JPS609177A - Thin-film non-linear type resistance element - Google Patents

Thin-film non-linear type resistance element

Info

Publication number
JPS609177A
JPS609177A JP11748983A JP11748983A JPS609177A JP S609177 A JPS609177 A JP S609177A JP 11748983 A JP11748983 A JP 11748983A JP 11748983 A JP11748983 A JP 11748983A JP S609177 A JPS609177 A JP S609177A
Authority
JP
Japan
Prior art keywords
layer
thin film
resistance element
film
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11748983A
Other languages
Japanese (ja)
Inventor
Kanetaka Sekiguchi
金孝 関口
Katsumi Aota
克己 青田
Hiroshi Tanabe
浩 田辺
Seigo Togashi
清吾 富樫
Etsuo Yamamoto
悦夫 山本
Kazuaki Tanmachi
和昭 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP11748983A priority Critical patent/JPS609177A/en
Publication of JPS609177A publication Critical patent/JPS609177A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To increase Vth while Ion is left as it is augmented sufficiently and improve displayed quality by forming a metallic island layer between thin-film non-linear type resistance elements in order to short-circuit a reverse and forward current connecting section generated on the cascade connection of the thin-film non-linear type resistance elements. CONSTITUTION:A transparent electrode layer 31 (a displayed electrode layer), a lower layer electrode 32 and first layer P-I-N type diode layers 33-35 are formed on a substrate 30. A metallic island layer 36 is formed as an intermediate layer between first layer and second layer P-I-N diodes. There are a method in which a metallic film is shaped extremely thinly, a method in which the surface of an N layer as the uppermost layer of the first layer diode is roughened and the state of the adhesion of a metal is changed or a method in which the metallic film is formed and etched or struck by gas particles as forming methods. The second layer P-I-N diode is formed on the metallic island layer 36 or the P-I-N diode. The formed film is patterned in predetermined size. SiO2, Si3N4, polyimide resin or the like is formed as an inter-layer insulating film 41 and contact holes are shaped at prescribed positions, and Al or Cr is formed as a wiring layer 42, and patterned.

Description

【発明の詳細な説明】 効率よく形成するものである。[Detailed description of the invention] It is formed efficiently.

液晶− EL− Ec− PDP、蛍光表示等の各種表
示装置はいずれも実用化段階に達し一現在の目標は高密
度なマトリクス型表示にあるといえる。
Various display devices such as liquid crystal display (EL-Ec-PDP) and fluorescent display have all reached the stage of practical use, and the current goal can be said to be a high-density matrix type display.

マトリクス駆動に問題のある表示においては一能動付加
素子を用いた所謂「アクティブ・マトリクス」法が有効
である。
For displays where matrix driving is problematic, a so-called "active matrix" method using one active additional element is effective.

表示装置に薄膜非線形抵抗素子を用いる事により、高密
度、高画質の表示が可能であり、薄膜非線形抵抗素子(
薄膜整流素子)が表示装置用能動付加素子として勝れて
いる事は前出願(特願昭57−167945号)に記載
ずみである。さらに、薄膜非線形抵抗素子の駆動能力を
増すためには、薄膜非線形抵抗素子の閾値電圧(V,、
)を大きくする必要がある。この点についても前出願(
特願昭57−167945号)に記載ずみである。
By using thin-film nonlinear resistance elements in display devices, high-density, high-quality displays are possible.
The superiority of the thin film rectifying element as an active addition element for display devices has been described in a previous application (Japanese Patent Application No. 167945/1983). Furthermore, in order to increase the driving ability of the thin film nonlinear resistance element, the threshold voltage (V, ,
) needs to be increased. Regarding this point, the previous application (
It is described in Japanese Patent Application No. 167945/1983).

そこで本発明は一基板上に形成された電極群及び整流性
接続部から構成されて℃・る薄膜非線形抵抗素子におい
て、薄膜非線形素子を縦接続する際に生ずる逆整流性接
続部を短絡するために一逆整流性接−続部に金属アイラ
ンド層を導入するものである。金属アイランド層を導入
する事により、薄膜非線形抵抗素子に流せる電流量が太
き(でき、表示素子への電力供給量を大きくする事がで
きる。
Therefore, the present invention aims to short-circuit the reverse rectifying connections that occur when vertically connecting the thin film nonlinear elements in a thin film nonlinear resistance element that is composed of an electrode group and a rectifying connection part formed on one substrate. In this method, a metal island layer is introduced at the one-way rectifying connection. By introducing the metal island layer, the amount of current that can be passed through the thin film nonlinear resistance element can be increased, and the amount of power supplied to the display element can be increased.

