JPH0511191A - Optical device for microscope - Google Patents

Optical device for microscope

Info

Publication number
JPH0511191A
JPH0511191A JP3185904A JP18590491A JPH0511191A JP H0511191 A JPH0511191 A JP H0511191A JP 3185904 A JP3185904 A JP 3185904A JP 18590491 A JP18590491 A JP 18590491A JP H0511191 A JPH0511191 A JP H0511191A
Authority
JP
Japan
Prior art keywords
optical system
optical
image
field lens
objective optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3185904A
Other languages
Japanese (ja)
Other versions
JP2990871B2 (en
Inventor
Yumiko Fukuda
由美子 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3185904A priority Critical patent/JP2990871B2/en
Publication of JPH0511191A publication Critical patent/JPH0511191A/en
Application granted granted Critical
Publication of JP2990871B2 publication Critical patent/JP2990871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To hold an entrance pupil position invariably constant by providing an optical means which holds an entrance pupil for a relay optical system at the same position for a shift in exit pupil position due to variation in the magnification of an objective optical system. CONSTITUTION:A parallel plane plate 2 and a visual field lens 3 are provided in a mutually replaceable state at or nearby the position of a spatial image I1 formed by the objective optical system and the relay optical system 1 is so constituted that the side of an image I1 is telecentric. Further, a main light beam Lp from a pupil center position P1 indicating the entrance pupil position of the relay optical system 1 is passed through the parallel plane plate 2 and relay optical system 1 and made incident vertically on an image pickup element arranged on the re-formed image I2. A main light beam L'p from the center position P'1 of the exit pupil of the objective optical system which shifts as the magnification of the objective optical system is varied, on the other hand, is refracted by the visual field lens 3 arranged at or nearby the position of the spatial image I1 formed by the objective optical system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡の対物光学系に
よる空間像を、検出面へリレーしてTVカメラ等で撮影
する際に用いる顕微鏡用光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device for a microscope used for relaying an aerial image by an objective optical system of a microscope to a detection surface and photographing it with a TV camera or the like.

【0002】[0002]

【従来の技術】顕微鏡による被検体の像をテレビカメラ
(TVカメラ)等で観察される場合、対物光学系による
像を直接的にTVカメラ等の検出面に結像させる手法
と、対物光学系による像をリレー光学系を介してTVカ
メラ等の検出面に再結像させる手法とがある。後者の場
合におけるリレー光学系は、TVの特性上、テレセント
リックな光学系が要求される。
2. Description of the Related Art When an image of an object to be examined by a microscope is observed by a television camera (TV camera) or the like, a method of directly forming an image by an objective optical system on a detection surface of the TV camera or the like, and an objective optical system There is a method of re-imaging the image by the image on a detection surface of a TV camera or the like via a relay optical system. In the latter case, the relay optical system is required to be a telecentric optical system due to the characteristics of TV.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、対物光
学系の射出瞳は、対物光学系の倍率の偏光に伴い変動す
る。すなわち、対物光学系の対物レンズの交換等による
倍率の変更、あるいは対物光学系内で互いに異なる焦点
距離のレンズが交換可能に設けられた中間変倍系によ
り、対物光学系の射出瞳は変動する。これによってリレ
ー系の瞳位置も変動してしまいテレセントリック条件が
保たれない。このような瞳位置の変動量はリレー光学系
の倍率の2乗に逆比例する。
However, the exit pupil of the objective optical system changes with the polarization of the magnification of the objective optical system. That is, the exit pupil of the objective optical system is changed by changing the magnification by exchanging the objective lens of the objective optical system, or by an intermediate variable power system in which lenses having different focal lengths are exchangeably provided in the objective optical system. . As a result, the pupil position of the relay system also changes, and the telecentric condition cannot be maintained. Such a change amount of the pupil position is inversely proportional to the square of the magnification of the relay optical system.

