JPH0417963A - Method for continuously casting steel using direct current magnetic field - Google Patents

Method for continuously casting steel using direct current magnetic field

Info

Publication number
JPH0417963A
JPH0417963A JP12001590A JP12001590A JPH0417963A JP H0417963 A JPH0417963 A JP H0417963A JP 12001590 A JP12001590 A JP 12001590A JP 12001590 A JP12001590 A JP 12001590A JP H0417963 A JPH0417963 A JP H0417963A
Authority
JP
Japan
Prior art keywords
meniscus
magnetic field
mold
molten steel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12001590A
Other languages
Japanese (ja)
Inventor
Akira Imamura
晃 今村
Kazuo Ogahira
大河平 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12001590A priority Critical patent/JPH0417963A/en
Publication of JPH0417963A publication Critical patent/JPH0417963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To restrain rapid molten steel flow and surface variation in a mold by generating magnetic field toward vertical direction to meniscus at the meniscus corresponding part and parallel magnetic field to the meniscus at below the meniscus in the mold. CONSTITUTION:Two or more coils 3 are set so as to surround the molten steel at the meniscus corresponding part and below the meniscus in the mold, and DC currents are conducted to mutually reverse directions, to generate cusp magnetic field, and at the meniscus corresponding part, electromagnetic force for generating the magnetic field toward the vertical direction to the meniscus, is given and at below the meniscus, the electromagnetic force for generating the magnetic field parallel with the meniscus is given. The magnetic field toward the vertical direction to the meniscus restrains free surface vibration of the molten steel. Further, the magnetic field, which is parallel with the meniscus and intense at outer periphery in the mold and zero at center part, is generated and the molten steel flow can be made to uniformized slow flow. The operation is stabilized and the cast slab having good surface characteristic can be produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鋼の連続鋳造法に関し、詳しくは鋳型内におけ
る溶鋼の急激な変動を抑制すると共に該溶鋼表面の振動
を抑制し、表面性状の優れた鋳片を製造する直流磁界を
用いた鋼の連続鋳造法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a continuous casting method for steel, and more specifically, it suppresses rapid fluctuations of molten steel in a mold, suppresses vibrations on the surface of the molten steel, and improves surface quality. This paper relates to a continuous steel casting method using a direct current magnetic field to produce slabs.

従来の技術 周知のように、連続鋳造法においては鋳型に連続的に溶
鋼を供給し該鋳型内で凝固殻を生成せしめ、鋳型下方よ
り連続的に引き出すことによって鋳片の製造が行われて
いる。
As is well known in the art, in the continuous casting method, molten steel is continuously supplied to a mold, a solidified shell is generated within the mold, and the molten steel is continuously drawn out from below the mold to produce slabs. .

この連続的引き抜きを容易にするため前記鋳型へのパウ
ダー投入や該鋳型の上下動(以下、オシレーションと言
う)を実施している。この結果、鋳片表面に規則正しい
凹凸、所謂オシレーションマークが形成される。
In order to facilitate this continuous drawing, powder is introduced into the mold and the mold is moved up and down (hereinafter referred to as oscillation). As a result, regular irregularities, so-called oscillation marks, are formed on the surface of the slab.

しかしタンデイツシュ重量や鋳造速度の変動あるいはス
) −/パー等湯面レベル制御装置への介在物の付着剥
離に伴い注湯量が急激に変化し、鋳型内で偏流や湯面の
急激な変動が発生し前述した規則正しい凹凸が得られな
いのが実状である。
However, due to fluctuations in the weight of the tundish or casting speed, or due to the adhesion and peeling off of inclusions from the level control device such as molten metal, the amount of poured molten metal changes rapidly, causing drifting in the mold and rapid fluctuations in the molten metal level. However, the actual situation is that the regular unevenness described above cannot be obtained.

そこで溶鋼流動の変動に伴う表面性状の悪化を防止する
ために、浸漬ノズル形状の適正化や電磁力の付与による
鋳型向流動制御あるいはメニスカス近傍に電磁力を付与
しオシレーション振動を抑制する等種々の提案がなされ
ている。
Therefore, in order to prevent the deterioration of the surface quality due to fluctuations in the flow of molten steel, various measures have been taken, such as optimizing the shape of the submerged nozzle, controlling the flow direction of the mold by applying electromagnetic force, or suppressing oscillation vibration by applying electromagnetic force near the meniscus. proposals have been made.