又−電流量或は耐圧のバラツキ等を減らす律ができる。Furthermore, it is possible to reduce variations in current amount or withstand voltage.

さらに−薄膜非線形素子は一表示の高密度化に伴い微細
素子化が要求される。
Furthermore, thin film nonlinear elements are required to be miniaturized as display density increases.

そこで、短絡すべき金属層をアイランド化する事により
、金属層のエツチング時間を非常に短かくできたり或は
−アイランドの間隙からのエラチントの浸透により一金
属のエツチングなしに一半導体層のエツチングのみで薄
膜非線形素子の縦型接続ができる、金属層のエツチング
時間の短縮により素子劣化の防止、及びプロセスの短縮
化ができる。また、金属のエツチングが不要になる事に
より、プロセス的に簡単になり、素子も安定になる。以
下−図面に基づき本発明の詳細な説明する。
Therefore, by forming the metal layer to be short-circuited into an island, the etching time for the metal layer can be extremely shortened, or - by permeation of elatint from the gap between the islands, only one semiconductor layer can be etched without etching one metal. This enables vertical connection of thin-film nonlinear elements, reduces the etching time of the metal layer, prevents element deterioration, and shortens the process. Furthermore, since metal etching is no longer necessary, the process becomes simpler and the device becomes more stable. In the following - the invention will be explained in detail with reference to the drawings.

第1図は一薄膜非線形抵抗素子の特性を示ず図である。FIG. 1 is a diagram that does not show the characteristics of a thin film nonlinear resistance element.

横軸は電圧■、縦軸し1電流ILf′)logを取った
ものである。薄膜非線形抵抗素子を表示装置に利用する
場合の評価因子とじて−■。Fl、■1い I。Nがあ
る。良好な表示装置用非線形素子は、I OFFが十分
小さい事、V lkが大きい事、I ONが十分大きい
事である。
The horizontal axis is the voltage (2), and the vertical axis is the current (ILf')log. Evaluation factors when using a thin film nonlinear resistance element in a display device -■. Fl, ■1 I. There is N. A good nonlinear element for a display device is such that I OFF is sufficiently small, V lk is large, and I ON is sufficiently large.

第2図に薄膜非線形抵抗素子の構造例を示す。FIG. 2 shows an example of the structure of a thin film nonlinear resistance element.

第2図において−1は基板、2は第1電極−6は半導体
層でP型、■型、N型半導体層より°構成されている。
In FIG. 2, reference numeral -1 denotes a substrate, and reference numeral 2 denotes a first electrode 6, which is a semiconductor layer composed of P-type, ■-type, and N-type semiconductor layers.

、4は、層間絶縁膜−5は第2電極である。半導体層3
は、第1電極2とオーミック性を取るためのP型半導体
層及び第2電極5とオーミック性を取るためのN型半導
体層及び非線形抵抗接続部の一部であるI型半導体層か
ら構成されている。
, 4, the interlayer insulating film-5 is the second electrode. semiconductor layer 3
is composed of a P-type semiconductor layer for obtaining ohmic properties with the first electrode 2, an N-type semiconductor layer for obtaining ohmic properties with the second electrode 5, and an I-type semiconductor layer that is part of the nonlinear resistance connection section. ing.

例として、PIN型を示したが− ■型半導体層のない
PN型でも同様である、第3図は、第一2図の薄膜非線
形素子の整流接続部P I N接合を2段に重ねた構成
になっている。このPIN接合2段の整流部の等価回路
は第4図の如くである。つまり−11と16のP I 
N接合間に逆整流接続部NP接合12ができている。
Although the PIN type is shown as an example, the same applies to the PN type without a type semiconductor layer. Figure 3 shows the rectifier connection part of the thin film nonlinear element shown in Figure 12, with the PIN junction stacked in two stages. It is configured. The equivalent circuit of this two-stage PIN junction rectifier is shown in FIG. In other words, -11 and 16 P I
A reverse rectification connection NP junction 12 is formed between the N junctions.