【0004】また近年、HD(高品位)カメラの開発な
どTVカメラの画質がかなり向上しており、顕微鏡観察
においても、TVカメラの使用頻度が高くなりつつある
なかで高画質及び大画面による広視野像の要求が高まっ
ている。また撮像素子のサイズも小型化の方向にあり、
リレー系の倍率としては縮小の方向にある。
In recent years, the image quality of TV cameras has improved considerably due to the development of HD (high-definition) cameras, and even during microscope observation, the high image quality and wide screen due to the large screen are being used while the frequency of use of the TV camera is increasing. The demand for visual field images is increasing. In addition, the size of the image sensor is in the direction of miniaturization,
The magnification of the relay system is in the direction of reduction.

【0005】しかしながら、リレー光学系の射出瞳位置
の変動量は、上述の如く、リレー光学系の倍率の2乗に
逆比例するため、あらゆる対物レンズの交換による倍率
変更や中間変倍系の倍率変更にも十分に対応できるよう
な、低倍率のリレー光学系を実現することは困難であっ
た。
However, since the variation amount of the exit pupil position of the relay optical system is inversely proportional to the square of the magnification of the relay optical system as described above, the magnification can be changed by exchanging any objective lens or the magnification of the intermediate variable power system. It has been difficult to realize a low-magnification relay optical system that can sufficiently accommodate changes.

【0006】そこで本発明では、上記問題を解消し、対
物光学系の倍率を変更させてもリレー光学系の入射瞳位
置を常に一定に保ち、テレセントリック条件が保たれる
高性能な顕微鏡用光学装置を得ることを目的とする。
In view of the above, the present invention solves the above problems and maintains a constant telecentric condition for the entrance pupil position of the relay optical system even if the magnification of the objective optical system is changed. Aim to get.

【0007】[0007]

【課題を解決するための手段】上記目的達成のため、請
求項1に記載の発明に係る顕微鏡用光学装置では、対物
光学系による空間像を検出面へリレーするテレセントリ
ックリレー光学系を備えた顕微鏡用光学装置において、
前記空間像またはその近傍位置に、対物光学系の倍率の
変更に伴う射出瞳位置の変化に対して前記リレー光学系
への入射瞳を同一位置に保つ光学手段を備えた。
In order to achieve the above object, in the microscope optical apparatus according to the invention described in claim 1, a microscope equipped with a telecentric relay optical system for relaying an aerial image by an objective optical system to a detection surface. Optical device for
Optical means for maintaining the entrance pupil to the relay optical system at the same position with respect to the change of the exit pupil position due to the change of the magnification of the objective optical system is provided at the aerial image or a position in the vicinity thereof.

【0008】また、請求項2に記載の発明に係る顕微鏡
用光学装置では、請求項1に記載の顕微鏡用光学装置に
おいて、前記光学手段が、前記対物光学系の射出瞳が前
記空間像の位置から比較的遠い場合の第1の倍率状態で
の光路内へ配置される第1の光学要素と、前記対物光学
系の射出瞳が前記空間像の位置に比較的近い場合の第2
の倍率状態での光路内へ配置される第2の光学要素とを
含み、これら第1と第2の光学要素が相互に交換可能に
光路内に配置されるように構成されている。
According to a second aspect of the present invention, there is provided a microscope optical apparatus according to the first aspect, wherein the optical means has an exit pupil of the objective optical system at a position of the aerial image. The first optical element disposed in the optical path in the first magnification state when the distance is relatively far from, and the second optical element when the exit pupil of the objective optical system is relatively close to the position of the aerial image.
And a second optical element disposed in the optical path in the magnification state, the first optical element and the second optical element are configured to be interchangeably disposed in the optical path.

