JPS6092064A - Pouring method of molten metal - Google Patents

Pouring method of molten metal

Info

Publication number
JPS6092064A
JPS6092064A JP19980783A JP19980783A JPS6092064A JP S6092064 A JPS6092064 A JP S6092064A JP 19980783 A JP19980783 A JP 19980783A JP 19980783 A JP19980783 A JP 19980783A JP S6092064 A JPS6092064 A JP S6092064A
Authority
JP
Japan
Prior art keywords
nozzle
molten metal
flow
magnetic field
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19980783A
Other languages
Japanese (ja)
Inventor
Sumio Kobayashi
純夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19980783A priority Critical patent/JPS6092064A/en
Publication of JPS6092064A publication Critical patent/JPS6092064A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/62Pouring-nozzles with stirring or vibrating means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To suppress closing of a nozzle and to stabilize continuous operation by acting the DC magnetic field to the molten metal flow passing through the inside of the nozzle and preventing sticking of an inclusion to the inside surface of the nozzle. CONSTITUTION:The molten metal 2 in a tundish 1 flows through the inside of a nozzle 3 and is poured into a casting mold 4. The molten metal 2 passes through the magnetic field of an electromagnet 5 by which the flow is made laminar and the chance at which the inclusion in the metal 2 sticks to the inside surface of the nozzle 3 is decreased. The closing of the nozzle 3 is thus suppressed and the continuous operation is accomplished stably.

Description

【発明の詳細な説明】 本発明は連続鋳造機等において溶融金属中に混入してい
る介在物を要因とするノズル閉塞を防止し得る新規な溶
融金属の注入方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel molten metal injection method that can prevent nozzle clogging caused by inclusions mixed in molten metal in a continuous casting machine or the like.

製鉄分野では溶融金属をノズルを介して注入する方法が
広く用いられている。しかしながら注入中にノズルが閉
塞して止むなく注入を中断し、或いは断念する場合があ
る。ノズル閉塞の原因の1つとしてノズル内で溶融金属
が凝固することに因るものがある。これはノズルを通過
する間に溶融金属温度よりも低温度のノズルに因って溶
融金属の温度が低下せしめられて凝固するためであり、
これを防止するためには注入前にノズルを十分子熱し°
Cおくか或いはノズル外周にガラス繊維等の断熱材を巻
回してノズルの放熱を抑制するという熱的な対策を講ず
れば対処できる。
In the field of steel manufacturing, a method of injecting molten metal through a nozzle is widely used. However, there are cases where the nozzle becomes clogged during injection, forcing the injection to be interrupted or abandoned. One of the causes of nozzle blockage is due to solidification of molten metal within the nozzle. This is because the temperature of the molten metal is lowered by the nozzle, which has a temperature lower than the molten metal while passing through the nozzle, and the molten metal solidifies.
To prevent this, heat the nozzle sufficiently before injection.
This problem can be solved by taking thermal countermeasures, such as installing a heat shield on the nozzle or wrapping a heat insulating material such as glass fiber around the nozzle to suppress heat radiation from the nozzle.

この他の原因として溶融金属中の介在物、例えばアルミ
キルト鋼中のアルミナがノズル内面上端部に付着、堆積
することに因るものがある。この場合には熱的対策では
対応できず、次の2つの方法が実施されている。1つは
アルミキルド鋼にその組成には本来不要なカルシウムを
添加し、アルミナ組成を変化(カルシウム処理)せしめ
て注入する方法であり、他の1つはポーラスノズルを使
用してノズル内にArガス等の不活性ガスを通流させ、
ノズル−熔鋼間にガス層を形成せしめてノズルにアルミ
ナが付着しないようにするノズルバブリング方法である
Another cause is that inclusions in the molten metal, such as alumina in aluminum quilt steel, adhere to and accumulate on the upper end of the inner surface of the nozzle. In this case, thermal countermeasures cannot be used, and the following two methods have been implemented. One method is to add calcium, which is originally unnecessary to the aluminum killed steel, to change the alumina composition (calcium treatment) and then inject it.The other method is to use a porous nozzle and inject Ar gas into the nozzle. Pass inert gas such as
This is a nozzle bubbling method that forms a gas layer between the nozzle and molten steel to prevent alumina from adhering to the nozzle.