そのため、I ONは減少し−かつ一不安定でバラツキ
の大きい素子になってしまう。第3図において−6が基
板、7が下層電極−8がPIJPTNQ層整流部(半導
体層)、9が層間絶縁膜、10が上層電極である。第4
図において、11ばPIN接合部のダイオード、12は
、NP接合部のダイオード−13は−PIN接合部のダ
イオードである。
As a result, ION decreases and the device becomes unstable and has large variations. In FIG. 3, -6 is a substrate, 7 is a lower layer electrode, -8 is a PIJPTNQ layer rectifier (semiconductor layer), 9 is an interlayer insulating film, and 10 is an upper layer electrode. Fourth
In the figure, 11 is a diode at the PIN junction, 12 is a diode at the NP junction, and -13 is a diode at the -PIN junction.

以上の様に一単純に2層或は多層にしたのでは、i O
Nが減少し表示素子の安定性が減少し、バラツギの大き
い素子になってしまう。
If the structure is simply made into two layers or multiple layers as described above, i O
As N decreases, the stability of the display element decreases, resulting in an element with large variations.

そこで本発明では、第5図に示1〜如く、PIN接合部
17と17の間のNP接合部に金属アイランド層18を
導入する事により、第6図の等価回路忙示されている如
(−21及び220PIN接合部のダイオードのみにな
る。金属層でなく金属アイランドであっても、アイラン
ド間隙の制御及び、アイランド層に接する層の低抵抗化
で十分コンタクトは取れる。
Therefore, in the present invention, by introducing a metal island layer 18 into the NP junction between the PIN junctions 17 and 17 as shown in FIG. 5, the equivalent circuit shown in FIG. There are only diodes at the -21 and 220 PIN junctions.Even if it is not a metal layer but a metal island, sufficient contact can be made by controlling the island gap and lowering the resistance of the layer in contact with the island layer.

また、IONを十分大きくしたまま、■1.が大きくで
き、素子バラツキをおさえ、表示素子の駆動を十分満足
し、均質な表示パネルが形成できる。
Also, while keeping ION sufficiently large, ■1. can be made large, element variations can be suppressed, display elements can be driven satisfactorily, and a homogeneous display panel can be formed.

類似な構造素子として、光起電力素子:太陽電池がある
が一要求される特性及び構造が違っている。
A similar structural element is a photovoltaic element (solar cell), but the required characteristics and structure are different.

特性的には、薄膜非線形素子が順方向バイアス(大電流
)動作させるのに対して、太陽電池は光により励起され
た電子及び正孔を電流として取り出すものである。その
ため太陽電池では一一般に短絡用の金属層或は導電層は
入れていない。栴造面でも、同様な事が言える、 つまり、太陽電池では、半導体層へ光が入射されなけれ
ばならない。そのため、少なくても片面ば、光が半導体
層へ入射する様に透明電極が使われる。これに対し一薄
膜非線形素子は、I OFFを極力小さくおさえなくて
はならない。そのため−半導体層へは極力光が入射され
ない様に半導体層の上下面を金属で覆い光マスクを形成
したり一半導体上へ光吸収層をもうけたり一或は、光起
電力を外部へ取り出さない様に薄膜非線形素子を2個リ
ング状に組み合せ、リング内で電流を消費させたりする
事が必要になる。太陽電池と薄膜非線形素子の構造は多
くの違った点を有している。
Characteristically, while thin film nonlinear elements operate with a forward bias (large current), solar cells extract electrons and holes excited by light as current. Therefore, solar cells generally do not include a metal layer or conductive layer for short circuiting. The same thing can be said for the Senzo surface; in other words, in a solar cell, light must be incident on the semiconductor layer. Therefore, a transparent electrode is used on at least one side so that light can enter the semiconductor layer. On the other hand, in a thin film nonlinear element, I OFF must be kept as small as possible. Therefore, to prevent light from entering the semiconductor layer as much as possible, cover the top and bottom surfaces of the semiconductor layer with metal to form an optical mask, or create a light absorption layer on the semiconductor layer, or prevent the photovoltaic power from being extracted to the outside. Similarly, it is necessary to combine two thin film nonlinear elements in a ring shape and consume current within the ring. The structures of solar cells and thin film nonlinear devices have many differences.