【0009】また、請求項3に記載の発明に係る顕微鏡
用光学装置では、請求項2に記載の顕微鏡用光学装置に
おいて、前記第1及び第2の光学要素の内、一方が平行
平面板であり、他方が視野レンズであり、前記視野レン
ズの主点間隔をS、前記視野レンズの前側主点から対物
光学系により形成される空間像までの距離をD0 、前記
視野レンズの焦点距離をf,前記平行平面板の厚さを
d,前記平行平面板の屈折率をnとするとき、次式をほ
ぼ満足するよう構成されている。 SーD0 2/(f+D0 )=d(1ー1/n)
According to a third aspect of the present invention, there is provided a microscope optical device according to the second aspect, wherein one of the first and second optical elements is a plane parallel plate. The other is a field lens, the principal point interval of the field lens is S, the distance from the front principal point of the field lens to the aerial image formed by the objective optical system is D 0 , and the focal length of the field lens is f, where the thickness of the plane-parallel plate is d, and the refractive index of the plane-parallel plate is n, the following formula is substantially satisfied. S-D 0 2 / (f + D 0 ) = d (1-1 / n)

【0010】[0010]

【作用】本発明では、対物レンズの交換に伴う倍率の変
更や、対物光学系内の中間変倍系等の倍率の変更に伴う
射出瞳位置の変化に応じて、対物光学系の空間像または
その近傍位置に、リレー光学系の入射瞳位置を一定にす
るような光学手段を配置するよう構成されたものである
ため、リレー光学系の倍率を変化させることなく撮像装
置側を常にテレセントリックに保つことができる。
According to the present invention, the aerial image of the objective optical system or the aerial image of the objective optical system is changed according to the change of the magnification accompanying the exchange of the objective lens and the change of the exit pupil position accompanying the change of the magnification of the intermediate variable power system in the objective optical system. Since the optical means for keeping the entrance pupil position of the relay optical system constant is arranged in the vicinity thereof, the imaging device side is always kept telecentric without changing the magnification of the relay optical system. be able to.

【0011】さらに本発明では、前記光学手段として視
野レンズと光路長補正用の平行平面板とが交換可能に配
置されるよう構成され、視野レンズに応じて平行平面板
を適切な屈折率,厚さに設定することでこのリレー光学
系による像の位置変動を防ぐことができる。
Further, in the present invention, as the optical means, a field lens and a parallel plane plate for optical path length correction are arranged so as to be interchangeable, and the parallel plane plate has an appropriate refractive index and thickness according to the field lens. By setting the height to H, it is possible to prevent the position variation of the image due to the relay optical system.

【0012】[0012]

【実施例】以下に、本発明の一実施例に係る顕微鏡用光
学装置を図1を用いて説明する。本実施例の顕微鏡用光
学装置では、対物光学系(図示せず)による空間像I1
は図1の光線Lに示される如く、平行平面板2あるいは
視野レンズ3を介してリレー光学系1により再結像さ
れ、この光学系1により像I1 を撮像装置で撮影させる
ものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical device for a microscope according to an embodiment of the present invention will be described below with reference to FIG. In the microscope optical apparatus of the present embodiment, the aerial image I 1 by the objective optical system (not shown) is used.
1 is re-imaged by the relay optical system 1 via the plane-parallel plate 2 or the field lens 3 as shown by the light ray L in FIG. 1, and the image I 1 is taken by the image pickup device by this optical system 1.

【0013】ここで、対物光学系により形成される空間
像I1 の位置あるいはその近傍において、平行平面板2
及び視野レンズ4は互いに交換可能に設けられており、
リレー光学系1は、像I2 側(検出面側)がテレセント
リックとなるように構成されている。
At the position of the aerial image I 1 formed by the objective optical system or in the vicinity thereof, the plane parallel plate 2
And the field lens 4 are provided interchangeably,
The relay optical system 1 is configured such that the image I 2 side (detection surface side) is telecentric.

【0014】図1において、(a)は対物光学系の射出
瞳位置が空間像I1 の位置から比較的遠い場合の様子を
示す。対物光学系により形成される射出瞳位置を示すと
共にリレー光学系1の入射瞳位置を示す瞳中心位置P1
からの主光線LP は、平行平面板2、リレー光学系1を
介し、再結像された像I2 上に配置された撮像素子(図
示せず)に対して垂直に入射する。なお、撮像素子に達
する主光線は、光軸と平行(テレセントリック)となっ
ているため、リレー光学系1の射出瞳P2 は無限遠の位
置となる。
In FIG. 1, (a) shows a state where the exit pupil position of the objective optical system is relatively far from the position of the aerial image I 1 . A pupil center position P 1 indicating the exit pupil position formed by the objective optical system and indicating the entrance pupil position of the relay optical system 1.
The principal ray L P from the laser beam passes through the plane-parallel plate 2 and the relay optical system 1 and is vertically incident on the image pickup device (not shown) arranged on the re-formed image I 2 . Since the principal ray reaching the image sensor is parallel (telecentric) to the optical axis, the exit pupil P 2 of the relay optical system 1 is located at infinity.

