JPH10148754A - Digital still camera - Google Patents

Digital still camera

Info

Publication number
JPH10148754A
JPH10148754A JP30791896A JP30791896A JPH10148754A JP H10148754 A JPH10148754 A JP H10148754A JP 30791896 A JP30791896 A JP 30791896A JP 30791896 A JP30791896 A JP 30791896A JP H10148754 A JPH10148754 A JP H10148754A
Authority
JP
Japan
Prior art keywords
mtf
image
digital still
still camera
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30791896A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Mori
伸芳 森
Masae Sato
正江 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP30791896A priority Critical patent/JPH10148754A/en
Publication of JPH10148754A publication Critical patent/JPH10148754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a still image of high image quality by making an image- pickup lens single body satisfy a specified condition when the best value MTF of defocusing at the center of a screen on (e) line of the image pickup lens not passing through a low-pass filter is taken as the function of a specified spatial frequency. SOLUTION: In an optical system 31, a luminous flux from a subject is transmitted through the image pickup lens, and transmitted through an infrared ray cut filter RF, etc., then, an image is formed on a solid image pickup element CCD. And, the image-pickup lens single body satisfys the flowing condition in the case an MTF(u) is the best value MTF(modulation-transfer-function) in defocusing at the center of the screen at the (e) line of the image pickup lens no passing through the low-pass filter with (u) as a spatial frequency; 0.98< MTF(1/4P)}/}1-(λF/πP)}<1, provided that P denotes the smallest distance between pixels of solid image pickup elements, F denotes an open F number of the image-pickup lens, λ denotes the wavelength of (e) line and πdenotes a ratio of the circumference of a circle to its diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はデジタルスチルカ
メラに係わり、さらに詳しくはローパスフィルタを通し
た撮像レンズによる像を固体撮像素子で受像し静止画像
を得るデジタルスチルカメラに関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a digital still camera, and more particularly, to a digital still camera for receiving a still image through a solid-state image sensor through an image pickup lens passed through a low-pass filter.

【0002】[0002]

【従来の技術】従来より、固体撮像素子を使用したカメ
ラとして動画像用と静止画像用があり、静止画像用のカ
メラは、ビデオカメラ等の動画像用のカメラに比較して
高画質が要求される。また、固体撮像素子を用いたカメ
ラにおいては固体撮像素子の画素間隔の周期性と被写体
のパターン構造、例えば編み目模様等の干渉によりモア
レが発生するのを防止するため、ローパスフィルタと呼
ばれる例えば水晶板の複屈折性を利用して像を二重化し
て等価的な開口率を大きくして防止している。
2. Description of the Related Art Conventionally, there are two types of cameras using a solid-state image sensor, one for a moving image and the other for a still image. A camera for a still image requires a higher image quality than a camera for a moving image such as a video camera. Is done. Further, in a camera using a solid-state imaging device, in order to prevent the occurrence of moire due to the periodicity of pixel intervals of the solid-state imaging device and interference of a pattern structure of a subject, for example, a stitch pattern, a quartz plate called a low-pass filter is used. By using the birefringence of (2), the image is doubled to prevent the equivalent aperture ratio from increasing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ローパ
スフィルタを通した撮像レンズの光学系による静止画像
の画質について研究を重ねていくと十分に満足のいく画
質を得にくいことが分かった。
However, it has been found that it is difficult to obtain a sufficiently satisfactory image quality as the research on the image quality of the still image by the optical system of the imaging lens through the low-pass filter is repeated.

【0004】そこで、固体撮像素子を用いたカメラの静
止画像の画質の向上につき試行錯誤の結果、ローパスフ
ィルタを通さない撮像レンズ単体のMTF(Modur
ation−Transfer−Function)に
関する後述する条件式を満足することで良好な画質を得
られることを見出した。
Therefore, as a result of trial and error with respect to improvement of the image quality of a still image of a camera using a solid-state imaging device, an MTF (Modur) of an imaging lens alone which does not pass through a low-pass filter has been obtained.
It has been found that satisfactory image quality can be obtained by satisfying the conditional expressions described below regarding the operation-Transfer-Function.

【0005】この発明の目的は上記の課題に鑑みなされ
たもので、この発明の目的は従来より良好な静止画像の
画質が得られる固体撮像素子を用いたデジタルスチルカ
メラを提供することにある。
An object of the present invention has been made in view of the above problems, and an object of the present invention is to provide a digital still camera using a solid-state image pickup device capable of obtaining a still image quality better than before.