しかしながら前者の場合にはカルシウム処理により溶鋼
原価が高くなる欠点があり、また後者の場合には効果は
認められるものの完全ではない。
However, in the former case, there is a drawback that the cost of molten steel increases due to the calcium treatment, and in the latter case, although the effect is recognized, it is not perfect.

このように介在物を要因とするノズル閉塞の場合に対し
ては実用上有効な解決法がなく、その解決法が待たれて
いた。
There is no practically effective solution to such cases of nozzle blockage caused by inclusions, and a solution has been awaited.

本発明は斯かる事情に鑑みてなされたものであり、その
目的とするところはアルミキルド組成の溶融金属を安定
して注入できるように介在物の付着量を抑制する溶融金
属の注入方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a molten metal injection method that suppresses the amount of inclusions attached so that molten metal having an aluminum killed composition can be stably injected. It is in.

以下まず本発明の完成に至る経緯及び原理を説明する。First, the background and principle leading to the completion of the present invention will be explained below.

本願発明者は介在物のノズル内面での付着メカニズムに
ついて種々の研究をしたところ、ノズル内面に向けての
移動が大きな要因となる、即ち移動速度が大きい程介在
物とノズル内面との接触機会が大となり、付着8堆積量
が増す、ことを知見するに至った。そして介在物のノズ
ル内面に向けての移動速度は溶鋼金属流の流れの様相に
依存し、この流れを乱流から層流に変更することにより
介在物の付着抑制が可能であるという考えを得るに至っ
た。溶融金属流を層流とするにはレイノズル数Reが乱
流一層流の臨界レイノズル数Recよりも小さくなるよ
うにすればよい。レイノズル数Reは公知の下記(11
式で与えられる。
The inventor of the present application conducted various studies on the adhesion mechanism of inclusions on the inner surface of the nozzle, and found that movement toward the inner surface of the nozzle is a major factor, that is, the higher the moving speed, the greater the chance of contact between the inclusion and the inner surface of the nozzle. It has been found that the amount of adhesion 8 increases. We also obtained the idea that the speed at which inclusions move toward the inner surface of the nozzle depends on the flow mode of the molten metal flow, and that it is possible to suppress the attachment of inclusions by changing this flow from turbulent flow to laminar flow. reached. In order to make the molten metal flow a laminar flow, the Raynozzle number Re may be made smaller than the critical Raynozzle number Rec for a turbulent single-layer flow. The Ray nozzle number Re is the following (11
It is given by Eq.

η 但し、ρ:流体密度 U:流体速度 d:ノズル内径 η:流体粘度 いま、(1)式によりアルミキルド鋼のレイノズル数R
eをめると、その条件がP =7000 kg / m
 3゜U=0.4m/秒、d =0.05m、77 =
 6 xlO” kg/m/秒であるのでReは230
00程度である。従って臨界レイノズル数Recが20
00〜3000程度であることがらReの方がRecよ
りも大きい。つまり従来の溶融金属流は乱流状態にあっ
た。
η However, ρ: Fluid density U: Fluid velocity d: Nozzle inner diameter η: Fluid viscosity Now, the Ray nozzle number R of aluminum killed steel is determined by equation (1).
Subtracting e, the condition is P = 7000 kg/m
3゜U=0.4m/sec, d=0.05m, 77=
6 xlO” kg/m/sec, so Re is 230
It is about 00. Therefore, the critical Raynozzle number Rec is 20
Since it is about 00 to 3000, Re is larger than Rec. In other words, the conventional molten metal flow was in a turbulent state.

レイノズル数Reは流体自体の性質及びノズル内径で決
定されるものであり、レイノズル数ReをRec値より
も低い値に変えることは不可能である。そこで本願発明
者は逆に臨界レイノズル数Recを増大させることによ
りRec >Reを実現して溶融金属流の層流化を図る
ことによってノズル内面の介在物付着を抑制できるとの
着想を得るに至った。そして本発明ではこの臨界レイノ
ズル数Recを、溶融金属流に直流磁界を作用させて増
大させ、溶融金属流を層流化せんとする。
The Ray-nozzle number Re is determined by the properties of the fluid itself and the inner diameter of the nozzle, and it is impossible to change the Ray-nozzle number Re to a value lower than the Rec value. Therefore, the inventor of the present invention came up with the idea that by conversely increasing the critical Ray nozzle number Rec, Rec > Re is achieved and the molten metal flow is made laminar, thereby suppressing the adhesion of inclusions on the inner surface of the nozzle. Ta. In the present invention, this critical Ray nozzle number Rec is increased by applying a DC magnetic field to the molten metal flow in order to make the molten metal flow laminar.

