JPS609363B2 - Microwave cavity resonator - Google Patents

Microwave cavity resonator

Info

Publication number
JPS609363B2
JPS609363B2 JP49112290A JP11229074A JPS609363B2 JP S609363 B2 JPS609363 B2 JP S609363B2 JP 49112290 A JP49112290 A JP 49112290A JP 11229074 A JP11229074 A JP 11229074A JP S609363 B2 JPS609363 B2 JP S609363B2
Authority
JP
Japan
Prior art keywords
cavity resonator
cavity
resonator
ceramic
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49112290A
Other languages
Japanese (ja)
Other versions
JPS5140054A (en
Inventor
博孝 山本
秀明 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP49112290A priority Critical patent/JPS609363B2/en
Publication of JPS5140054A publication Critical patent/JPS5140054A/en
Publication of JPS609363B2 publication Critical patent/JPS609363B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は新規な材料により構成されたマイクロ波用空洞
共振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microwave cavity resonator constructed from a novel material.

さらに詳しくいえば、本発明は使用温度の変化により共
振周波数の変動を生じない、すなわち使用温度の変化に
対し安定な空洞共振器に関するものである。
More specifically, the present invention relates to a cavity resonator that does not cause fluctuations in resonance frequency due to changes in operating temperature, that is, is stable against changes in operating temperature.

マイクロ波の伝播過程において空洞を設置し、マイクロ
波の中の特定周波数域を吸収させる装置は、いわゆるマ
イクロ波用空洞共振器としてよく知られている。
A device that installs a cavity in the microwave propagation process and absorbs a specific frequency range of the microwave is well known as a so-called microwave cavity resonator.

このマイクロ波用空洞共振器は、通常黄銅やアルミニウ
ムのような材料で構成し、その内面に、銀、銅、金など
の電気比抵抗の小さい金属をメッキすることにより製造
される。
This microwave cavity resonator is usually made of a material such as brass or aluminum, and is manufactured by plating the inner surface of the material with a metal having low electrical resistivity such as silver, copper, or gold.

しかしながら、これらの一般に使用されている材料は、
熱膨張係数がかなり大きいため、使用温度の変化と共に
空洞の長さが変化し、共振周波数の変動をもたらす。こ
のような共振周波数の変動を抑制するために、従来、比
較的熱膨張係数の小さい合金をたとえばアンパールなど
を用いて構成することが行なわれてきたが、これは特殊
合金であるため高価である上に加工がむずかしいという
欠点がある。本発明者らは、入手が容易で成形がしやす
く、しかも使用温度の変化により共振周波数の変動を生
じないマイクロ波用空洞共振器を開発するため鋭意研究
を重ねた結果、この空洞共振器の構造材は必ずしも金属
材料を用いる必要はなく、セラミックスのような材料で
も差し支えないこと、セラミックスの中にはち密でしか
も熱膨張係数の著しく小さいものがあることを見出し、
先にアンバールの代りにスポジューメン系セラミックス
、チタン酸アルミニウム系セラミックスおよびそれらの
ガラスセラミックスを用いたマイクロ波用空洞共振器を
提案したが、さらに研究を重ねた結果、コージェライト
系のセラミックスの中で、一80qCから+150oo
の範囲の熱膨張係数が±20xlo‐7/deg以内で
、かつ吸水率が実質的に0のものがマイクロ波用空洞共
振器の材料として特に優れていることを見出し、′この
知見に基づいて本発明をなすに至った。
However, these commonly used materials are
Due to the rather large coefficient of thermal expansion, the length of the cavity changes with changes in the operating temperature, resulting in variations in the resonant frequency. In order to suppress such fluctuations in the resonant frequency, it has conventionally been possible to use an alloy with a relatively small coefficient of thermal expansion, such as Ampar, but this is a special alloy and is therefore expensive. The disadvantage is that it is difficult to process. The inventors of the present invention have conducted intensive research to develop a microwave cavity resonator that is easy to obtain, easy to mold, and does not cause fluctuations in resonance frequency due to changes in operating temperature. We discovered that structural materials do not necessarily have to be metal materials, but materials such as ceramics can also be used, and that some ceramics are dense and have a significantly small coefficient of thermal expansion.
Previously, we proposed microwave cavity resonators using spodumene ceramics, aluminum titanate ceramics, and their glass ceramics instead of amber, but as a result of further research, we found that among cordierite ceramics, -180qC to +150oo
We found that materials with a thermal expansion coefficient within ±20xlo-7/deg and a water absorption of essentially 0 are particularly excellent as materials for microwave cavity resonators. The present invention has been accomplished.