【0006】[0006]

【課題を解決するための手段】この発明の目的は下記の
ような手段により達成される。即ち、請求項1に記載の
発明のデジタルスチルカメラは、ローパスフィルタを通
した撮像レンズによる像を固体撮像素子で受像して静止
画像を得るデジタルスチルカメラにおいて、前記ローパ
スフィルタを通さない前記撮像レンズのe線における画
面中心でのディフォーカスの最良値のMTFをuを空間
周波数をとしてMTF(u)としたとき、 0.98<{MTF(1/4P)}/{1−(λF/πP)}<1・・(1) 但し、P;固体撮像素子の画素間の最小間隔(mm) F;撮像レンズの開放Fナンバ λ;e線(0.546×10-3mm)の波長 π;円周率 なる条件を満足することを特徴としている。
The object of the present invention is achieved by the following means. That is, in the digital still camera according to the first aspect of the present invention, in the digital still camera which obtains a still image by receiving an image obtained by an imaging lens having passed through a low-pass filter with a solid-state imaging device, the imaging lens does not pass through the low-pass filter. When the MTF of the best value of defocus at the center of the screen at the e-line is MTF (u) where u is a spatial frequency, 0.98 <{MTF (1 / 4P)} / {1- (λF / πP )} <1 .. (1) where P: minimum distance (mm) between pixels of the solid-state imaging device F: open F number of imaging lens λ: wavelength of e-line (0.546 × 10 −3 mm) π Pi is characterized by satisfying the following condition.

【0007】請求項2に記載の発明のデジタルスチルカ
メラは、請求項1に記載のデジタルスチルカメラにおい
て、さらに 0.93<{MTF(1/2P)}/{1−(2λF/πP)}<1・・(2) なる条件を満足することを特徴としている。
A digital still camera according to a second aspect of the present invention is the digital still camera according to the first aspect, further comprising: 0.93 <{MTF (1 / 2P)} / {1- (2λF / πP)}. <1... (2) is satisfied.

【0008】請求項3に記載の発明のデジタルスチルカ
メラは、前記固体撮像素子の画素間の最小間隔P(m
m)が、 0.002<P<0.008・・・(3) なる条件式を満足することを特徴としている。
According to a third aspect of the present invention, in the digital still camera, the minimum interval P (m) between the pixels of the solid-state imaging device is provided.
m) satisfies the following conditional expression: 0.002 <P <0.008 (3)

【0009】ここで、上記条件式(1)、(2)、
(3)の説明に先立ち、説明で使用するMTFと空間周
波数の関係図を図1に示す。図で縦軸はMTF、横軸は
空間周波数をそれぞれ示している。また、UNはナイキ
スト周波数であり、図示の実線(a)はローパスフィル
タを通さない撮像レンズ(光学系)のMTFで、点線
(b)はローパスフィルタを通したときの光学系のMT
Fを示している。また、P点は空間周波数がUN/2の
ときの撮像レンズ単体のMTF値を、Q点は空間周波数
がUNでの撮像レンズ単体のMTF値をそれぞれ示して
いる。
Here, the above conditional expressions (1), (2),
Prior to the description of (3), FIG. 1 shows a relationship diagram between MTF and spatial frequency used in the description. In the figure, the vertical axis indicates MTF, and the horizontal axis indicates spatial frequency. Also, U N is the Nyquist frequency, with MTF of the shown solid line (a) an imaging lens impervious to low-pass filter (optical system), a dotted line (b) is an optical system when passed through a low-pass filter MT
F is shown. Also, P point the MTF value of a single imaging lens when the spatial frequency is U N / 2, Q point spatial frequencies respectively show MTF value of a single imaging lens in U N.

【0010】ここで、各条件式を説明すると、条件式
(1)は回折の影響による物理的な限界値である理想レ
ンズの後述する近似式のMTF値に対する実際の撮像レ
ンズのナイキスト周波数UN/2でのMTF値(図1の
P点)との比を表している。なお、ナイキスト周波数U
Nとは固体撮像画素のピッチ(間隔)Pのモアレが発生
しない空間周波数の限界値を言う。ナイキスト周波数U
Nは一般にUN=1/2Pで表される。
[0010] Here, to describe the conditional expressions, conditional expressions (1) Nyquist frequency of the actual imaging lens for MTF value of the approximate expression will be described later, of an ideal lens which is a physical limit due to the influence of diffraction U N The ratio to the MTF value at P / 2 (point P in FIG. 1) is shown. Note that the Nyquist frequency U
N is a limit value of a spatial frequency at which moire of a pitch (interval) P of solid-state imaging pixels does not occur. Nyquist frequency U
N is generally represented by U N = 1 / P.