【0015】一方、図1の(b)は、対物光学系の射出
瞳位置が空間像I1 の位置から比較的近い場合の様子を
示している。対物光学系の倍率の変更等に伴い変位した
状態での対物光学系の射出瞳の中心位置P1'からの主光
線LP'は、対物光学系により形成される空間像I1 の位
置もしくはそれの近傍に配置された視野レンズ3の屈折
作用により屈折される。
On the other hand, FIG. 1B shows a state in which the position of the exit pupil of the objective optical system is relatively close to the position of the spatial image I 1 . The chief ray L P ′ from the center position P 1 ′ of the exit pupil of the objective optical system in a displaced state due to the change of the magnification of the objective optical system is the position of the aerial image I 1 formed by the objective optical system or It is refracted by the refracting action of the field lens 3 arranged in the vicinity thereof.

【0016】これにより、図1の(a)の場合と実質的
に等しい位置P1にリレー光学系1の入射瞳を位置させ
ている。従って、視野レンズ3を介した主光線は、図1
の(a)と同様にリレー光学系1を介して、再結像され
た像I2 上に配置された撮像素子に対して垂直に入射す
る。よって、対物光学系の射出瞳が変化した際にも、リ
レー光学系1でのテレセントリック性が常に維持され
る。
As a result, the entrance pupil of the relay optical system 1 is positioned at the position P 1 which is substantially equal to that in the case of FIG. Therefore, the chief ray passing through the field lens 3 is
In the same manner as in (a) above, the light is vertically incident on the image pickup element arranged on the re-formed image I 2 via the relay optical system 1. Therefore, even when the exit pupil of the objective optical system changes, the telecentricity of the relay optical system 1 is always maintained.

【0017】なお、視野レンズ3への切換においても、
リレー光学系の倍率は変化しない。また、視野レンズ3
に応じて平行平面板2の屈折率と厚さとを適切に設定し
ておくことで像5の位置も変動しない。
When switching to the field lens 3,
The magnification of the relay optics does not change. Also, the field lens 3
By appropriately setting the refractive index and the thickness of the plane-parallel plate 2 according to the above, the position of the image 5 does not change.

【0018】次に、平行平面板2及び視野レンズ3の配
置により撮像素子等にて検出される像I2 が変動しない
条件について図2,図3をもって説明する。図2は対物
光学系により空間像が形成される位置近傍に視野レンズ
3が配置された状態での結像関係を示す図である。
Next, the conditions under which the image I 2 detected by the image pickup device or the like does not change due to the arrangement of the plane-parallel plate 2 and the field lens 3 will be described with reference to FIGS. FIG. 2 is a diagram showing an image formation relationship in a state where the field lens 3 is arranged near the position where the aerial image is formed by the objective optical system.

【0019】図2に示す如く、視野レンズ3の配置によ
る像面に移動は、テレセントリックリレー系1の物点が
空間像I1 (第1次像面)からΔD0 だけ移動すること
に起因する。このとき、視野レンズ3の前側主点H0
ら空間像(視野レンズ3の物点)までの軸上距離をD
0 、視野レンズ3の後側主点H1 から視野レンズ3の像
点までの軸上距離をD1 、視野レンズ3の焦点距離をf
とすると、視野レンズ3において次式の如き結像関係が
成立する。
As shown in FIG. 2, the movement to the image plane due to the arrangement of the field lens 3 is due to the object point of the telecentric relay system 1 moving from the aerial image I 1 (primary image plane) by ΔD 0. . At this time, the axial distance from the front principal point H 0 of the field lens 3 to the aerial image (the object point of the field lens 3) is D
0 , the axial distance from the rear principal point H 1 of the field lens 3 to the image point of the field lens 3 is D 1 , and the focal length of the field lens 3 is f
Then, in the field lens 3, the imaging relationship as shown in the following equation is established.