即ち、本発明に係る溶融金属の注入方法は、ノズルを介
して溶融金属を注入するに際し、ノズル内の溶融金属流
に直流磁界を作用させることを特徴とする。
That is, the method for injecting molten metal according to the present invention is characterized in that when injecting molten metal through a nozzle, a DC magnetic field is applied to the molten metal flow within the nozzle.

以下本発明を図面に基づき具体的に説明する。The present invention will be specifically explained below based on the drawings.

図面は本発明の実施状態を示す模式図であり、図中2は
タンディツシュ1内に貯留された溶融金属を示す。3は
タンディツシュ1に懸装されたノズルを示しており、ノ
ズル3は上ノズル3a、上ノズル3aに組入れられたス
ライディングノズル3c及び下ノズル3bからなってい
る。上記スライディングノズル3cは図面表裏方向に摺
動可能であり、図示しない開度調節器によって駆動され
る。
The drawing is a schematic diagram showing the implementation state of the present invention, and in the drawing, 2 indicates molten metal stored in the tundish 1. 3 indicates a nozzle suspended on the tundish 1, and the nozzle 3 consists of an upper nozzle 3a, a sliding nozzle 3c incorporated in the upper nozzle 3a, and a lower nozzle 3b. The sliding nozzle 3c is slidable in the front and back directions of the drawing, and is driven by an opening adjuster (not shown).

タンディツシュ1の底面1aには平面視で長方形の長辺
の一辺の一部を切欠いた凹状のコア56とこの切欠部に
近い部分に巻装された2つのコイル5a+5a’とから
構成されており、上記切欠部にノズル3を位置させて切
欠部端面の磁極からの磁界を受けるようにしである。該
コイル5a+5a’には図示しない直流電源が接続され
ており、電磁石5の磁界はノズル3の軸心に直交する方
向に印加されている。
The bottom surface 1a of the tandish 1 is composed of a concave core 56 with a part of one long side of the rectangle cut out in plan view, and two coils 5a+5a' wound around the part near the cutout. The nozzle 3 is positioned in the notch so as to receive the magnetic field from the magnetic pole on the end face of the notch. A DC power source (not shown) is connected to the coils 5a+5a', and the magnetic field of the electromagnet 5 is applied in a direction perpendicular to the axis of the nozzle 3.

前記タンディツシュ1内の溶融金属2はスライディング
ノズル3Cの開度調節により流量調節されてノズル3内
を通流する。そのとき溶融金属2は電磁石5の磁界を通
過し、鋳型4内に注入される。
The molten metal 2 in the tundish 1 flows through the nozzle 3 with its flow rate adjusted by adjusting the opening of the sliding nozzle 3C. The molten metal 2 then passes through the magnetic field of the electromagnet 5 and is poured into the mold 4.

このようにして溶融金属流に直流成分の磁界を作用させ
ると、溶融金属流の様相はハルトマン数tea及びレイ
ノズル数Reに支配されることになる。
When a magnetic field having a direct current component is applied to the molten metal flow in this manner, the aspect of the molten metal flow is controlled by the Hartmann number tea and the Raynozzle number Re.

ハルトマン数11aは下記(2)式で示される。The Hartmann number 11a is expressed by the following equation (2).

但し、σ:電気伝導度 Bo :磁束密度 一方前述した臨界レイノズル数RecはHaの関数であ
り、下記(3)式にて示される。
However, σ: Electrical conductivity Bo: Magnetic flux density On the other hand, the above-mentioned critical Reynozzle number Rec is a function of Ha, and is expressed by the following equation (3).

Rec ≧5000011a ・−(31但し、Ha≧
20である (3)式はLockが流れに直交する磁界の場合の理論
解析によりめた式CProc、Roy、Soc、(Lo
ndon)Set、^203. (1955) )であ
る。
Rec ≧5000011a ・-(31However, Ha≧
Equation (3), which is 20, is the equation CProc, Roy, Soc, (Lo
ndon) Set, ^203. (1955)).