【0011】モアレの発生を防止するために、ローパス
フィルタにより、空間周波数がUN以上でのMTFを十
分小さな値となるようにすることは知られているが、U
N/2のポイントにおけるMTF値は画質(コントラス
ト、解像度)の優劣に影響し、また、UN/2以下の空
間周波数でのMTF値にも影響する。前述の条件式
(1)の下限を越えて下まわると、静止画像において、
十分な画質が得られなくなる。
In order to prevent the occurrence of moire, a low-pass filter, but the spatial frequency It is known to be a sufficiently small value MTF at least U N, U
The MTF value at the point of N / 2 affects the quality of image quality (contrast, resolution), and also affects the MTF value at a spatial frequency equal to or lower than UN / 2. When the value goes below the lower limit of the conditional expression (1), in the still image,
Sufficient image quality cannot be obtained.

【0012】また、条件式(2)は回折の影響による物
理的な限界値である理想レンズの後述する近似式のMT
F値に対する実際の撮像レンズのナイキスト周波数UN
でのMTF値(図1のQ点)との比を表している。
The conditional expression (2) is a physical limit value due to the influence of diffraction.
Nyquist frequency U N of the actual imaging lens for F value
Represents the ratio to the MTF value (point Q in FIG. 1).

【0013】前述の条件式(2)の下限を越えて下まわ
ると、静止画像において、十分な画質が得られなくな
る。
When the value goes below the lower limit of the conditional expression (2), sufficient image quality cannot be obtained in a still image.

【0014】さらに、条件式(3)は最適な固体撮像素
子の画素間の最小間隔P(mm)の範囲を表し、条件式
(3)の上限を越えると、十分な画素数を得るために
は、画面サイズが大きくなり、撮像レンズが大型化して
好ましくない。また、条件式(3)の下限を越えて下ま
わると、レンズの回折の影響が大きくなり、絞りのF値
を大きくするだけでMTFの低下が大きく、明るい被写
体に対して十分な画質を得ることが出来なくなる。
Further, conditional expression (3) represents the range of the minimum interval P (mm) between pixels of the optimal solid-state image sensor. When the upper limit of conditional expression (3) is exceeded, it is necessary to obtain a sufficient number of pixels. Is not preferable because the screen size becomes large and the imaging lens becomes large. When the value goes below the lower limit of the conditional expression (3), the influence of the diffraction of the lens becomes large, and the MTF is greatly reduced only by increasing the F-number of the aperture, so that a sufficient image quality can be obtained for a bright subject. I can't do anything.

【0015】ここで、MTFの近似式について説明する
と、理想レンズの光軸上のMTFは、λをe線の波長、
Fを撮像レンズの開放でのFナンバ、uを空間周波数、
θ=cos-1λFuとするとき、 MTF(u)=1/π(2θ−sin2θ) で表される。空間周波数uがあまり大きくないとき、 θ=cos-1λFu=π/2−λFu−1/6(λF
u)3 となり、λFuの3次以上を無視するとθ=π/2−λ
Fuとなり、また、これを代入すると、 sin2θ=sin(π−2λFu)=sin2λFu
=2λFu−(λFu)3/3!+・・・ となり、λFuの3次以上を無視すると、sin2θ=
sin2λFuとなり、これらを代入して、MTF
(u)=1−(4λFu/π)となる。
Here, the approximate expression of the MTF will be described. The MTF on the optical axis of the ideal lens is expressed as follows: λ is the wavelength of the e-line,
F is the F number when the imaging lens is open, u is the spatial frequency,
When θ = cos −1 λFu, MTF (u) = 1 / π (2θ−sin2θ). When the spatial frequency u is not so large, θ = cos −1 λFu = π / 2−λFu − / (λF
u) 3 and neglecting the third or higher order of λFu, θ = π / 2−λ
Fu, and when this is substituted, sin2θ = sin (π−2λFu) = sin2λFu
= 2λFu- (λFu) 3/3 ! +... Ignoring the third order or more of λFu, sin2θ =
sin2λFu, these are substituted, and the MTF
(U) = 1− (4λFu / π).