すなわち、本発明は、空洞体状セラミックスの内面に金
属被覆層を有する構造の空洞共振器において、前記セラ
ミックスとして、M処,A〆203およびSi02をそ
れぞれ頂点とする組成三角図表におけるこれら3成分の
座標2,33,65、2,53,45、20,15,6
5、10,55,35、30,16,55および30,
35,35の6点で囲まれた範囲の基本組成を有し、さ
らに少量のFe203、アルカリ士金属酸化物およびァ
ルカリ金属酸化物、および所望に応じMぬとAそ203
とSi02の合計量に基づき25重量%以下のSn02
を含有するコージェラィト系セラミックスであって、一
80ご0なし、し150q0における熱膨張係数が±2
0×10‐7/deg以内、吸水率が実質的に0のもの
を用いたことを特徴とするものである。
That is, the present invention provides a cavity resonator having a structure in which a metal coating layer is provided on the inner surface of a cavity-shaped ceramic, in which, as the ceramic, these three components in a triangular composition diagram with M location, A〆203, and Si02 as vertices, respectively. Coordinates 2, 33, 65, 2, 53, 45, 20, 15, 6
5, 10, 55, 35, 30, 16, 55 and 30,
It has a basic composition in the range surrounded by the six points 35, 35, and further contains small amounts of Fe203, alkali metal oxides and alkali metal oxides, and MnutoAso203 as desired.
and 25% by weight or less of Sn02 based on the total amount of Si02
Cordierite-based ceramics containing
It is characterized in that a material having a water absorption rate of substantially 0 within 0×10-7/deg is used.

本発明の空洞共振器の1例を添付図面により説明する。
図は導波管に接続した空洞共振器の断面図であり、黄洞
8の内面に銀〆ッキ7を施こしてなる導波管1に空洞共
振器2が側管3により取り付けられた状態を示している
。空洞共振器2は、コージヱラィト系セラミックスの層
6とその内面に被覆された金属層7から構成されている
。この部分の形状は同筒,角筒のいずれでもよい。導波
管1の入力口4から出力口5へ向ってマイクロ波が移動
すると、空洞の長さのこ対し〆=n^(nは整数)の関
係をもつ波長入の周波数が吸収除去され、残りの部分が
出力となる。この空洞共振器におけるコージェラィト系
のセラミックス層は通常1〜5側の厚さに構成され、そ
の内面に被覆される金属層の厚さは1〜50〃の範囲で
選ばれる。
An example of the cavity resonator of the present invention will be explained with reference to the accompanying drawings.
The figure is a cross-sectional view of a cavity resonator connected to a waveguide, in which a cavity resonator 2 is attached to a waveguide 1 with a silver plate 7 applied to the inner surface of a yellow cavity 8 through a side tube 3. Indicates the condition. The cavity resonator 2 is composed of a cordierite ceramic layer 6 and a metal layer 7 coated on the inner surface thereof. The shape of this part may be either a straight cylinder or a rectangular cylinder. When the microwave moves from the input port 4 to the output port 5 of the waveguide 1, the frequency of the input wavelength having the relationship of 〆=n^ (n is an integer) with respect to the length of the cavity is absorbed and removed. The remaining part becomes the output. The cordierite ceramic layer in this cavity resonator is usually configured to have a thickness of 1 to 5 mm, and the thickness of the metal layer coated on the inner surface is selected within the range of 1 to 50 mm.