つまり一太陽電池では一第3図の7或は10の電極層が
透明であるのに対し、本発明の薄膜非線形抵抗素子は第
5図の構成から成っている。第5図において、15が基
板、16が下層電極−17及び17がPIN整流部(半
導体層)、18が短絡用の金属アイランド層、19が層
間絶縁膜、20が上部電極である。第6図は、第5図の
等価回路であり21及び22がPIN接合部のダイオー
ドである。
In other words, in one solar cell, the electrode layer 7 or 10 shown in FIG. 3 is transparent, whereas the thin film nonlinear resistance element of the present invention has the structure shown in FIG. 5. In FIG. 5, 15 is a substrate, 16 is a lower electrode, 17 is a PIN rectifier (semiconductor layer), 18 is a metal island layer for short circuiting, 19 is an interlayer insulating film, and 20 is an upper electrode. FIG. 6 is an equivalent circuit of FIG. 5, in which 21 and 22 are diodes at the PIN junction.

以上より明らかな如く、本発明は一基板上に形成された
電極群及び整流性接続部から成る薄膜非線形抵抗素子を
有する表示パネルにおいて一薄膜非線形抵抗素子を縦接
続する際に生ずる逆整流接続部を短絡するために一薄膜
非線形抵抗素子間に金属アイランド層をもうける事によ
り一 ■。Nを十分大きくしたまま− V lhを大き
くてき一表示品質の向上ができる。
As is clear from the above, the present invention relates to a reverse rectification connection that occurs when one thin film nonlinear resistance element is vertically connected in a display panel having a thin film nonlinear resistance element formed on one substrate and consisting of an electrode group and a rectification connection. ■By creating a metal island layer between two thin-film nonlinear resistance elements to short-circuit. Display quality can be improved by increasing -Vlh while keeping N sufficiently large.

さらに、薄膜非線形素子は一表示の高密度化に伴い微細
素子化が要求される。そこで、短絡すべき金属層をアイ
ランド化する事により一金属層のエツチング時間を非常
に短かくできたり或は、アイランドの間隙からのエツチ
ング液の浸透により、金属のエツチングなしに、半導体
1層のエツチングのみで薄膜非線形素子の縦型接続がで
きる。金属層のエツチング時間の短縮により素子劣化の
防止、及びプロセスの短縮化ができる。ま1こ、金属の
エツチングが不要になる事により−プロセス的に簡単に
なり一素子も安定になる。
Furthermore, thin film nonlinear elements are required to be miniaturized as display density increases. Therefore, by making the metal layer to be shorted into an island, the etching time for one metal layer can be extremely shortened, or by allowing the etching solution to penetrate through the gap between the islands, one semiconductor layer can be etched without etching the metal. Vertical connections of thin film nonlinear elements can be made using only etching. By shortening the etching time of the metal layer, element deterioration can be prevented and the process can be shortened. First, by eliminating the need for metal etching, the process becomes simpler and each element becomes more stable.

以下に実施例を用いて本発明を説明する。The present invention will be explained below using Examples.

第7図は、半導体層がP型半導体層−I型半導体層−N
型半導体層から成るPIN接合の2層構造から成り、I
) I NとPINO間に金属アイランド層を形成した
2層薄膜非線形抵抗素子の製造工程を表わしている。
FIG. 7 shows that the semiconductor layers are P-type semiconductor layer-I-type semiconductor layer-N
It consists of a two-layer structure of PIN junction consisting of a type semiconductor layer,
) The manufacturing process of a two-layer thin film nonlinear resistance element in which a metal island layer is formed between IN and PINO is shown.

第7図Aは一基板6o上へ透明電極層61(表示電極層
)及び下層電極62及び1層月のPIN型ダイオード層
3134.35を形成した図である。第7図へにおいて
−60はガラス或はセラミックス基板、61は表示電極
層でITO或は、sn’o2或は薄膜金属膜である。6
2は下層電極でCr或はAl−Niであり、62はP型
半導体層であり不純物としてB(ボロン)がドーピング
しであるアモーファス・シリコンである。ろ4は不純物
濃度の低い■型半導体層であり−アモーファス・シリコ
ン、65はN型半導体層であり不純物としてP(リン)
がドーピングしであるアモーファス・シリコンでアル。
FIG. 7A is a diagram in which a transparent electrode layer 61 (display electrode layer), a lower electrode layer 62, and a single-layer PIN type diode layer 3134.35 are formed on one substrate 6o. In FIG. 7, -60 is a glass or ceramic substrate, and 61 is a display electrode layer, which is ITO, sn'o2, or a thin metal film. 6
2 is a lower layer electrode made of Cr or Al--Ni, and 62 is a P-type semiconductor layer made of amorphous silicon doped with B (boron) as an impurity. 4 is a ■-type semiconductor layer with a low impurity concentration - amorphous silicon, and 65 is an N-type semiconductor layer containing P (phosphorus) as an impurity.
Al in amorphous silicon which is doped.