例えば、特開昭81−199557号公報に示されるよ
うに鋳型内溶鋼と鉛直方向に磁界を付与し溶鋼流の鎮静
化を図ったり、特開昭81−208550号公報に示さ
れるように上記オシレーションを打ち消す方向に電磁力
を付与することで、溶鋼表面の波立ちを無くし湯面レベ
ルを平滑化して表面性状の改善を図ったり、表面波動と
鉛直方向に直流磁場をかけ表面波動を抑制する(鉄と鋼
°87、S 1447)等の提案がなされている。
For example, as shown in JP-A-81-199557, a magnetic field is applied perpendicularly to the molten steel in the mold to suppress the flow of molten steel, and as shown in JP-A-81-208550, the above-mentioned system is applied. By applying electromagnetic force in the direction of canceling the rations, we can eliminate ripples on the molten steel surface, smooth the surface level, and improve the surface quality, and apply a DC magnetic field in a direction perpendicular to the surface waves to suppress the surface waves ( Proposals such as Tetsu to Hagane 87, S 1447) have been made.

発明が解決しようとする課題 しかしながら、前記の鋳型内溶鋼と鉛直方向に磁界を付
与する等の鋳型内の溶鋼流動を抑制する技術では、鋳型
内の溶鋼流動を充分に抑制し同時にメニスカス部でのデ
イツケル発生等を防止できるだけの溶鋼熱を充分に供給
する適度の溶鋼流を発生させることは不可能であり、表
面性状の悪化は避けられない。
Problems to be Solved by the Invention However, the above-mentioned technique for suppressing the flow of molten steel in the mold, such as applying a magnetic field in a direction perpendicular to the molten steel in the mold, sufficiently suppresses the flow of molten steel in the mold, and at the same time prevents the flow of molten steel in the meniscus. It is impossible to generate an appropriate flow of molten steel that supplies enough molten steel heat to prevent Deitzkel generation, etc., and deterioration of the surface quality is unavoidable.

また後述の表面振動抑制の2考案はいづれも鋳型内での
自白表面共振現象に着目した定常的に発生する湯面変動
の抑制を目的とするため、鋳造速度の変動やストッパー
開度の急激な変化に伴う湯面レベルの大きな変動を生じ
た場合、短片を上昇する反転波を完全に止めることはで
きず湯面変動に起因する鋳片表面の凹凸を生じる結果と
なる。
In addition, the two ideas for suppressing surface vibrations described below are aimed at suppressing the constantly occurring fluctuations in the melt level by focusing on the self-evident surface resonance phenomenon within the mold. If a large fluctuation in the melt level occurs due to the change, it is not possible to completely stop the reversal wave moving up the short piece, resulting in unevenness on the surface of the slab due to the fluctuation in the melt level.

本発明は前記従来法の問題点の抜本的な解決を図り、表
面性状の優れた鋳片を製造し得る連続鋳造法を提供する
ものである。
The present invention aims to fundamentally solve the problems of the conventional methods and provides a continuous casting method capable of producing slabs with excellent surface properties.

課題を解決するための手段 前記問題点を解決するための本発明は、鋼を連続鋳造す
る方法において、鋳型メニスカス相当部とその下方に溶
鋼を取り囲むようにして二個以上のコイルを設置し、相
互に反対方向に直流電流を通じることによりカスプ磁界
を発生させ、メニスカス相当部にメニスカスと鉛直方向
に磁界を発生する電磁力を付与し、且つ、メニスカス下
方においてはメニスカスと平行する磁界を発生する電磁
力を付与することにある。
Means for Solving the Problems The present invention for solving the problems described above provides a method for continuous casting of steel, in which two or more coils are installed in a part corresponding to the mold meniscus and below it so as to surround the molten steel, A cusp magnetic field is generated by passing direct current in mutually opposite directions, and an electromagnetic force that generates a magnetic field in a direction perpendicular to the meniscus is applied to the part corresponding to the meniscus, and a magnetic field parallel to the meniscus is generated below the meniscus. Its purpose is to impart electromagnetic force.

前述のメニスカス相当部、好ましくは溶鋼を取り囲むよ
うにして、メニスカス上下150ミリの範囲にコイルの
下端或いは上端がくるようにコイルを設置し、メニスカ
スと鉛直方向に磁界を発生する電磁力を付与することに
より、メニスカス面を進行する鋳型内溶鋼自由表面振動
を抑制することが可能となる。
A coil is installed so that the lower or upper end of the coil is within 150 mm above and below the meniscus, surrounding the portion corresponding to the meniscus, preferably the molten steel, and applying an electromagnetic force that generates a magnetic field in a direction perpendicular to the meniscus. This makes it possible to suppress the free surface vibration of the molten steel in the mold that advances on the meniscus surface.

