adjusting the focus position of the scanning optical system
JPH09325231A (en) Method for aligning optical fiber and observation device for alignment of optical fiber
JP2842627B2 (en) Multi-core fusion splicing method for optical fibers
JPH05203827A (en) Method for inspecting juncture of multiple optical fiber
JPS62198804A (en) Axis shift measuring method for optical fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

EXPY Cancellation because of completion of term