JPS609118A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS609118A
JPS609118A JP11745983A JP11745983A JPS609118A JP S609118 A JPS609118 A JP S609118A JP 11745983 A JP11745983 A JP 11745983A JP 11745983 A JP11745983 A JP 11745983A JP S609118 A JPS609118 A JP S609118A
Authority
JP
Japan
Prior art keywords
oxide film
impurity
source layer
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11745983A
Other languages
Japanese (ja)
Inventor
Kiyoshi Wakashima
若島 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11745983A priority Critical patent/JPS609118A/en
Publication of JPS609118A publication Critical patent/JPS609118A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To unify surface concentration of impurity region and improve yield productivity by forming an oxide film at the surface, extending impurity region in a substrate under the nitrogen ambient and thereby executing thermal oxidation and slumping process. CONSTITUTION:The P type impurity is implanted to a semiconductor substrate 11 allowing formation of the N<-> layer 10 at the surface region and a high concentration impurity diffusion source layer 12 is formed. It is oxidized under the dry oxygen ambient of 1,000-1,100 deg.C and an oxide film 13 is formed on the impurity diffusion source layer 12 and rear surface of semiconductor substrate 11. Thereafter, it is then subjected to the slumping process for several hours under the nitrogen ambient at a temperature of 1,000 deg.C and thereby the impurity region 14 is formed by the impurity diffusion of impurity diffusion source layer 12. The thermal oxidation is executed under the oxidation ambient and a thermal oxide film 15 is formed integrally on an oxide film 13. Thereafter, the slumping process is executed again at 1,200-1,300 deg.C and thereby the base layer 16 is formed in the N<-> layer 10.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a semiconductor device.

〔発明の技術的背景〕[Technical background of the invention]

現在、電力用トランジスタのペース層の形成は、その不
純物濃度を均一化するだめに、イオン注入法により半導
体基板内にこれと反対導電形の拡散不純物を導入して、
高イ農度の拡散不純物源層を形成することにより行われ
ている。例えばNPN )ランジスタを例に誉げると、
第1図(A)乃至同図(F)に示す工程により製造され
ている6、先ず、同図(〜に示す如く、表面領域にN−
IQlを形成しだ半導体基板2を用)5する11次に、
同図(B)に示す如く、N一層10表面領域に〜1.O
X 1015/cdlの注入量でP形の不純物を注入1
〜、深さ約〜0,6ttmの高濃度の拡散不純物源層3
を形成する。次いで、拡散不純物源層3の外部拡散を防
止するために、気相成長法により酸化膜4全同図(C)
に示す如く、形成する。これに約10 ()0℃の窒素
雰囲気で数時間スラツピングを施し、拡散不純物源層3
′の拡散深さを約2μm深くする。これは、後述のエミ
ッタ用拡散マスクを形成する際の熱処理によって、拡散
不純物源層3′中の不純物濃度が低下するのを防止する
ためである。次に、同図■)に示す如く、エミッタ用拡
散マスクとなる熱酸化膜5を酸化膜4及び半導体基板2
の露出した裏面側に形成する。
Currently, in order to make the impurity concentration uniform in forming the base layer of power transistors, diffused impurities of the opposite conductivity type are introduced into the semiconductor substrate by ion implantation.
This is done by forming a diffusion impurity source layer with a high concentration of impurities. For example, if we take NPN) transistor as an example,
6 manufactured by the steps shown in FIGS. 1(A) to 1(F). First, as shown in FIG.
11 Next, use the semiconductor substrate 2 to form the IQl.
As shown in the same figure (B), ~1. O
P-type impurity implantation 1 with an implantation amount of X 1015/cdl
~, a high concentration diffused impurity source layer 3 with a depth of approximately ~0.6ttm
form. Next, in order to prevent external diffusion of the diffusion impurity source layer 3, the entire oxide film 4 is grown by vapor phase growth method (FIG. 1C).
Form as shown. This was subjected to slapping for several hours in a nitrogen atmosphere at approximately 10 ()0°C, and the diffused impurity source layer 3
The diffusion depth of ' is increased by approximately 2 μm. This is to prevent the impurity concentration in the diffused impurity source layer 3' from decreasing due to heat treatment when forming an emitter diffusion mask, which will be described later. Next, as shown in FIG.
Formed on the exposed back side of the

然る後、これに1250℃で数時間スランビングを施し
、拡散不純物源層3′からの拡散により拡散深さが約3
0μmのベースR′i6を同図(F)に示す如く形成す
る。この後、エミッタ拡散処理、電極形成処理等を行い
所望の半導体装置を得る。
Thereafter, this was subjected to slumping at 1250°C for several hours, and the diffusion depth was increased to about 3 by diffusion from the diffused impurity source layer 3'.
A base R'i6 of 0 μm is formed as shown in FIG. Thereafter, emitter diffusion treatment, electrode formation treatment, etc. are performed to obtain a desired semiconductor device.