特にコイル下端がメニスカス相当部の位置からコイル上
端が100ミリとなる範囲にコイルを設けた場合、メニ
スカス部には下方のコイルの影響を受けない鉛直方向の
磁界が形成され最も効果的な制動力が付与できる。この
ことは上段に配設される磁気コイルは溶鋼のメニスカス
部を含む位置であり、且つメニスカス部から下方100
mm以内とすることにある。コイルの下端がメニスカス
上150ミリ以上ではメニスカスでの磁界の方向が鉛直
ではなくなり、効果的な制動力を得るには過大な電流を
流すことが必要となる。上端がメニスカス下方 くなることの他に、更に下方のコイルと充分な距離が取
れず、後述する短片上昇流の効果的な制動が難しくなる
と言う問題を生じる。
In particular, if the coil is installed in a range where the bottom end of the coil is 100 mm from the position corresponding to the meniscus, the meniscus will form a vertical magnetic field that is not affected by the coils below, resulting in the most effective braking force. can be granted. This means that the magnetic coil disposed in the upper stage is located at a position that includes the meniscus part of the molten steel, and is located 100 meters below the meniscus part.
It is to be within mm. If the lower end of the coil is 150 mm or more above the meniscus, the direction of the magnetic field at the meniscus will no longer be vertical, and it will be necessary to flow an excessive amount of current to obtain effective braking force. In addition to the upper end being located below the meniscus, there is a problem in that it is not possible to maintain a sufficient distance from the lower coil, making it difficult to effectively damp the upward flow of the short piece, which will be described later.

このコイルと対をなし後述の鋳型メニスカスの下方に、
浸漬ノズル形状や浸漬深さにより最適位置は変化するが
、好ましくは上コイルの下端と下コイルの上端の中心が
メニスカス下50ミリから250 ミリとなるような位
置に溶鋼を取り囲むようにしてコイルを設置し、相互に
反対方向に直流電流を通しることにより、この一対のコ
イル間にカスプ磁界が発生する。
Paired with this coil, below the mold meniscus, which will be described later,
The optimum position will vary depending on the shape of the immersion nozzle and the immersion depth, but preferably the coil is placed so as to surround the molten steel at a position where the centers of the lower end of the upper coil and the upper end of the lower coil are 50 mm to 250 mm below the meniscus. By installing the coils and passing direct current in opposite directions, a cusp magnetic field is generated between the pair of coils.

これによりコイルとコイルを工性する断面内で、メニス
カスと平行し鋳型断面内の外周で強く断面中心でゼロと
なる磁界が発生し、短片近傍の局部的に速い反転流に大
きな制動力を付与し、流れを制動力の弱い断面中心部に
分散させることにより均等化した緩慢流とすることが可
能である。
This generates a magnetic field that is parallel to the meniscus and strong at the outer periphery of the mold cross section and zero at the center of the cross section in the coil and the cross section where the coil is processed, giving a large braking force to the locally fast reversal flow near the short piece. However, by distributing the flow to the center of the cross section where the braking force is weak, it is possible to create an equalized slow flow.

上下コイルの中心がメニスカス下50ミリより浅いと制
動力を付与してからメニスカスに到達するまでの距離が
短いので、緩慢流を得るには過大な制動力、例えば大電
流を流すことが必要となり実用化は難しい。一方、25
0ミリより深いと一般的な操業形態では、短片衝突域か
ら短片下降域に電磁力を付与していることとなり、効果
的な短片上昇流を均等化した緩慢流とすることは難しい
If the centers of the upper and lower coils are shallower than 50 mm below the meniscus, the distance from applying braking force to reaching the meniscus is short, so in order to obtain a slow flow, it is necessary to apply an excessive braking force, such as a large current. Practical implementation is difficult. On the other hand, 25
In a general operation mode deeper than 0 mm, electromagnetic force is applied from the short piece collision area to the short piece descending area, and it is difficult to make the effective short piece upward flow into an equalized slow flow.

この時、コイルを一対以上設けることは短片反転流をよ
り効果的に制御する為の有効な手段である。
At this time, providing one or more pairs of coils is an effective means for more effectively controlling the short-piece reverse flow.