【0016】[0016]

【発明の実施の形態】ここで、本発明のデジタルスチル
カメラの概略構成を図面に基づき説明する。図2はデジ
タルスチルカメラの概略構成図である。図2で、デジタ
ルスチルカメラ30は光学系31、固体撮像素子CC
D、撮像回路32、フレームメモリ33等で構成されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A schematic configuration of a digital still camera according to the present invention will be described with reference to the drawings. FIG. 2 is a schematic configuration diagram of a digital still camera. In FIG. 2, a digital still camera 30 includes an optical system 31 and a solid-state imaging device CC.
D, an imaging circuit 32, a frame memory 33, and the like.

【0017】デジタルスチルカメラ30は高画質のデジ
タルスチルカメラで、光学系31は被写体からの光束は
撮像レンズを通り、さらに赤外カットフィルタRF、ロ
ーパスフィルタLF、カバーガラスCGを通過して固体
撮像素子CCDに結像している。さらに撮像回路32で
画像データは圧縮して一旦フレームメモリ33に格納さ
れ、取り出されて高画質の静止画像を得るようになって
いる。
The digital still camera 30 is a high-quality digital still camera, and the optical system 31 transmits a light beam from a subject through an imaging lens, further passes through an infrared cut filter RF, a low-pass filter LF, and a cover glass CG, and captures a solid image. An image is formed on the element CCD. Further, the image data is compressed by the image pickup circuit 32, temporarily stored in the frame memory 33, and taken out to obtain a high-quality still image.

【0018】前記撮像レンズ単体はローパスフィルタを
通さない撮像レンズのe線における画面中心でのディフ
ォーカスの最良値のMTFをuを空間周波数としてMT
F(u)としたとき、 0.98<{MTF(1/4P)}/{1−(λF/π
P)}<1 0.93<{MTF(1/2P)}/{1−(2λF/
πP)}<1 なる条件を満足している。但し、Pは固体撮像素子の画
素間の最小間隔(mm)、Fは撮像レンズの開放Fナン
バ、λはe線(0.546×10-3mm)の波長、πは
円周率である。
The image pickup lens alone has an MTF of the best value of defocus at the center of the screen at the e-line of the image pickup lens which does not pass through the low-pass filter.
Assuming that F (u), 0.98 <{MTF (1 / 4P)} / {1- (λF / π
P)} <1 0.93 <{MTF (1 / P)} / {1- (2λF /
πP)} <1. Here, P is the minimum distance (mm) between pixels of the solid-state imaging device, F is the open F number of the imaging lens, λ is the wavelength of the e-line (0.546 × 10 −3 mm), and π is the pi. .

【0019】[0019]

【実施例】以下、この発明の実施例を比較例と共に図面
を参照して説明する。なお、この実施例で使用する符号
を次ぎに示す。fは焦点距離(mm)、Fは絞り値、R
は半径(mm)、Dは間隔(mm)、Ndは屈折率、ν
dはd線のアッベ数、Pは固体撮像素子の画素間の最小
間隔P(mm)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below along with comparative examples with reference to the drawings. The reference numerals used in this embodiment are as follows. f is the focal length (mm), F is the aperture value, R
Is the radius (mm), D is the interval (mm), Nd is the refractive index, ν
d is the Abbe number of the d-line, and P is the minimum interval P (mm) between pixels of the solid-state imaging device.

【0020】また、後述する撮像レンズのMTF値はe
線(0.546×10-3mm)に於ける回折を考慮した
波動光学的なシュミレーションによる値である。但し、
レンズのMTF値は本発明の全ての実施例でローパスフ
ィルタを光路長が等しいカバーガラスで置換した場合の
ものであり、ローパスフィルタの効果を含まない。
An MTF value of an imaging lens described later is e.
This is a value obtained by a wave optics simulation considering diffraction at a line (0.546 × 10 −3 mm). However,
The MTF value of the lens is obtained by replacing the low-pass filter with a cover glass having the same optical path length in all embodiments of the present invention, and does not include the effect of the low-pass filter.