〔背景技術の問題点〕[Problems with background technology]

このような従来の半導体装置の製造方法では、次のよう
な問題がある。
Such conventional semiconductor device manufacturing methods have the following problems.

(リ 拡散不純物源層3の外部拡散を防止するだめ酸化
膜4は、通常常圧CVD法、連続CVD法等により形成
されるため、大M1・生産に不向きであり、生産性の向
上を達成できない。
(Re) The oxide film 4 that prevents external diffusion of the diffusion impurity source layer 3 is usually formed by atmospheric pressure CVD, continuous CVD, etc., and is not suitable for large M1 production. Can not.

■ また、高品質の1欧化膜4を得ることができないた
め、歩留シを向上させることができない。酸化膜4の品
質を高めることができないのは、例えばCVD法による
酸化膜4の場合には、5t)(4+o2→5i02 +
 2H1の反応によってヒロックと称せられるシラン酸
化物が発生するため、その付着或は酸化膜4中にピンホ
ールが発生し易いからである。更に、不純物を含むCV
D酸化膜、PSG膜、BSG膜を形成する工程と併用1
〜で酸化膜4が形成されるため、PSG膜を形成する際
のPH8,BSG膜を形成する際のB、H,ifスによ
って汚染を受け易いからである。
(2) Moreover, since it is not possible to obtain a high-quality monomer film 4, the yield cannot be improved. The reason why the quality of the oxide film 4 cannot be improved is, for example, in the case of the oxide film 4 made by the CVD method, 5t)(4+o2→5i02+
This is because silane oxides called hillocks are generated by the 2H1 reaction, and pinholes are likely to occur in the oxide film 4 or in the adhesion of silane oxides. Furthermore, CV containing impurities
Combined use with the process of forming D oxide film, PSG film, BSG film 1
This is because, since the oxide film 4 is formed in ~, it is easily contaminated by PH8 when forming the PSG film and B, H, if gas when forming the BSG film.

〔発明の目的〕[Purpose of the invention]

本発明は、半導体基板内に形成する不純物領域の表面濃
度を均一にし、かつ、高歩留シで生産性の向上を達成し
た半導体装置の製造方法を提供することをその目的とす
るものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that makes the surface concentration of an impurity region formed in a semiconductor substrate uniform and achieves high yield and improved productivity. .

〔発明の概要〕[Summary of the invention]

本発明は表面に厚肉の酸化膜を形成した拡散不純物源層
から、1000〜1100℃の窒素雰囲気中で所定の拡
散深ざの不純物領域を半導体基板内に延出させた後、こ
れに熱酸化及び1?00〜1300℃のスランビング処
理を施す工程を設けたことにより、半導体基板内に形成
する不純物領域の表面濃度を均一にし、かつ、歩留り及
び生産性の向上を達成[また半導体装置の製造方法であ
る。
In the present invention, an impurity region with a predetermined diffusion depth is extended into a semiconductor substrate from a diffused impurity source layer with a thick oxide film formed on the surface in a nitrogen atmosphere at 1000 to 1100°C, and then heated. By providing a process of oxidation and slumbing treatment at 100 to 1300 degrees Celsius, the surface concentration of the impurity region formed in the semiconductor substrate is made uniform, and yield and productivity are improved. This is the manufacturing method.