金属層の厚さがこれよりも小さいと、共振器の内面に均
一に被覆し導電性を付与することが十分に行なわれない
。他方、この厚さを50Aよりも大きくすると内面の導
電性金属の熱膨張係数の影響が大きくなり、所要の効果
が得られない。本発明において内面に被覆される金属と
しては、銀、銅、金、アルミニウムなどが用いられるが
、銀が最も好ましい。
If the thickness of the metal layer is smaller than this, it will not be possible to uniformly coat the inner surface of the resonator and provide sufficient conductivity. On the other hand, if this thickness is made larger than 50A, the influence of the coefficient of thermal expansion of the conductive metal on the inner surface becomes large, and the desired effect cannot be obtained. In the present invention, silver, copper, gold, aluminum, etc. are used as the metal to be coated on the inner surface, but silver is most preferred.

本発明におけるセラミックスとしては、 Mg○,Aそ203およびSi02の基本組成に関し、
これら3成分の座標2,33,65、2,53,45、
20,15,66、10,55,35、30,15,5
5および30,35,35の6点で囲まれた範囲にあり
、さらに少量例えば外量として1の重量%以下のFe2
03、アルカリ士金属酸化物およびアルカリ金属酸化物
を含有するものが用いられる。
Regarding the basic composition of the ceramics in the present invention, Mg○, Aso203 and Si02,
Coordinates of these three components 2, 33, 65, 2, 53, 45,
20, 15, 66, 10, 55, 35, 30, 15, 5
5 and 30, 35, 35, and a smaller amount, for example, an external amount of less than 1% by weight of Fe2
03, those containing an alkali metal oxide and an alkali metal oxide are used.

このセラミックスはこれら必須成分のほか外量で25重
量%までのスズの酸化物を含んでいても、所望の機能が
そこなわれることはない。セラミックスは、一800○
ないし15000における熱膨張係数が±20×10‐
1′ノdeg以内、吸水率が実質的に0であることが必
要である。本発明において用いられるコージェラィト系
セラミックスは、前記したように低熱膨張係数を有する
という条件に加えて、吸水率が実質的に0でなければな
らない。
Even if this ceramic contains up to 25% by weight of tin oxide in addition to these essential components, the desired function will not be impaired. Ceramics is 1800○
Thermal expansion coefficient between 15,000 and ±20×10-
It is necessary that the water absorption rate be substantially 0 within 1' degree. In addition to having a low coefficient of thermal expansion as described above, the cordierite ceramic used in the present invention must have a water absorption rate of substantially 0.

このような吸水率をもたないものはマイクロ波用空洞共
振器として用いたときに、水蒸気の吸収、放出を伴い、
電気的測定値が変動するのを免れない。そして、本発明
は、マイクロ波用空洞共振器の動作温度である−80o
oないし150qoにおいて低膨張を示し、かつ優れた
電気的安定性を示すコージェラィトの組成範囲を見出し
たという点をもってその特徴としているのである。これ
らのセラミックスはち密なもの、すなわち気孔率0.5
%以下のものでなければならない。
When a material that does not have such a water absorption rate is used as a microwave cavity resonator, it absorbs and releases water vapor.
Electrical measurements are subject to fluctuations. The present invention also provides an operating temperature of -80oC for a microwave cavity resonator.
It is characterized by the discovery of a composition range of cordierite that exhibits low expansion in the range from 0 to 150 qo and exhibits excellent electrical stability. These ceramics are dense, with a porosity of 0.5
% or less.

