JPS6091162A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS6091162A
JPS6091162A JP19942983A JP19942983A JPS6091162A JP S6091162 A JPS6091162 A JP S6091162A JP 19942983 A JP19942983 A JP 19942983A JP 19942983 A JP19942983 A JP 19942983A JP S6091162 A JPS6091162 A JP S6091162A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
storage tank
pressure reducer
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19942983A
Other languages
Japanese (ja)
Inventor
岩本 哲正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP19942983A priority Critical patent/JPS6091162A/en
Publication of JPS6091162A publication Critical patent/JPS6091162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ヒートポンプ式空気調和機に関し冷却システ
ムにおける室外側熱交換器の凍結防止コイルに係わるも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat pump type air conditioner and relates to an antifreeze coil for an outdoor heat exchanger in a cooling system.

従来例の構成とその問題点 従来の暖房専用ヒートポンプ式空気調和機では除霜した
あと、室外側熱交換器の下底部に除霜水が残り、再び暖
房運転した場合、蒸発器として作用する室外熱交換器の
下底部が凍結して、熱交換が極度に低下する問題があっ
た。この問題を解決するために従来では、凝縮器として
作用する室内側熱交換器で得られた凝縮液電媒を室外側
熱交換器の下底部に流し凍結を防止するものがあった。
Conventional configuration and its problems In conventional heating-only heat pump air conditioners, after defrosting, defrost water remains at the bottom of the outdoor heat exchanger, and when heating operation is resumed, the outdoor air conditioner acts as an evaporator. There was a problem that the bottom of the heat exchanger froze, resulting in extremely poor heat exchange. In order to solve this problem, conventional methods have been used to prevent freezing by flowing the condensate electrolyte obtained in the indoor heat exchanger, which acts as a condenser, to the bottom of the outdoor heat exchanger.

第1図にてその従来例を説明する。A conventional example will be explained with reference to FIG.

図は従来のヒートポンプ式空気調和機の冷凍サイクル図
で、1は圧縮機、2は四方弁、3は暖房時凝縮器として
作用する室内側熱交換器、4は暖房時、蒸発器として作
用する室外側熱交換器で、冷媒管5にて環状に接続して
冷凍サイクルを形成している。そして室内側熱交換器3
と、室外側熱交換器4との間には、直列に第一減圧器6
、第二減圧器7、第二減圧器7と並列に逆止弁8が設け
られている。そして、室外側熱交換器4の下底部には・
第一減圧器6と、第二減圧器7との間に位置するところ
に凍結防止コイル9が設けら才1.ている。
The figure is a refrigeration cycle diagram of a conventional heat pump air conditioner, where 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger that acts as a condenser during heating, and 4 acts as an evaporator during heating. The outdoor heat exchangers are connected in an annular manner through refrigerant pipes 5 to form a refrigeration cycle. And indoor heat exchanger 3
A first pressure reducer 6 is connected in series between the and the outdoor heat exchanger 4.
, a second pressure reducer 7, and a check valve 8 in parallel with the second pressure reducer 7. At the bottom of the outdoor heat exchanger 4,
An antifreeze coil 9 is provided between the first pressure reducer 6 and the second pressure reducer 7.1. ing.

以上の構成において作用としては、暖房運転時に実線矢
印の如く冷媒は流れ、圧縮機1よジ吐出された冷媒は、
四方弁2、室内側熱交換器3へと流れ、第一減圧器6で
中間圧に寸で圧力を下げた後、蒸発器として作用する室
外側熱交換器4の下底部に設けられた凍結防止コイル9
へと流れる。
In the above configuration, the refrigerant flows as shown by the solid arrow during heating operation, and the refrigerant discharged from the compressor 1 is
The flow flows to the four-way valve 2, the indoor heat exchanger 3, and after the pressure is reduced to intermediate pressure by the first pressure reducer 6, a freezing device is installed at the bottom of the outdoor heat exchanger 4, which acts as an evaporator. Prevention coil 9
flows to.

そして第二減圧器7へと流れて膨張された後、室外側熱
交換器4にて蒸発した後、四方弁2を経て圧縮機1へも
どるサイクルをくり返えす。
Then, after flowing to the second pressure reducer 7 and being expanded, it is evaporated in the outdoor heat exchanger 4, and then returned to the compressor 1 via the four-way valve 2, and the cycle is repeated.

以上の様に暖房運転時は常に凍結防止コイル9へ凝縮冷
媒が流れるため、室内側熱交換器3で室内に放熱される
暖房能力は比較的外気温が高く、室外側熱交換器の下底
部が凍結しない場合でも低下してしまう問題があった。
As described above, during heating operation, the condensed refrigerant always flows to the antifreeze coil 9, so the heating capacity of the indoor heat exchanger 3 to radiate heat indoors is limited to the lower part of the outdoor heat exchanger when the outside temperature is relatively high. There was a problem that the temperature decreased even when the temperature did not freeze.