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

先ず、第2図(A)に示す如く、表面領域にN一層10
を形成した半導体基板11を用意する。次いで、同図(
B)に示す如り、N一層の表面領域に〜1、 OX 1
0”/cJの注入量でP形の不純物を注入し、深さ約〜
0.611mの高θ度の不純物拡散源層12を形成する
。次に、同図(C)に示す如く、これに1000〜11
00℃の乾燥酸素雰囲気中で酸化処理を施し、厚さ約3
000Xの厚肉の酸化M13を不純物拡散源層J2上及
び半導体基板1ノの裏面上に形成する。次いで、同図の
)に示す如く、これに例えば1000℃の温度で窒素雰
囲気中で数時間スランビング処理を施し、拡散深さが約
3μmの不純物領域14を不純物拡散源層12の不純物
拡散によって形成する。次に、これに同図の)に示す如
く、酸化性雰囲気中で熱酸化を施し、酸化膜13上に後
述するエミッタ用拡散マスクとなる熱酸化膜15を一体
に形成する。然る後、12 (l 0〜1300℃の温
度範囲にある温度、例えば1250℃で数十時間スラン
ビング処理を施し、同図(ド)に示す如く、拡散保さが
約30t1mのペース層16をN一層ノθ中に形成する
っこの後、熱酸化膜15にエミッタ拡散用の窓を開口し
、エミッタ拡散等の処理を経て半導体装置20を得る。
First, as shown in FIG. 2(A), a layer of N 10
A semiconductor substrate 11 having a structure formed thereon is prepared. Next, the same figure (
As shown in B), in the surface area of the N single layer ~1, OX1
P-type impurities are implanted at an implantation dose of 0"/cJ to a depth of approximately ~
An impurity diffusion source layer 12 with a high θ degree of 0.611 m is formed. Next, as shown in the same figure (C), 1000 to 11
Oxidation treatment is performed in a dry oxygen atmosphere at 00℃, and the thickness is approximately 3.
A thick oxide M13 of 000X is formed on the impurity diffusion source layer J2 and the back surface of the semiconductor substrate 1. Next, as shown in ) in the same figure, this is subjected to a slumping treatment for several hours in a nitrogen atmosphere at a temperature of, for example, 1000° C., and an impurity region 14 with a diffusion depth of about 3 μm is formed by impurity diffusion in the impurity diffusion source layer 12. do. Next, as shown in ) in the same figure, thermal oxidation is performed in an oxidizing atmosphere to integrally form a thermal oxide film 15 on the oxide film 13, which will serve as a diffusion mask for an emitter to be described later. Thereafter, a slumping treatment is performed at a temperature in the temperature range of 0 to 1,300 degrees Celsius, for example, 1,250 degrees Celsius, for several tens of hours to form a paste layer 16 with a diffusion retention of about 30 tons, as shown in FIG. After forming the N layer in θ, a window for emitter diffusion is opened in the thermal oxide film 15, and a semiconductor device 20 is obtained through processes such as emitter diffusion.

2このようにこの半導体装置の製造方法によれば、拡散
不純物源層12の外部拡散を防止する酸化膜13は、熱
酸化法にて形成されるので、量産が容易であり、生産性
を向上させることができる1、しかも、この酸化膜13
の形成の際には、不純物が混入し易いPSG膜等の形成
処理は併用されないので、はとんど汚染のない清浄な酸
化膜13を形成して、後続のスランビング処理によって
極めて高品質のペース層16を形成することができる。
2 As described above, according to this semiconductor device manufacturing method, the oxide film 13 that prevents the diffusion of the diffused impurity source layer 12 to the outside is formed by a thermal oxidation method, which facilitates mass production and improves productivity. 1, and this oxide film 13
When forming the oxide film 13, a process for forming a PSG film, etc., which easily contains impurities, is not used, so a clean oxide film 13 with almost no contamination is formed, and the subsequent slumping process produces an extremely high quality paste. Layer 16 can be formed.

更に、酸化膜13の形成が1000〜1100℃の高温
度で、かつ、数時間の長時間加熱によって行われるので
、次のスランピング効果ヲ促進することによって、ベー
ス層16を形成するだめの不純物濃度の低下を防止して
、汚染度の小さいベース層16が形成される。
Furthermore, since the oxide film 13 is formed at a high temperature of 1,000 to 1,100° C. and by heating for several hours, the impurity concentration for forming the base layer 16 can be reduced by promoting the next slumping effect. A base layer 16 with a low degree of contamination is formed by preventing a decrease in the contamination.

因に、このようにして得らtまた半導体装置のベース層
16形成後における耐圧歩留シを調べると、シート抵抗
のばらつき幅(ΔρS)を±4%に抑えた半導体基板1
ノを用いた場合、エミッタ開放コレクク降伏電圧(’V
cno)について見ると従来50%のVCBO歩留りを
実施例によるものでは95%VCRO歩留まで向上させ
ることができた。
Incidentally, when examining the breakdown voltage yield after forming the base layer 16 of the semiconductor device obtained in this way, it was found that the semiconductor substrate 1 with the sheet resistance variation range (ΔρS) suppressed to ±4%
When using , the emitter open-collection breakdown voltage ('V
Regarding cno), the conventional VCBO yield was 50%, but the embodiment was able to improve the VCRO yield to 95%.

なお、実施例でけN−PN型のベース層16の形成に本
発明を適用したものについて説明したが、この他にも、
イオン注入後に熱酸化工程を有する工程、例えばPNP
型トランジスタのエミッタ形成やNPN型トランジスタ
のコンタクトP十形成などにも適用できることは勿論で
ある。
In addition, although the present invention has been described in the embodiment to form the N-PN type base layer 16, there are other methods as well.
A process that includes a thermal oxidation process after ion implantation, e.g. PNP
It goes without saying that the present invention can also be applied to the formation of an emitter of a type transistor or the formation of a contact P1 of an NPN type transistor.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る半導体装置の製造方法
によれば、半導体基板内に形成する不純物領域の表面濃
度を均一にし、かつ、歩留り及び生産性の向上を達成で
きる等顕著な効果を奏するものである。、
As explained above, according to the method for manufacturing a semiconductor device according to the present invention, it is possible to make the surface concentration of an impurity region formed in a semiconductor substrate uniform, and to achieve remarkable effects such as improving yield and productivity. It is something. ,