第7図Bは、1層口と2層目のPINダイオードの中間
層として金属アイランド層を形成した図である。形成法
としては金属膜を極めて薄く形成する場合−或は−1層
目のダイオードの最上層−N層表面を荒らし一金属の伺
着状態を変えたり一或は金属膜形成後エンチング又は、
ガス粒子でたたいたりする方法がある。材料としては、
A/lCr−Ni、’+”、−tx、等である。第7図
Bにおいて36が金属アイランド層である。
FIG. 7B is a diagram in which a metal island layer is formed as an intermediate layer between the first layer and the second layer of PIN diodes. As for the formation method, if the metal film is to be formed extremely thinly, - or - the top layer of the first diode layer - the surface of the N layer may be roughened to change the adhesion state of the metal, or, alternatively, after the metal film is formed, it may be etched.
There is a method of hitting it with gas particles. As for the material,
A/lCr-Ni, '+'', -tx, etc. In FIG. 7B, 36 is a metal island layer.

第7図Cは一金属アイラノド層66或は−PINダイオ
ード上へ2層目のPINダイオードを形成した図である
。また−半導体層の安定化及び−エノチングーフォトリ
ゾグラフ工程による半導体層の劣化を防止するための金
属層も形成しである。第7図Cは第2層目のPINダイ
オード層を形成した図で67がP型半導体層であり、6
8が■型半導体層−69がN型半導体層であり−アモー
ファス・シリコンより成っている。40は、半導体層の
安定化及びエツチング液フォトリゾグラフ工程による半
導体層の劣化を防止するための金属層(トップメタル層
)でAl−Crである。
FIG. 7C shows a second layer PIN diode formed on the monometallic island layer 66 or -PIN diode. In addition, a metal layer is also formed to stabilize the semiconductor layer and to prevent deterioration of the semiconductor layer due to the etching photolithography process. FIG. 7C is a diagram showing the formation of the second PIN diode layer, where 67 is a P-type semiconductor layer and 6
8 is a ■-type semiconductor layer, and 69 is an N-type semiconductor layer, which is made of amorphous silicon. Reference numeral 40 denotes a metal layer (top metal layer) made of Al-Cr for stabilizing the semiconductor layer and preventing deterioration of the semiconductor layer due to an etching solution photolithographic process.

第7図りは一第7図Cまでに形成された膜を所定の大き
さにパターニングした図である。この際、アモーファス
・シリコン層は反応性イオンエツチングでエツチングを
行ない、短絡用の金属アイランド層のエツチングは特に
行なわなυ・0第7図Eは本発明を用いて形成した薄膜
非線形抵抗素子である。第7図Eは、層間絶縁膜として
、S 1(J2+ S、+3N、+ポリイミド樹脂等を
形成した後に所定の所にコンタクトホールな形成し一配
線層としてAd或ばCrを形成後、パターニングしたも
のである。第7図Eにおいて、41が層間絶縁膜、42
が配線層である。第7図Eの素子と各表示媒体を組み合
せる事により高@5度で高品質の表示装置の形成ができ
る。
Figure 7 is a diagram showing the film formed up to Figure 7C being patterned to a predetermined size. At this time, the amorphous silicon layer is etched by reactive ion etching, and the metal island layer for shorting is not particularly etched. . Figure 7E shows that after forming S1 (J2+ S, +3N, + polyimide resin, etc.) as an interlayer insulating film, contact holes were formed at predetermined locations, and after forming Ad or Cr as a wiring layer, patterning was performed. In FIG. 7E, 41 is an interlayer insulating film, and 42 is an interlayer insulating film.
is the wiring layer. By combining the element shown in FIG. 7E and each display medium, a high quality display device can be formed at a high @5 degree.