【0020】 1/D1 =1/f+1/D0 ・・・・・・・(1) そして、(1)式を変形すると以下の(2)式となる。 D1 =fD0 /(f+D0 )・・・・・・・(2) また、視野レンズ3の主点間隔をSとすると、図2より
以下の(3)式の関係が成立する。 ΔD0 =−D0 +S+D1 ・・・・・・・・(3) そこで、式(3)を式(2)に代入して変形すると、以
下の(4)式が導入できる。 ΔD0 =S−D0 2/(f+D0 )・・・・・(4)
1 / D 1 = 1 / f + 1 / D 0 ... (1) Then, the formula (1) is transformed into the following formula (2). D 1 = fD 0 / (f + D 0 ) ... (2) Further, when the principal point interval of the field lens 3 is S, the following equation (3) is established from FIG. ΔD 0 = −D 0 + S + D 1 (3) Then, by substituting the equation (3) into the equation (2) and transforming, the following equation (4) can be introduced. ΔD 0 = S−D 0 2 / (f + D 0 ) (4)

【0021】一方、図3は対物光学系により空間像I1
が形成される位置近傍に平行平面板2が配置された状態
での結像関係を示す図である。図3に示す如く、平行平
面板2の配置による像面の移動は、テレセントリックリ
レー光学系1の物点が空間像I1 (第1次像面)からΔ
0 だけ移動することに起因する。
On the other hand, FIG. 3 shows the aerial image I 1 by the objective optical system.
It is a figure which shows the imaging relationship in the state in which the plane parallel plate 2 is arrange | positioned in the vicinity of the position where is formed. As shown in FIG. 3, the movement of the image plane due to the arrangement of the plane-parallel plate 2 is such that the object point of the telecentric relay optical system 1 is Δ from the aerial image I 1 (primary image plane).
This is due to movement by X 0 .

【0022】このとき、平行平面板2の厚さをd、平行
平面板2の屈折率をnとすると、次式(5)の関係が成
立する。 ΔX0 =d(1−1/n)・・・・・・・・(5) 従って、視野レンズ3と平行平面板2との各々の配置に
よる像面移動を同時に補正するためには、(4)式及び
(5)式より、以下の(6)式を満足することが望まし
い。 S−D0 2/(f+D0 )=d(1−1/n)・・・(6)
At this time, assuming that the thickness of the plane-parallel plate 2 is d and the refractive index of the plane-parallel plate 2 is n, the following equation (5) holds. ΔX 0 = d (1-1 / n) (5) Therefore, in order to simultaneously correct the image plane movement due to the respective arrangements of the field lens 3 and the plane parallel plate 2, ( From equations (4) and (5), it is desirable to satisfy the following equation (6). S−D 0 2 / (f + D 0 ) = d (1-1 / n) (6)

【0023】なお、以上の実施例においては、対物光学
系の射出瞳がこの対物光学系により形成される空間像か
ら比較的遠い場合において平行平面板が配置され、対物
光学系の射出瞳がこの対物光学系により形成される空間
像から比較的近い場合において視野レンズが配置されて
いるが、本発明はこれに限るものではない。即ち、場合
に応じて、対物光学系の射出瞳がこの対物光学系により
形成される空間像から比較的遠い場合において視野レン
ズを配置し、対物光学系の射出瞳がこの対物光学系によ
り形成される空間像から比較的近い場合において平行平
面板を配置しても良い。
In the above embodiment, the plane-parallel plate is arranged when the exit pupil of the objective optical system is relatively far from the aerial image formed by the objective optical system, and the exit pupil of the objective optical system is Although the field lens is arranged when it is relatively close to the aerial image formed by the objective optical system, the present invention is not limited to this. That is, depending on the case, when the exit pupil of the objective optical system is relatively far from the aerial image formed by this objective optical system, the field lens is arranged, and the exit pupil of the objective optical system is formed by this objective optical system. A plane-parallel plate may be arranged when it is relatively close to the aerial image.