【0021】次に、実施例に用いる固体撮像素子(CC
D)について説明すると、固体撮像素子は実施例1、3
では、ソニー製IC×084Kで、フォーマットは1/
3インチ、単位画素寸法は7.4μ×7.4μ、有効画
素数は659(H)×494(V)で約33万画素のC
CDを用いている。また、実施例2では松下電子工業製
MN3773で、フォーマットは1/2.72インチ、
単位画素寸法は4.6μ×4.6μ、有効画素数は11
52(H)×872(V)で約100万画素のCCDを
用いている。
Next, the solid-state image pickup device (CC
Describing D), the solid-state imaging device is described in the first and third embodiments.
Then, Sony IC × 084K, format is 1 /
3 inch, unit pixel size is 7.4μ × 7.4μ, effective pixel number is 659 (H) × 494 (V) and about 330,000 pixels C
CD is used. In the second embodiment, the format is 1 / 2.72 inch with Matsushita Electronics MN3773.
The unit pixel size is 4.6 μ × 4.6 μ, and the number of effective pixels is 11
A CCD of 52 (H) × 872 (V) and about 1 million pixels is used.

【0022】次に、実施例に用いるローパスフィルタに
ついて図3のローパスフィルタの分解見取図に基づき説
明すると、ローパスフィルタLFは水晶板を用いたもの
で結晶軸の方向の異なる3枚の水晶板を用いている。ロ
ーパスフィルタLFの構成は水晶板の光学軸OA,O
B,OCが撮像レンズ光軸LOに対して45°をなし、
且つ光学軸OA,OB,OCを撮像レンズ光軸LOに垂
直な平面Pに射影したものが画面の長手方向に対して0
°、45°、90°の角をなす3枚の水晶板LFA,L
FB,LFCを組み合わせたものを用いている。また、
各々の水晶板の厚さは下記の表1の通りである。
Next, the low-pass filter used in the embodiment will be described with reference to an exploded view of the low-pass filter shown in FIG. 3. The low-pass filter LF uses a quartz plate, and uses three quartz plates having different crystal axis directions. ing. The configuration of the low-pass filter LF is the optical axis OA, O
B, OC make 45 ° with respect to the imaging lens optical axis LO,
The projection of the optical axes OA, OB, and OC onto a plane P perpendicular to the optical axis LO of the imaging lens is 0 with respect to the longitudinal direction of the screen.
Three crystal plates LFA, L forming angles of °, 45 °, and 90 °
A combination of FB and LFC is used. Also,
The thickness of each quartz plate is as shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例1)本発明の実施例1の撮像レン
ズの光学系断面図を図4に示す。また、実施例1の光学
データを表2に示す。
Embodiment 1 FIG. 4 is a sectional view of an optical system of an imaging lens according to Embodiment 1 of the present invention. Table 2 shows optical data of Example 1.

【0025】[0025]

【表2】 [Table 2]

【0026】この撮像レンズのe線に於けるMTF値は
下記の通りである。
The MTF value of this imaging lens at e-line is as follows.

【0027】 MTF(1/2P)=MTF(67.6)=0.852 MTF(1/4P)=MTF(33)=0.93 (実施例2)本発明の実施例2の撮像レンズの光学系断
面図を図5に示す。また、実施例2の数値データを表3
に示す。
MTF (1 / P) = MTF (67.6) = 0.852 MTF (1 / P) = MTF (33) = 0.93 (Example 2) The imaging lens according to Example 2 of the present invention is described. FIG. 5 is a sectional view of the optical system. Table 3 shows the numerical data of Example 2.
Shown in

【0028】[0028]

【表3】 [Table 3]

【0029】このレンズのe線に於けるMTF値は下記
の通りである。
The MTF value of this lens at the e-line is as follows.

【0030】 MTF(1/2P)=MTF(109)=0.756 MTF(1/4P)=MTF(54.3)=0.882 (実施例3)本発明の実施例3の撮像レンズの光学系断
面図を図6に示す。実施例3の数値データを表4に示
す。
MTF (1 / P) = MTF (109) = 0.756 MTF (1 / P) = MTF (54.3) = 0.882 (Third Embodiment) An imaging lens according to a third embodiment of the present invention is described. FIG. 6 shows a sectional view of the optical system. Table 4 shows numerical data of the third embodiment.

【0031】[0031]

【表4】 [Table 4]

【0032】このレンズのe線に於けるMTF値は下記
の通りである。
The MTF value of this lens at the e-line is as follows.