本発明の空洞共振器は、従来の黄銅に銀〆ッキしたもの
に比べて、温度による吸収周波数の変化が小さいので温
度変化のひんぱんな部分、温度変化による周波数の変動
が好ましくない装置に用いることができる。次に実施例
によって本発明をさらに詳細に説明する。
The cavity resonator of the present invention has a smaller change in absorption frequency due to temperature than conventional brass plated with silver, so it can be used in areas with frequent temperature changes and in devices where frequency fluctuations due to temperature changes are undesirable. be able to. Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 所定の成分を混合し、添付図面に示す形状に成形したの
ち1100〜130000で仮焼し、さらに1250〜
1440ooの範囲の所定温度で焼成することにより、
種々の組成のセラミックスを構造材とした空洞共振器を
得た。
Example 1 Predetermined ingredients were mixed, formed into the shape shown in the attached drawings, calcined at 1100 to 130,000, and further heated to 1250 to 130,000.
By firing at a predetermined temperature in the range of 1440oo,
Cavity resonators using ceramics of various compositions as structural materials were obtained.

このものの空洞の径は1仇吻、空洞の長さは12.5側
、構造材の厚さは2側であった。また、空洞内部には銀
〆ッキにより5仏の被覆を施こした。次に周波数11本
日Zのマイクロ波を*用いて、共振器の温度に対する周
波数変化率(△f/f)△Tを求め、構造材の熱膨張係
数(△夕/夕)/△Tと共に第1表を示した。表中のR
Oはアルカリ士金属の酸化物R′20はアルカリ金属の
酸化物である。
The diameter of this cavity was 1 mm, the length of the cavity was 12.5 mm, and the thickness of the structural material was 2 mm. Furthermore, the inside of the cavity was covered with five Buddha statues using silver plating. Next, using the microwave of frequency 11 today Z *, find the frequency change rate (△f/f)△T with respect to the temperature of the resonator, and calculate the coefficient of thermal expansion of the structural material (△evening/evening)/△T. 1 table is shown. R in the table
O is an oxide of an alkali metal; R'20 is an oxide of an alkali metal.

第1表 実施例 2 原料配合時に酸化スズの所定量を加え、実施例1と同じ
ようにしてセラミックスを製造した。
Table 1 Example 2 Ceramics were produced in the same manner as in Example 1 by adding a predetermined amount of tin oxide when blending the raw materials.

このものの磁器特性および共振器特性を第2表に示す。
第2表 比較例 実施例1におけるセラミックスとして、吸水率1.5%
のコージェライト系セラミックスを用いる以外は、全く
同じ構造の空洞共振器を製造した。
The ceramic characteristics and resonator characteristics of this material are shown in Table 2.
Table 2 Comparative Example As the ceramic in Example 1, water absorption rate 1.5%
A cavity resonator with exactly the same structure was manufactured, except that cordierite ceramics were used.

この共振器をそれぞれ相対湿度10%と80%の条件下
で使用したところ、共振器特性は0.1×10‐6/d
egから0.5×10‐6/degの範囲で変動するの
が認められた。このように、たとえ内面を金属で被覆し
た場合でも吸水率が実質的に0でないセラミックス部品
は、使用中に吸湿し、この湿分が使用条件で変動して周
波数のずれを生じ、共振器特性が変動する。
When this resonator was used under conditions of relative humidity of 10% and 80%, the resonator characteristics were 0.1×10-6/d.
A variation in the range of 0.5×10-6/deg from eg was observed. In this way, even if the inner surface is coated with metal, ceramic parts whose water absorption rate is not essentially 0 will absorb moisture during use, and this moisture will fluctuate depending on the usage conditions, causing frequency deviations and affecting the resonator characteristics. changes.

【図面の簡単な説明】[Brief explanation of the drawing]

図は導波管に結合した本発明共振器の1例を示す縦断面
図であり、図中符号6はセラミックス層、7は金属層を
示す。
The figure is a longitudinal sectional view showing an example of the resonator of the present invention coupled to a waveguide, in which reference numeral 6 indicates a ceramic layer and 7 indicates a metal layer.