【0024】[0024]

【発明の効果】以上説明したように、本発明では、対物
光学系の射出瞳位置が変化しても、対物光学系の空間像
またはその近傍位置に交換可能に配置された平行平面板
および視野レンズによって、リレー光学系への入射瞳位
置を一定にし、リレー光学系の倍率を変化させないで撮
像装置側を常にテレセントリックに保つことができる。
As described above, according to the present invention, even if the position of the exit pupil of the objective optical system changes, the plane-parallel plate and the field of view that are exchangeably arranged in the spatial image of the objective optical system or in the vicinity thereof. With the lens, the position of the entrance pupil to the relay optical system can be made constant, and the imaging device side can be always kept telecentric without changing the magnification of the relay optical system.

【0025】また、視野レンズに応じて平行平面板を適
切な屈折率,厚さに設定したことでこのリレー光学系に
よる像の位置変動を防ぐことができる。従って、より低
倍率のリレー光学系が達成でき、より広視野の像が提供
できる。また、空間像の瞳の変動を気にしなくてもすむ
ので、対物レンズや中間変倍などの設計の自由度も向上
するなどの利点がある。
Further, by setting the plane-parallel plate to have an appropriate refractive index and thickness according to the field lens, it is possible to prevent the position variation of the image due to the relay optical system. Therefore, a lower magnification relay optical system can be achieved and a wider field of view image can be provided. Further, since it is not necessary to worry about the variation of the pupil of the aerial image, there is an advantage that the degree of freedom in designing the objective lens and the intermediate magnification is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る顕微鏡用光学装置の概
略光路図である。
FIG. 1 is a schematic optical path diagram of a microscope optical device according to an embodiment of the present invention.

【図2】図1で示した実施例の光学系に視野レンズを配
置した場合を示す概略光路図である。
FIG. 2 is a schematic optical path diagram showing a case where a field lens is arranged in the optical system of the embodiment shown in FIG.

【図3】図1で示した実施例の光学系に平行平面板を配
置した場合を示す概略光路図である。
FIG. 3 is a schematic optical path diagram showing a case where a plane parallel plate is arranged in the optical system of the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1:リレー光学系 2:平行平面板 3:視野レンズ P1 :リレー光学系の入射瞳 P2 :リレー光学系の射出瞳 I1 :対物光学系による空間像 I2 :顕微鏡用光学装置のリレー光学系による像1: relay optical system 2: plane parallel plate 3: field lens P 1 : entrance pupil of relay optical system P 2 : exit pupil of relay optical system I 1 : aerial image of objective optical system I 2 : relay of microscope optical device Image by optical system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 対物光学系による空間像を検出面へリレ
ーするテレセントリックリレー光学系を備えた顕微鏡用
光学装置において、前記空間像またはその近傍位置に、
対物光学系の倍率の変更に伴う射出瞳位置の変化に対し
て前記リレー光学系の入射瞳を同一位置に保つ光学手段
を備えたことを特徴とする顕微鏡用光学装置。
1. An optical device for a microscope comprising a telecentric relay optical system for relaying an aerial image by an objective optical system to a detection surface, wherein the aerial image or a position in the vicinity thereof is provided.
An optical device for a microscope, comprising optical means for keeping the entrance pupil of the relay optical system at the same position with respect to the change of the exit pupil position due to the change of the magnification of the objective optical system.
【請求項2】 前記光学手段が、前記対物光学系の射出
瞳が前記空間像の位置から比較的遠い場合の第1の倍率
状態での光路内へ配置される第1の光学要素と、前記対
物光学系の射出瞳が前記空間像の位置に比較的近い場合
の第2の倍率状態での光路内へ配置される第2の光学要
素とを含み、これら第1と第2の光学要素が相互に交換
可能に光路内に配置されるように構成されていることを
特徴とする請求項1に記載の顕微鏡用光学装置。
2. The first optical element, wherein the optical means is disposed in the optical path in the first magnification state when the exit pupil of the objective optical system is relatively far from the position of the aerial image; A second optical element disposed in the optical path in the second magnification state when the exit pupil of the objective optical system is relatively close to the position of the aerial image, and these first and second optical elements are included. The optical device for a microscope according to claim 1, wherein the optical device for a microscope is configured so as to be interchangeably arranged in the optical path.
【請求項3】 前記第1及び第2の光学要素の内、一方
が平行平面板であり、他方が視野レンズであり、前記視
野レンズの主点間隔をS、前記視野レンズの前側主点か
ら対物光学系により形成される空間像までの距離をD
0 、前記視野レンズの焦点距離をf,前記平行平面板の
厚さをd,前記平行平面板の屈折率をnとするとき、次
式をほぼ満足することを特徴とする請求項2に記載の顕
微鏡用光学装置。 SーD0 2/(f+D0 )=d(1ー1/n)
3. One of the first and second optical elements is a plane-parallel plate and the other is a field lens, and the principal point interval of the field lens is S, from the front principal point of the field lens. The distance to the aerial image formed by the objective optical system is D
0, focal length f of the field lens, the thickness d of the parallel flat plate, the refractive index of the parallel flat plate when the n, according to claim 2, characterized in that substantially satisfies the following equation Optical device for microscope. S-D 0 2 / (f + D 0 ) = d (1-1 / n)
JP3185904A 1991-07-01 1991-07-01 Optical equipment for microscope Expired - Lifetime JP2990871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185904A JP2990871B2 (en) 1991-07-01 1991-07-01 Optical equipment for microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185904A JP2990871B2 (en) 1991-07-01 1991-07-01 Optical equipment for microscope