いま溶融金属の電気伝導度σを、例えばσ=7、14 
x 105秒/mで代表させて、溶融金属流に磁束密度
Bo=0.04Tとなるように磁界を作用させれば(2
1,(31式よりHaは21.8となってRecは+l
ec =1.09X106> 23000 (=Re)
となり、十分層流化が可能である。
Now let us consider the electrical conductivity σ of the molten metal, for example, σ=7, 14
x 105 seconds/m, and if a magnetic field is applied to the molten metal flow so that the magnetic flux density Bo = 0.04T, (2
1, (from formula 31, Ha is 21.8 and Rec is +l
ec = 1.09X106> 23000 (=Re)
Therefore, sufficient laminar flow is possible.

溶融金属流が層流化されることにより、溶融金属流中の
介在物のノズル内面との接触機会が減少し、従来ノズル
閉塞を起していたノズル内面上端部Aば勿論のこと他の
箇所への介在物の付着量が少なくなりノズル閉塞が抑制
される。
By making the molten metal flow laminar, the chances of the inclusions in the molten metal flow coming into contact with the inner surface of the nozzle are reduced, and the upper end A of the inner surface of the nozzle, which conventionally caused nozzle blockage, as well as other locations. The amount of inclusions adhering to the nozzle is reduced, and nozzle clogging is suppressed.

なお上記説明で電磁石5の磁界をノズル3の軸心に直交
する方向としているのはこの方向が最小の磁束密度で層
流化できるからであり、より大きい磁束密度にすれば磁
界の方向をノズル3の軸心に対して斜め方向としてもよ
く、更には平行としてもよいがこの場合には相当大きな
磁束密度を必要とし効率が悪い。また本発明は電磁石の
替りに永久磁石を用いても同様に実施できるのは勿論で
ある。
In the above explanation, the magnetic field of the electromagnet 5 is set perpendicular to the axis of the nozzle 3 because laminar flow can be achieved with the minimum magnetic flux density in this direction. The direction may be diagonal or even parallel to the axis of No. 3, but in this case, a considerably large magnetic flux density is required and the efficiency is poor. Furthermore, it goes without saying that the present invention can be implemented in the same manner using permanent magnets instead of electromagnets.

次に本発明の効果につき説明する。寸法が180゜mm
X300m商のコイル5a、5a’及び100 *yh
 X 300 asの継鉄56とからなる電磁石5を用
いて成分がC:0.08%、Mn : 0.8%のアル
ミキルド炭素鋼を平均18Ton /時の注入速度で磁
束密度を3段階として注入した。溶鋼過熱度は凝固温度
に対して+30℃〜+40℃であった。まず磁界を作用
させず、つまり従来方法により注入した場合には注入開
始後約1時間でノズル内面上端部が閉塞し、注入不能で
あった。
Next, the effects of the present invention will be explained. Dimensions are 180゜mm
X300m quotient coils 5a, 5a' and 100 *yh
Using an electromagnet 5 consisting of a yoke 56 of X 300 as, aluminum killed carbon steel with a composition of C: 0.08% and Mn: 0.8% was injected at an average injection rate of 18T/hour with three levels of magnetic flux density. did. The degree of superheating of the molten steel was +30°C to +40°C relative to the solidification temperature. First, when a magnetic field was not applied, that is, when injection was performed using the conventional method, the upper end of the inner surface of the nozzle was clogged approximately one hour after the start of injection, making injection impossible.

次に上ノズル3a部に対して磁束密度が0.1T(Re
c =2.73XIO’ )として注入した。この場合
には注入開始後約3時間でノズルが閉塞し、やや効果が
認められた。
Next, the magnetic flux density is 0.1T (Re
c = 2.73XIO'). In this case, the nozzle was clogged approximately 3 hours after the start of injection, and a slight effect was observed.

更に同箇所の上ノズル38部に対して磁束密度を0.2
T (Rec =5.45X106)として注入した。
Furthermore, the magnetic flux density was set to 0.2 for the upper nozzle 38 at the same location.
Injected as T (Rec = 5.45X106).

この場合には注入開始後8時間経過してもノズル閉塞が
起らず、注入予定の複数チャージの溶鋼を完全に注入で
きた。
In this case, nozzle blockage did not occur even after 8 hours had passed after the start of injection, and the multiple charges of molten steel scheduled for injection could be completely injected.

このように直流磁界を溶融金属流に作用させることによ
りノズル閉塞が起らず本発明の効果が明白である。
By applying a DC magnetic field to the molten metal flow in this manner, nozzle clogging does not occur, and the effects of the present invention are obvious.