以上の如く一表示装置用多層薄膜非線形抵抗素子におい
て、多層に形成された薄膜非線形抵抗素子間に金属アイ
ランド層を形成する事により−1ONを減少さぜる事な
く■1.が大きくでき、安定で経時変化の少ない多層薄
膜非線形抵抗素子の形成が可能となる。半導体層の形成
法は、プラズマCVD法のみならず、光CVD法、スパ
ッタ法、蒸着法、イオンブレーティング法が有効である
As described above, in a multilayer thin film nonlinear resistance element for a display device, by forming a metal island layer between the thin film nonlinear resistance elements formed in multiple layers, -1ON is not reduced.1. It becomes possible to form a multilayer thin film nonlinear resistance element that is stable and shows little change over time. Effective methods for forming the semiconductor layer include not only the plasma CVD method but also the photo CVD method, sputtering method, vapor deposition method, and ion blating method.

半導体の種類は−アモーファス・シリコン−微結晶シリ
コン−シリコンカーバイド−シリコンゲルマニウム−シ
リコンナイトライドがある。アモーファス・シリコンは
薄膜にもかかわらず価電子制御ができるため半導体とし
て格好の材料である。
Types of semiconductors include - amorphous silicon - microcrystalline silicon - silicon carbide - silicon germanium - silicon nitride. Amorphous silicon is an ideal material for semiconductors because it can control valence electrons even though it is a thin film.

必要に応じてB−P= 1−1− N= (L C,G
、、S n−Al1− L l−A s等を添加しても
よU−。
BP= 1-1- N= (L C, G
,, S n-Al1- L l-A s etc. may be added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、薄膜非線形抵抗素子の特性を示すグラフであ
る。第2図は、一般の1層薄膜非線形抵抗素子の構造を
示す断面図。第3図は、一般の2層薄膜非線形抵抗素子
の構造を示す断面図、第4図は第3図の等価回路図、第
5図は、本発明を用いた2層薄膜非線形抵抗素子の構造
を示す断面図、第6図は一第5図の等価回路図−第7図
は、本発明を用いた実施例の工程を示す断面図である。 V o r r・・・・・・I OFFでの電圧、V 
ON・・・・・IONでの電圧− 1,6−15,30・・・・・・基板、6.8−17=
17・・・・・・半導体層。 18.36・・・・・金属アイランド層。 第1図 yoFFVth VON 電圧(V) 第2図 り λ 第7図 (C) 第7図 (D) Jυ (E)
FIG. 1 is a graph showing the characteristics of a thin film nonlinear resistance element. FIG. 2 is a cross-sectional view showing the structure of a general single-layer thin film nonlinear resistance element. Fig. 3 is a cross-sectional view showing the structure of a general two-layer thin film nonlinear resistance element, Fig. 4 is an equivalent circuit diagram of Fig. 3, and Fig. 5 is a structure of a two-layer thin film nonlinear resistance element using the present invention. 6 is an equivalent circuit diagram of FIG. 5, and FIG. 7 is a sectional view showing steps of an embodiment using the present invention. V o r r...I Voltage at OFF, V
ON... Voltage at ION - 1,6-15,30... Board, 6.8-17=
17...Semiconductor layer. 18.36...Metal island layer. Fig. 1 yoFFVth VON Voltage (V) Fig. 2 λ Fig. 7 (C) Fig. 7 (D) Jυ (E)

Claims (1)