Publications (2)

Publication Number Publication Date
JPH0511191A true JPH0511191A (en) 1993-01-19
JP2990871B2 JP2990871B2 (en) 1999-12-13

Family

ID=16178921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185904A Expired - Lifetime JP2990871B2 (en) 1991-07-01 1991-07-01 Optical equipment for microscope

Country Status (1)

Country Link
JP (1) JP2990871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092618A (en) * 2019-12-09 2021-06-17 株式会社ミツトヨ Adaptor optical system and variable focal length optical system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088109A1 (en) 2005-02-21 2006-08-24 Olympus Corporation Weak-light specimen imaging unit and weak-light specimen imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092618A (en) * 2019-12-09 2021-06-17 株式会社ミツトヨ Adaptor optical system and variable focal length optical system
CN113031132A (en) * 2019-12-09 2021-06-25 株式会社三丰 Adapter optical system and variable focal length optical system

Also Published As

Publication number Publication date
JP2990871B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
US9684150B2 (en) Optical image capturing system
US9958648B2 (en) Optical image capturing system
US20160377838A1 (en) Optical image capturing system
US10254512B2 (en) Optical image capturing system
US10095006B2 (en) Optical image capturing system
US10078200B2 (en) Optical image capturing system
US10073244B2 (en) Optical image capturing system
US20190285843A1 (en) Optical image capturing system
US11480761B2 (en) Optical image capturing module
TWI638199B (en) Optical image capturing system
TW201935065A (en) Optical image capturing system
JP5496794B2 (en) Solid-state imaging device
TW201632937A (en) Optical image capturing system
US20210072501A1 (en) Optical Image Capturing Module
JPH0511191A (en) Optical device for microscope
US2838601A (en) Optical system
US20060262208A1 (en) Optical low pass filter and image pickup apparatus having the same
US5805941A (en) Camera having focus detecting optical system
US20010003495A1 (en) Finder optical system
JPH10148754A (en) Digital still camera
JP3912891B2 (en) Focus detection device and optical instrument using the same
JPH10312004A (en) Finder optical system for single lens reflex camera
JP3942357B2 (en) Real-image visual field observation system
JPH0345802B2 (en)
JP2001188178A (en) Stepeoscopic microscope

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12