【0033】広角端で MTF(1/2P)=MTF(67.5)=0.820 MTF(1/4P)=MTF(33)=0.922 中間の焦点距離で MTF(1/2P)=MTF(67.5)=0.828 MTF(1/4P)=MTF(33)=0.922 望遠端で MTF(1/2P)=MTF(675)=0.850 MTF(1/4P)=MTF(33)=0.926 (比較例)比較例は4群構成ズームレンズの撮像レンズ
で、比較例の撮像レンズの光学系断面図を図7に示す。
なお、図は広角端を示している。焦点距離はf=4.5
9−16.02−44.12であり、それぞれのFナン
バはF=1.67−2.05−2.44である。1/3
インチフォーマット57万画素のCCDを用い、有効画
素数33万画素で、このCCDの単位画素寸法はP=
0.006mmである。
At the wide-angle end, MTF (1 / 2P) = MTF (67.5) = 0.820 MTF (1 / 4P) = MTF (33) = 0.922 MTF (1 / 2P) = at an intermediate focal length MTF (67.5) = 0.828 MTF (1 / 4P) = MTF (33) = 0.922 MTF (1 / 2P) = MTF (675) = 0.850 MTF (1 / 4P) = MTF (33) = 0.926 (Comparative Example) A comparative example is an imaging lens of a four-unit zoom lens, and FIG. 7 is a sectional view of an optical system of the imaging lens of the comparative example.
The figure shows the wide-angle end. Focal length is f = 4.5
9-16.02-44.12, and each F number is F = 1.67-2.05-2.44. 1/3
The CCD of inch format 570,000 pixels, the effective pixel number is 330,000 pixels, and the unit pixel size of this CCD is P =
0.006 mm.

【0034】ここで、実施例と比較例の前記条件式
(1)、(2)に対応する値を表5に示す。
Table 5 shows values corresponding to the conditional expressions (1) and (2) of the embodiment and the comparative example.

【0035】[0035]

【表5】 [Table 5]

【0036】表5に示すように実施例は全て前記条件式
を満足している。
As shown in Table 5, all the embodiments satisfy the above conditional expressions.

【0037】(評価)評価方法として、ビデオモニタに
画像を出力して画像の見え味を検査者が目視で評価し
た。被写体距離2mに置いた解像度テストチャートの画
像をテストユニットのフレームメモリに取り込み、また
2mに置いた白黒の市松模様のにじみを評価し、評価は
3段階で、「○」、「△」、「×」で行った。
(Evaluation) As an evaluation method, an image was output to a video monitor, and the inspector visually evaluated the appearance of the image. The image of the resolution test chart placed at an object distance of 2 m is loaded into the frame memory of the test unit, and the black and white checkerboard bleed placed at 2 m is evaluated. × ”.

【0038】 「○」は満足のゆく画質レベル(シャープネス、コント
ラスト) 「△」はやや問題のある画質レベル 「×」は問題のある画質レベル ここで、評価結果を次の表6に示す。
“O” indicates a satisfactory image quality level (sharpness, contrast) “Δ” indicates a somewhat problematic image quality level “×” indicates a problematic image quality level The evaluation results are shown in Table 6 below.

【0039】[0039]

【表6】 [Table 6]

【0040】上記表6に示すように、本発明の実施例は
良好な満足のいく高画質であった。
As shown in Table 6 above, the examples of the present invention showed good, satisfactory and high image quality.

【0041】[0041]

【発明の効果】以上のように構成したので、次のような
効果を奏する。
According to the configuration described above, the following effects can be obtained.

【0042】請求項1ではローパスフィルタを通さない
撮像レンズのe線における画面中心でのディフォーカス
の最良値のMTFをuを空間周波数としてMTF(u)
としたとき、 0.98<{MTF(1/4P)}/{1−(λF/π
P)}<1 なる条件を満足するようにしたので、良好な静止画像の
高画質が得られる固体撮像素子を用いたデジタルスチル
カメラとなった。
In the first aspect, the MTF of the best value of the defocus at the center of the screen at the e-line of the imaging lens that does not pass through the low-pass filter is defined as MTF (u), where u is a spatial frequency.
0.98 <{MTF (1 / 4P)} / {1- (λF / π
P) Since the condition of} <1 was satisfied, a digital still camera using a solid-state imaging device capable of obtaining good still image and high image quality was obtained.