なお本発明は導電性の流体ならばどのような流体であっ
ても実施できることは勿論である。
It goes without saying that the present invention can be practiced with any conductive fluid.

以上詳述した如く本発明はノズル内を通流する溶融金属
流に直流磁界を作用させるので、該溶融金属流が層流と
なっ′てノズル内面への介在物の付着量が減少してノズ
ル閉塞を抑制でき、これにより連続鋳造操業の安定化が
可能である等優れた効果を奏する。
As detailed above, the present invention applies a DC magnetic field to the molten metal flow flowing through the nozzle, so the molten metal flow becomes a laminar flow, reducing the amount of inclusions attached to the inner surface of the nozzle. Blockage can be suppressed, thereby achieving excellent effects such as stabilizing continuous casting operations.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施状態を示した模式図である。 2・・・溶融金属 3・・・ノズル 5・・・電磁石特
 許 出願人 住友金属工業株式会社代理人 弁理士 
河 野 登 夫
The drawings are schematic diagrams showing the implementation state of the present invention. 2... Molten metal 3... Nozzle 5... Electromagnet patent Applicant Sumitomo Metal Industries Co., Ltd. agent Patent attorney
Noboru Kono

Claims (1)

【特許請求の範囲】[Claims] 1、 ノズルを介して溶融金属を注入するに際し、ノズ
ル内の溶融金属流に直流磁界を作用させることを特徴と
する溶融金属の注入方法。
1. A molten metal injection method characterized by applying a direct current magnetic field to the molten metal flow within the nozzle when injecting the molten metal through the nozzle.
JP19980783A 1983-10-25 1983-10-25 Pouring method of molten metal Pending JPS6092064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19980783A JPS6092064A (en) 1983-10-25 1983-10-25 Pouring method of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19980783A JPS6092064A (en) 1983-10-25 1983-10-25 Pouring method of molten metal

Publications (1)

Publication Number Publication Date
JPS6092064A true JPS6092064A (en) 1985-05-23

Family

ID=16413954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19980783A Pending JPS6092064A (en) 1983-10-25 1983-10-25 Pouring method of molten metal

Country Status (1)

Country Link
JP (1) JPS6092064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3332891A1 (en) * 2016-12-12 2018-06-13 ABB Schweiz AG An assembly for a metal-making process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3332891A1 (en) * 2016-12-12 2018-06-13 ABB Schweiz AG An assembly for a metal-making process
WO2018108477A1 (en) * 2016-12-12 2018-06-21 Abb Ab An assembly for a metal-making process
CN110167694A (en) * 2016-12-12 2019-08-23 Abb公司 Component for metal manufacturing process
US10875090B2 (en) 2016-12-12 2020-12-29 Abb Schweiz Ag Assembly for a metal-making process

Similar Documents

Publication Publication Date Title
JPS5825853A (en) Casting mold used in metal casting system
JPS6092064A (en) Pouring method of molten metal
JPH11514585A (en) Metal casting method and apparatus
JP2665757B2 (en) Electromagnetic stirring continuous casting equipment
JP3076667B2 (en) Steel continuous casting method
JPS61115654A (en) Continuous casting device
JPS5850167A (en) Prevention for clogging of sprue
JPS611459A (en) Continuous casting method of steel
JPS56154267A (en) Method for suppressing vortex of molten steel in tundish in continuous casting
JPH05200513A (en) Method for continuously casting metal
JPH0688111B2 (en) High angle hysteresis soft magnetic fiber and method for producing the same
CN108950435B (en) Iron-based amorphous strip with high saturation magnetic induction and preparation method thereof
JPS6297747A (en) Method and apparatus for electromagnetic type continuous horizontal casting method
JPH04309442A (en) Production of amorphous alloy thin strip having excellent high-frequency magnetic characteristic
JPH08187563A (en) Continuous casting method applying electromagnetic force
JPH0280538A (en) Permanent magnetic alloy thin band and its manufacture
JP4091777B2 (en) Continuous casting method for steel slabs
JP2757736B2 (en) Metal continuous casting equipment
JPH08229651A (en) Apparatus for continuously casting steel and method thereof
JPH0417963A (en) Method for continuously casting steel using direct current magnetic field
JPH04157053A (en) Method for continuously casting steel
JPH10109153A (en) Method and device for pouring molten metal
JP3422946B2 (en) Continuous casting method and continuous casting slab of molten steel
JPH0119990B2 (en)
JPS60196251A (en) Continuous casting method