作用 本発明者等は、前述した短片上昇流抑制効果を確認する
ため鋳型内の溶鋼表面流速を測定した。
Effect The present inventors measured the surface flow velocity of molten steel in the mold in order to confirm the above-described effect of suppressing the upward flow of the short pieces.

この結果、適切な位置に水平方向の電磁力を付与するこ
とで、ストッパーの急激な変動に伴う溶鋼表面流速の非
定常的な初期変動は1/4に減速され、これに続く表面
振動の持続時間も適切な位置に鉛直方向の電磁力を付与
することで、従来10秒間はど持続していた振動が約3
秒才で短縮されていることが確認された。
As a result, by applying horizontal electromagnetic force at an appropriate position, the unsteady initial fluctuations in the molten steel surface flow velocity caused by rapid fluctuations in the stopper are slowed down to 1/4, and the subsequent surface vibrations continue. By applying vertical electromagnetic force at an appropriate position, the vibration that previously lasted for 10 seconds can be reduced to about 3 seconds.
It was confirmed that the time has been shortened by seconds.

この結果、表面の凹凸の大幅に改善され、鋳片表皮下に
捕捉される介在物個数もl/10と減少し、無手入れ化
率も従来の1%以下から最大で約30%まで大幅に改善
された。特に上段に配設される磁気コイルを溶鋼のメニ
スカス部を含む位置か、あるいはメニスカス直下より 
100+mm以内にすると前述の作用がより顕著に発現
できる。
As a result, the surface unevenness has been significantly improved, the number of inclusions trapped under the surface of the slab has been reduced to 1/10, and the maintenance-free rate has been significantly increased from less than 1% to a maximum of approximately 30%. Improved. In particular, the magnetic coil installed in the upper stage should be placed at a position that includes the meniscus of molten steel, or from just below the meniscus.
When the distance is within 100+mm, the above-mentioned effect can be more prominently exhibited.

実施例 第1図は本発明に基づくカスプ磁界発生装置を備えた鋳
型の全体正面図である。本実施例では、メニスカス部±
 150mmとメニスカス下方200 ミリの位置に鋳
型を取り囲む様にコイル3が装着されている。
Embodiment FIG. 1 is an overall front view of a mold equipped with a cusp magnetic field generator according to the present invention. In this example, the meniscus portion ±
A coil 3 is attached to surround the mold at a position of 150 mm and 200 mm below the meniscus.

本実施例の操業条件は、鋳片寸法が@1020mm、厚
み250層m、鋳造速度0.6m/winでステンレス
鋼を連続鋳造したものである。カスプ磁界発生コイル3
は鋳型断面での中心磁束密度が200から1500ガウ
スの発生能力を有するものを用い、本実施例では最高の
1500ガウス前後の磁束密度を付与した。
The operating conditions of this example are that stainless steel was continuously cast with a slab size of 1020 mm, a thickness of 250 layers, and a casting speed of 0.6 m/win. Cusp magnetic field generating coil 3
A mold having the ability to generate a central magnetic flux density of 200 to 1500 Gauss in the cross section of the mold was used, and in this example, the highest magnetic flux density of around 1500 Gauss was provided.

第2図は本実施例により製造された表皮下介在物量を従
来法と比較して示したものである0図に示されるように
、Aは上段コイルかメニスカス±150mmの場合で、
電磁力を付与することにより表皮下介在物量は大幅に改
善されていることが判る。
Figure 2 shows the amount of subepidermal inclusions produced by this example in comparison with the conventional method.As shown in Figure 0, A is the case where the upper coil is meniscus ±150 mm;
It can be seen that the amount of subepidermal inclusions was significantly improved by applying electromagnetic force.

この結果、鋳片手入れ率が減少し無手入れ率も10%以
上、介在物指数も30%まで改善された。また、第1図
に示すように上段コイルをメニスカス部に設けたBでは
無手入れ率30%、介在物指数16と大巾に向上してい
る。
As a result, the casting hand maintenance rate was reduced, the no-maintenance rate was 10% or more, and the inclusion index was improved to 30%. Further, as shown in FIG. 1, in case B in which the upper coil is provided in the meniscus portion, the maintenance-free rate is 30% and the inclusion index is 16, which is a significant improvement.