【0043】請求項2では、請求項1に記載のデジタル
スチルカメラにおいて、さらに 0.93<{MTF(1/2P)}/{1−(2λF/
πP)}<1 なる条件を満足するようにしたので、より良好な静止画
像の高画質が得られる固体撮像素子を用いたデジタルス
チルカメラとなった。
According to a second aspect, in the digital still camera according to the first aspect, further, 0.93 <{MTF (1 / 2P)} / {1- (2λF /
πP)} <1 was satisfied, so that a digital still camera using a solid-state imaging device capable of obtaining better still image quality and higher image quality was obtained.

【0044】請求項3では、固体撮像素子の画素間の最
小間隔P(mm)が、 0.002<P<0.008 なる条件式を満足するようにし画素の間隔が最適である
ので、固体撮像素子の大きさが最良で、カメラが大きく
ならず、また、特にF値を大きくしてもMTFの低下が
少ない。
According to the third aspect, the minimum distance P (mm) between the pixels of the solid-state imaging device satisfies the following conditional expression: 0.002 <P <0.008. The size of the imaging element is the best, the camera does not increase, and the MTF does not decrease much even if the F value is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】説明で使用するMTFと空間周波数の関係図で
ある。
FIG. 1 is a diagram illustrating the relationship between MTF and spatial frequency used in the description.

【図2】本発明のデジタルスチルカメラの概略構成図で
ある。
FIG. 2 is a schematic configuration diagram of a digital still camera according to the present invention.

【図3】ローパスフィルタの分解見取図である。FIG. 3 is an exploded perspective view of a low-pass filter.

【図4】本発明の実施例1の撮像レンズの光学系断面図
である。
FIG. 4 is an optical system cross-sectional view of the imaging lens according to the first embodiment of the present invention.

【図5】本発明の実施例2の撮像レンズの光学系断面図
である。
FIG. 5 is an optical system sectional view of an imaging lens according to a second embodiment of the present invention.

【図6】本発明の実施例3の撮像レンズの光学系断面図
である。
FIG. 6 is a sectional view of an optical system of an imaging lens according to a third embodiment of the present invention.

【図7】比較例の撮像レンズの光学系断面図である。FIG. 7 is an optical system sectional view of an imaging lens of a comparative example.

【符号の説明】[Explanation of symbols]

30 デジタルスチルカメラ 31 光学系 32 撮像回路 33 フレームメモリ CCD 固体撮像素子 CG カバーガラス LO 撮像レンズ光軸 LFA,LFB,LFC 水晶板 LF ローパスフィルタ OA,OB,OC 光学軸 RF 赤外カットフィルタ Reference Signs List 30 digital still camera 31 optical system 32 imaging circuit 33 frame memory CCD solid-state imaging device CG cover glass LO imaging lens optical axis LFA, LFB, LFC quartz plate LF low-pass filter OA, OB, OC optical axis RF infrared cut filter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ローパスフィルタを通した撮像レンズに
よる像を固体撮像素子で受像して静止画像を得るデジタ
ルスチルカメラにおいて、前記ローパスフィルタを通さ
ない前記撮像レンズのe線における画面中心でのディフ
ォーカスの最良値のMTFをuを空間周波数としてMT
F(u)としたとき、 0.98<{MTF(1/4P)}/{1−(λF/π
P)}<1 但し、P;固体撮像素子の画素間の最小間隔(mm) F;撮像レンズの開放Fナンバ λ;e線(0.546×10-3mm)の波長 π;円周率 なる条件を満足することを特徴とするデジタルスチルカ
メラ。
1. A digital still camera for obtaining a still image by receiving an image from an imaging lens passed through a low-pass filter with a solid-state imaging device, and defocusing the imaging lens at the center of the screen at e-line without passing through the low-pass filter. M is the best value of
Assuming that F (u), 0.98 <{MTF (1 / 4P)} / {1- (λF / π
P)} <1 where P; minimum distance (mm) between pixels of the solid-state imaging device F; open F number of imaging lens λ; wavelength of e-line (0.546 × 10 −3 mm) π; A digital still camera characterized by satisfying certain conditions.
【請求項2】 請求項1に記載のデジタルスチルカメラ
において、さらに 0.93<{MTF(1/2P)}/{1−(2λF/
πP)}<1 なる条件を満足することを特徴とするデジタルスチルカ
メラ。
2. The digital still camera according to claim 1, further comprising: 0.93 <{MTF (1 / 2P)} / {1- (2λF /
πP)} <1. A digital still camera characterized by satisfying the following condition:
【請求項3】 前記固体撮像素子の画素間の最小間隔P
(mm)が、 0.002<P<0.008 なる条件式を満足することを特徴とする請求項1または
2に記載のデジタルスチルカメラ。
3. A minimum interval P between pixels of the solid-state imaging device.
The digital still camera according to claim 1, wherein (mm) satisfies the following conditional expression: 0.002 <P <0.008.
JP30791896A 1996-11-19 1996-11-19 Digital still camera Pending JPH10148754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30791896A JPH10148754A (en) 1996-11-19 1996-11-19 Digital still camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30791896A JPH10148754A (en) 1996-11-19 1996-11-19 Digital still camera