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)乃至同図(F)は、従来の半導体装置の製
造方法を工程順に示す説・門口、第2図(A)乃至同図
(F)は、本発明方法を工程順に示す説明図である。 10・・・N一層、1ノ・・・半導体基板、12・・・
不純物拡散源層、13・・・酸化膜、14・・不純物領
域、15・・・熱酸化膜、16・・・ベース層、20・
・・半導体装置。
1(A) to 1(F) show a conventional method for manufacturing a semiconductor device in the order of steps, and FIGS. 2(A) to 2(F) show the method of the present invention in the order of steps. It is an explanatory diagram. 10...N single layer, 1no...semiconductor substrate, 12...
Impurity diffusion source layer, 13... Oxide film, 14... Impurity region, 15... Thermal oxide film, 16... Base layer, 20...
...Semiconductor devices.

Claims (1)

【特許請求の範囲】[Claims] 一導電形の半導体基板に拡散不純物源層を形成した後、
該拡散不純物源層から所定の拡散深さの不イ′口物領域
を形成する工程を具備する半導体装置の製造方法におい
て、不純物領域の形成]−程を、1000〜1100℃
の酸素芽囲気中で厚肉の酸化膜を拡散不純物源層上に形
成した後、1000〜1100℃の窒素雰囲気中で該拡
散不純物源層が所定の拡散深さの不純物領域を半導体基
板内に延出させ、次いで、これに熱歳化を施しZC後1
200〜1300℃のスラツピング処理を施す工程とし
たことを特徴とする半導体装置の製造方法。
After forming a diffused impurity source layer on a semiconductor substrate of one conductivity type,
In the method for manufacturing a semiconductor device comprising the step of forming an impurity region having a predetermined diffusion depth from the diffused impurity source layer, the step of forming the impurity region is performed at 1000 to 1100°C.
After forming a thick oxide film on the diffused impurity source layer in an oxygen atmosphere of 1000°C to 1100°C, the diffused impurity source layer forms an impurity region with a predetermined diffusion depth in the semiconductor substrate in a nitrogen atmosphere of 1000 to 1100°C. It was extended and then subjected to heat aging and after ZC 1
A method for manufacturing a semiconductor device, comprising a step of performing slapping treatment at 200 to 1300°C.
JP11745983A 1983-06-29 1983-06-29 Manufacture of semiconductor device Pending JPS609118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11745983A JPS609118A (en) 1983-06-29 1983-06-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11745983A JPS609118A (en) 1983-06-29 1983-06-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS609118A true JPS609118A (en) 1985-01-18

Family

ID=14712192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11745983A Pending JPS609118A (en) 1983-06-29 1983-06-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS609118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH677558A5 (en) * 1988-11-28 1991-05-31 Asea Brown Boveri Deep PN junction mfr. for power thyristor - has oxide layer applied to surface of substrate during diffusion process for doping material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH677558A5 (en) * 1988-11-28 1991-05-31 Asea Brown Boveri Deep PN junction mfr. for power thyristor - has oxide layer applied to surface of substrate during diffusion process for doping material

Similar Documents

Publication Publication Date Title
JPH01165172A (en) Manufacture of thin film transistor
JPS609118A (en) Manufacture of semiconductor device
JPS63174366A (en) Manufacture of semiconductor device
JP4380418B2 (en) Manufacturing method of semiconductor device
JPS5917529B2 (en) Manufacturing method of semiconductor device
JPH07221092A (en) Manufacture of semiconductor device
JP2842088B2 (en) Method for manufacturing gate insulating film
JPS62219625A (en) Manufacture of semiconductor device
JPH0555198A (en) Manufacture of semiconductor device
JPS61183923A (en) Formation of epitaxial layer
JPS60170971A (en) Manufacture of semiconductor device
JP2943383B2 (en) Method for manufacturing semiconductor device
JPS61144848A (en) Manufacture of semiconductor device
JPS5858814B2 (en) Manufacturing method of insulated gate semiconductor device
JPS592191B2 (en) Method for manufacturing electrodes for semiconductor devices
JPS60101969A (en) Manufacture of semiconductor device
JPH01128530A (en) Manufacture of semiconductor device
JPH02278818A (en) Manufacture of semiconductor device
JPH0316215A (en) Formation of silicon thermal oxide film
JPS6011459B2 (en) Method for manufacturing a diffused semiconductor device
JPS62141727A (en) Manufacture of semiconductor device
JPH0442958A (en) Manufacture of semiconductor integrated circuit
JPS63260174A (en) Manufacture of semiconductor device
JPH04142080A (en) Semiconductor device and manufacture thereof
JPS62266831A (en) Formation of pattern for mask alignment