発明の効果 以上詳述したように、本発明により鋳型内での急激な溶
鋼流動は抑制され、且つ、表面変動も大幅に軽減された
。その結果、操業が安定化し、表面の凹凸の少ない表面
性状の優れた鋳片の製造が可能となり、鋳片無手入れ化
率も大幅に改善された。
Effects of the Invention As detailed above, the present invention suppresses the rapid flow of molten steel within the mold, and also significantly reduces surface fluctuations. As a result, operations have become more stable, it has become possible to produce slabs with excellent surface texture and less unevenness, and the rate of no-maintenance slabs has been significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

81図は本発明に基づ〈電磁コイルを備えた鋳型の正面
図であり、第2図は発明の効果を示すグラフである。 1・110鋳型、2・・・浸漬ノズル、3a・・電磁コ
イル、4・IIQタンプイー、シュ。
FIG. 81 is a front view of a mold equipped with an electromagnetic coil based on the present invention, and FIG. 2 is a graph showing the effects of the invention. 1. 110 mold, 2... immersion nozzle, 3a... electromagnetic coil, 4. IIQ tampuy, shoe.

Claims (1)

【特許請求の範囲】[Claims] 鋼を連続鋳造する方法において、鋳型メニスカス相当部
とその下方に溶鋼を取り囲むようにして二個以上のコイ
ルを設置し、相互に反対方向に直流電流を通じることに
よりカスプ磁界を発生させ、メニスカス相当部にメニス
カスと鉛直方向に磁界を発生する電磁力を付与し、且つ
、メニスカス下方においてはメニスカスと平行する磁界
を発生する電磁力を付与することを特徴とする直流磁界
を用いた鋼の連続鋳造法。
In a method of continuous casting of steel, two or more coils are installed to surround the molten steel at the part corresponding to the meniscus of the mold and below it, and a cusp magnetic field is generated by passing direct current in opposite directions to the part corresponding to the meniscus. Continuous casting of steel using a direct current magnetic field characterized by applying an electromagnetic force that generates a magnetic field in a direction perpendicular to the meniscus, and applying an electromagnetic force that generates a magnetic field parallel to the meniscus below the meniscus. Law.
JP12001590A 1990-05-11 1990-05-11 Method for continuously casting steel using direct current magnetic field Pending JPH0417963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12001590A JPH0417963A (en) 1990-05-11 1990-05-11 Method for continuously casting steel using direct current magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12001590A JPH0417963A (en) 1990-05-11 1990-05-11 Method for continuously casting steel using direct current magnetic field

Publications (1)

Publication Number Publication Date
JPH0417963A true JPH0417963A (en) 1992-01-22

Family

ID=14775794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12001590A Pending JPH0417963A (en) 1990-05-11 1990-05-11 Method for continuously casting steel using direct current magnetic field

Country Status (1)

Country Link
JP (1) JPH0417963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080354A (en) * 2001-09-06 2003-03-18 Kawasaki Steel Corp Method and apparatus for continuously casting steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080354A (en) * 2001-09-06 2003-03-18 Kawasaki Steel Corp Method and apparatus for continuously casting steel

Similar Documents

Publication Publication Date Title
JP3904226B2 (en) Metal vertical continuous casting method using electromagnetic field and casting equipment for its implementation
JP4591156B2 (en) Steel continuous casting method
JP2611594B2 (en) Method of manufacturing slab for steel slab
JPH0417963A (en) Method for continuously casting steel using direct current magnetic field
JP2000000648A (en) Method and apparatus for continuously casting steel
JPS59101261A (en) Continuous casting method with which flow of molten steel is braked by static magnetic field
CN2504014Y (en) Electromagnetic brake of continuous cast molten pool liquid wave
JPS61129261A (en) Production of continuously cast steel ingot having less surface defect
JPH0819842A (en) Method and device for continuous casting
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JPH0479744B2 (en)
JP4910357B2 (en) Steel continuous casting method
JP3076667B2 (en) Steel continuous casting method
JP3408374B2 (en) Continuous casting method
JP2607334B2 (en) Flow control device for molten steel in continuous casting mold
JPH10263763A (en) Method for controlling fluidity in continuously casting strand and device for controlling fluidity
JPH0673722B2 (en) Continuous casting method
JP3304884B2 (en) Molten metal braking device and continuous casting method
JP2005305536A (en) Continuous-casting method for molten metal
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP3914092B2 (en) Thin slab continuous casting equipment and continuous casting method
JP2607335B2 (en) Flow control device for molten steel in continuous casting mold
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
JP2633766B2 (en) Method for controlling molten steel flow in continuous casting mold