Publications (1)

Publication Number Publication Date
JPH10148754A true JPH10148754A (en) 1998-06-02

Family

ID=17974740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30791896A Pending JPH10148754A (en) 1996-11-19 1996-11-19 Digital still camera

Country Status (1)

Country Link
JP (1) JPH10148754A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347102A (en) * 1999-06-04 2000-12-15 Konica Corp Zoom lens
JP2002204390A (en) * 2000-10-26 2002-07-19 Canon Inc Camera
US6545714B1 (en) 1999-02-22 2003-04-08 Olympus Optical Co., Ltd. Image pickup apparatus
US7116487B2 (en) 2001-01-18 2006-10-03 Olympus Corporation Image pickup system
US7170559B2 (en) 1999-02-25 2007-01-30 Olympus Corporation Image pickup apparatus having a beam limiting member
WO2017065169A1 (en) * 2015-10-16 2017-04-20 オリンパス株式会社 Objective optical system for endoscopes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545714B1 (en) 1999-02-22 2003-04-08 Olympus Optical Co., Ltd. Image pickup apparatus
US7170559B2 (en) 1999-02-25 2007-01-30 Olympus Corporation Image pickup apparatus having a beam limiting member
JP2000347102A (en) * 1999-06-04 2000-12-15 Konica Corp Zoom lens
JP2002204390A (en) * 2000-10-26 2002-07-19 Canon Inc Camera
JP4551570B2 (en) * 2000-10-26 2010-09-29 キヤノン株式会社 camera
US7116487B2 (en) 2001-01-18 2006-10-03 Olympus Corporation Image pickup system
US7136230B2 (en) 2001-01-18 2006-11-14 Olympus Corporation Image pickup system
WO2017065169A1 (en) * 2015-10-16 2017-04-20 オリンパス株式会社 Objective optical system for endoscopes
JPWO2017065169A1 (en) * 2015-10-16 2017-10-12 オリンパス株式会社 Endoscope objective optical system
CN108139568A (en) * 2015-10-16 2018-06-08 奥林巴斯株式会社 Objective lens optical system for endoscope
US10564406B2 (en) 2015-10-16 2020-02-18 Olympus Corporation Objective optical system for endoscope
CN108139568B (en) * 2015-10-16 2020-07-24 奥林巴斯株式会社 Objective optical system for endoscope

Similar Documents

Publication Publication Date Title
US8749696B2 (en) Image pickup apparatus having an exit pupil with divided areas
US5781236A (en) Image sensing apparatus and image sensing method
JPH058579Y2 (en)
JP2007097652A (en) Endoscope
JPH10148754A (en) Digital still camera
US6111608A (en) Electronic camera equipped with low-pass filter and lens system having resolving power
JPH0833527B2 (en) Imaging system with optical low-pass filter
JPS6396618A (en) Image pickup device
US20090316113A1 (en) Mapping optical images onto an image sensor by means of a fiber optic face plate or a fiber optic taper
US20060262208A1 (en) Optical low pass filter and image pickup apparatus having the same
JP4546781B2 (en) Imaging apparatus and color misregistration correction program
JPH0465993A (en) Optical axis adjustment method for video camera
JPS63307423A (en) Image pickup element with optical low-pass effect
JPH0338978A (en) Image pickup device
KR970003767B1 (en) A zoom lens
JP2579224B2 (en) Imaging device
JPH059767B2 (en)
JP2512943B2 (en) Imaging device having optical low-pass filter
JP3296837B2 (en) Endoscope imaging device
JP2939637B2 (en) Imaging optical system
KR100234290B1 (en) Optical low pass filter
JP3752277B2 (en) Electronic imaging apparatus having mirror scan function
JP2572152B2 (en) Imaging device
JP3283051B2 (en) Imaging device
JP2022112125A (en) Distance measurement device, computer program, and distance measurement method