Claims (1)

【特許請求の範囲】[Claims] 1 空洞体状セラミツクスの内面に金属被覆層を有する
構造の空洞共振器において、前記セラミツクスとして、
MgO,Al_2O_3およびSiO_2をそれぞれ頂
点とする組成三角図表におけるこれら3成分の座標2,
33,65、2,53,45、20,15,65、10
,55,35、30,15,55および30,35,3
5の6点で囲まれた範囲の基本組成を有し、さらに少量
のFe_2O_3、アルカリ土金属酸化物およびアルカ
リ金属酸化物、および所望に応じMgOとAl_2O_
3とSiO_2の合計量に基づき25重量%以下のSn
O_2を含有するコージエライト系セラミツクスであつ
て、−80℃ないし150℃における熱膨張係数が±2
0×10^−^7/deg以内、吸水率が実質的に0の
ものを用いたことを特徴とするマイクロ波用空洞共振器
1. In a cavity resonator having a structure in which a metal coating layer is provided on the inner surface of a cavity body-shaped ceramic, as the ceramic,
The coordinates 2 of these three components in the composition triangular diagram with MgO, Al_2O_3 and SiO_2 as vertices, respectively.
33, 65, 2, 53, 45, 20, 15, 65, 10
,55,35,30,15,55 and 30,35,3
It has a basic composition in the range surrounded by the six points of 5, and further contains small amounts of Fe_2O_3, alkaline earth metal oxides and alkali metal oxides, and MgO and Al_2O_ as desired.
25% by weight or less of Sn based on the total amount of 3 and SiO_2
Cordierite ceramics containing O_2, with a thermal expansion coefficient of ±2 between -80°C and 150°C.
A microwave cavity resonator characterized in that a cavity resonator for microwaves is used that has a water absorption rate of substantially 0 within 0x10^-^7/deg.
JP49112290A 1974-10-01 1974-10-01 Microwave cavity resonator Expired JPS609363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49112290A JPS609363B2 (en) 1974-10-01 1974-10-01 Microwave cavity resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49112290A JPS609363B2 (en) 1974-10-01 1974-10-01 Microwave cavity resonator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16103183A Division JPS5981902A (en) 1983-09-01 1983-09-01 Manufacture of cavity resonator for microwave

Publications (2)

Publication Number Publication Date
JPS5140054A JPS5140054A (en) 1976-04-03
JPS609363B2 true JPS609363B2 (en) 1985-03-09

Family

ID=14582977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49112290A Expired JPS609363B2 (en) 1974-10-01 1974-10-01 Microwave cavity resonator

Country Status (1)

Country Link
JP (1) JPS609363B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529267A (en) * 1967-10-20 1970-09-15 Corning Glass Works Microwave cavity resonator using coated fused silica or glass ceramic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529267A (en) * 1967-10-20 1970-09-15 Corning Glass Works Microwave cavity resonator using coated fused silica or glass ceramic

Also Published As

Publication number Publication date
JPS5140054A (en) 1976-04-03

Similar Documents

Publication Publication Date Title
JPS60176967A (en) Alumina ceramic composition
JPS609363B2 (en) Microwave cavity resonator
JPS6114681B2 (en)
JPS605083B2 (en) Microwave cavity resonator
JPS5951084B2 (en) dielectric porcelain material
JP2000086337A (en) Dielectric porcelain composition for low-temperature firing
JPS5923044B2 (en) dielectric resonator
JPH0377146B2 (en)
JPS5949649B2 (en) Materials for dielectric resonators
JPS6161561B2 (en)
JPS6259076B2 (en)
JPH0616470A (en) Ceramic substrate and its production
JPS5949650B2 (en) Materials for dielectric resonators
JPH0231029B2 (en)
JPH05174627A (en) High frequency dielectric porcelain composition
JPS5948486B2 (en) dielectric resonator
JPH0256305B2 (en)
JPS5948485B2 (en) dielectric resonator
JPS6044905A (en) Dielectric porcelain composition
JPH09169560A (en) Cordierite sintered compact and dielectric resonator
JPS5923046B2 (en) dielectric resonator
JPS6236984B2 (en)
JPS6049147B2 (en) dielectric porcelain material
JPS6113326B2 (en)
JPH06102572B2 (en) High frequency dielectric ceramic composition