【特許請求の範囲】 (11表示装置用薄膜非線形抵抗素子において一該薄膜
非線形素子を重ねて多層に形成し該薄膜非線形抵抗素子
の境界の半導体層間に金属アイランド層を形成した事を
特徴とする薄膜非線形抵抗素子。 (2)薄膜非線形抵抗素子は整流性接続部がPN接合で
ある事を特徴とする特許請求の範囲第1項記載の薄膜非
線形抵抗素子。 (3)薄膜非線形抵抗素子は整流接続部がP型半導体層
とN型半導体層と、間に低不純物濃度の■型半導体層が
形成されている事を特徴とする特許請求の範囲第1項記
載の薄膜非線形抵抗素子。
[Claims] (11) In a thin film nonlinear resistance element for a display device, one thin film nonlinear element is stacked to form a multilayer structure, and a metal island layer is formed between semiconductor layers at the boundary of the thin film nonlinear resistance element. Thin film nonlinear resistance element. (2) The thin film nonlinear resistance element according to claim 1, wherein the rectifying connection part of the thin film nonlinear resistance element is a PN junction. (3) The thin film nonlinear resistance element is characterized in that the rectifying connection part is a PN junction. 2. The thin film nonlinear resistance element according to claim 1, wherein the connection portion is formed between a P-type semiconductor layer and an N-type semiconductor layer, and a ■-type semiconductor layer with a low impurity concentration is formed between them.
JP11748983A 1983-06-29 1983-06-29 Thin-film non-linear type resistance element Pending JPS609177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11748983A JPS609177A (en) 1983-06-29 1983-06-29 Thin-film non-linear type resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11748983A JPS609177A (en) 1983-06-29 1983-06-29 Thin-film non-linear type resistance element

Publications (1)

Publication Number Publication Date
JPS609177A true JPS609177A (en) 1985-01-18

Family

ID=14712983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11748983A Pending JPS609177A (en) 1983-06-29 1983-06-29 Thin-film non-linear type resistance element

Country Status (1)

Country Link
JP (1) JPS609177A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336542U (en) * 1986-08-25 1988-03-09
US5142331A (en) * 1988-01-22 1992-08-25 Mitsubishi Denki Kabushiki Kaisha Photoelectric conversion semiconductor device
JPH0820955A (en) * 1994-07-09 1996-01-23 Nisshoku Corp Inspection form for making slope form and slope form method by use thereof
JPH0820956A (en) * 1994-07-09 1996-01-23 Nisshoku Corp Inspection form for making slope form and slope form method for use thereof
JPH0827801A (en) * 1994-07-16 1996-01-30 Nisshoku Corp Frame body for slope frame formation and slope frame method using frame body
JPH08291524A (en) * 1995-04-20 1996-11-05 Koiwa Kanaami Kk Spacer in form for slope frame

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336542U (en) * 1986-08-25 1988-03-09
US5142331A (en) * 1988-01-22 1992-08-25 Mitsubishi Denki Kabushiki Kaisha Photoelectric conversion semiconductor device
JPH0820955A (en) * 1994-07-09 1996-01-23 Nisshoku Corp Inspection form for making slope form and slope form method by use thereof
JPH0820956A (en) * 1994-07-09 1996-01-23 Nisshoku Corp Inspection form for making slope form and slope form method for use thereof
JPH0827801A (en) * 1994-07-16 1996-01-30 Nisshoku Corp Frame body for slope frame formation and slope frame method using frame body
JPH08291524A (en) * 1995-04-20 1996-11-05 Koiwa Kanaami Kk Spacer in form for slope frame

Similar Documents

Publication Publication Date Title
TWI383447B (en) Etchant for conductive materials and method of manufacturing a thin film transistor array panel using the same
US4642620A (en) Matrix display device
JPH05110121A (en) Solar cell
US5008590A (en) Display arrangement having pin diode switching elements
JPH05175537A (en) Photo diode array and manufacture thereof
JPS609177A (en) Thin-film non-linear type resistance element
JPH06151941A (en) Photodiode array and its manufacture
JPH01175775A (en) Photo-driven mos semiconductor device
JPH0669096B2 (en) Insulated gate type field effect transistor
JPS6016473A (en) Non-linear resistance element
JPS6141156B2 (en)
JPS6043867A (en) Manufacture of nonlinear type resistance element for display device
JP2511023B2 (en) Bidirectional thyristor
JP2671554B2 (en) Manufacturing method of infrared detector
JPS6346781A (en) Monolithic photodiode array with resistor
JPS58223382A (en) Semiconductor light emitting device
JPH0244792A (en) Manufacture of semiconductor light emitting device
JPH0341769A (en) Optoelectronic integrated circuit and manufacture thereof
JPS60144981A (en) Optical generating element and manufacture thereof
JPS6244430B2 (en)
JPS6165482A (en) Manufacture of semiconductor device
JPS60177321A (en) Manufacture of thin-film nonlinear resistance element for display device
JPS607183A (en) Manufacture of nonlinear resistor element
JPS6165481A (en) Semiconductor device
JPH0677237A (en) Manufacture of planar type diode