発明の目的 本発明は、通常の比較的外気温が高く、除霜しない条件
では、室外側熱交換器の凍結防止コイルには、凝縮液冷
媒が流れない様にし、暖房能力の向上を図ることを目的
とする。
Purpose of the Invention The present invention aims to improve heating capacity by preventing condensate refrigerant from flowing through the anti-freezing coil of an outdoor heat exchanger under normal conditions where the outside temperature is relatively high and no defrosting is performed. With the goal.

発明の構成 この目的を達成するために、本発明は室内側熱交換器と
室外側熱交換器との間に冷媒貯溜タンクを設は冷媒管を
冷媒貯溜タンクの上部より凍結防止コイルへと導びき、
さらに、冷媒貯溜タンクの周囲を室内側熱交換器で得ら
れた凝縮液冷媒と熱交換させる構成としている。
Structure of the Invention In order to achieve this object, the present invention provides a refrigerant storage tank between an indoor heat exchanger and an outdoor heat exchanger, and leads a refrigerant pipe from the upper part of the refrigerant storage tank to an antifreeze coil. Biki,
Furthermore, the structure is such that heat is exchanged around the refrigerant storage tank with the condensed liquid refrigerant obtained by the indoor heat exchanger.

従って凍結防止コイルへ導かれる冷媒は、比較的外気温
の高い場合、すなわち凍結防止コイルの不用な場合は、
冷媒貯溜タンクの周囲は高温の凝縮液冷媒にて熱交換さ
れているため、冷媒貯溜タンク内はガスと液とに分離し
冷媒貯溜タンク上部からガス状の冷媒が、凍結防止コイ
ルへと導かれるので、凍結防止コイルでの熱交換量は少
ない。
Therefore, when the outside temperature is relatively high, that is, when the antifreeze coil is not needed, the refrigerant guided to the antifreeze coil
The area around the refrigerant storage tank exchanges heat with high-temperature condensed liquid refrigerant, so the inside of the refrigerant storage tank is separated into gas and liquid, and the gaseous refrigerant is guided from the top of the refrigerant storage tank to the antifreeze coil. Therefore, the amount of heat exchanged by the antifreeze coil is small.

ゆえに室内側熱交換器で充分な暖房能力を発揮する。逆
に外5気温が低く、凝縮冷媒の温度が低い場合は、冷媒
貯溜タンク内は液冷媒で満たされるため、凍結防止コイ
ルへは液冷媒が流れ、室外側熱交換器下底部は充分に熱
交換される。
Therefore, the indoor heat exchanger provides sufficient heating capacity. On the other hand, when the outside air temperature is low and the temperature of the condensed refrigerant is low, the refrigerant storage tank is filled with liquid refrigerant, so the liquid refrigerant flows to the antifreeze coil, and the bottom of the outdoor heat exchanger receives sufficient heat. be exchanged.

実施例の説明 以下に本発明の実施例を第2図を参照しながら説明する
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

第2図はヒートポンプ式空気調和機の冷凍サイクル図で
、11は圧縮機、12は四方弁、13は暖房時凝縮器と
して作用する室内側熱交換器、14は暖房時蒸発器とし
て作用する室外側熱交換器であり、冷媒管15にて環状
に接続して冷凍サイクルを構成している。そして室内側
熱交換器13と室外側熱交換器14との間には、第一減
圧器16、第二減圧器17、第三減圧器18が直列に接
続されている。さらに第二減圧器1γと第三減圧器18
には冷房運転時に減圧器内に冷媒を流れにくくするため
にそれぞれ第一逆止弁19、第二逆止弁2oを並列に設
けている。そして、第一減圧器16と第二減圧器17と
の間には冷媒管15の一部を周囲に巻状に密着させて巻
いた冷媒貯溜タンク21を備えている。この冷媒貯溜タ
ンク21は上部より第二減圧器17に接続され、また室
外側熱交換器14の下底部に設けられた凍結防止コイル
22との一方に接続している。又、下底部より凍結防止
コイル22の他方と接続され、またこの接続点よシ第主
減圧器17が接続されている。
Figure 2 is a refrigeration cycle diagram of a heat pump type air conditioner, where 11 is a compressor, 12 is a four-way valve, 13 is an indoor heat exchanger that acts as a condenser during heating, and 14 is a chamber that acts as an evaporator during heating. It is an external heat exchanger, and is connected in an annular manner through a refrigerant pipe 15 to form a refrigeration cycle. A first pressure reducer 16, a second pressure reducer 17, and a third pressure reducer 18 are connected in series between the indoor heat exchanger 13 and the outdoor heat exchanger 14. Furthermore, the second pressure reducer 1γ and the third pressure reducer 18
A first check valve 19 and a second check valve 2o are provided in parallel, respectively, in order to make it difficult for refrigerant to flow into the pressure reducer during cooling operation. A refrigerant storage tank 21 is provided between the first pressure reducer 16 and the second pressure reducer 17, in which a part of the refrigerant pipe 15 is tightly wound around the circumference. This refrigerant storage tank 21 is connected from the top to the second pressure reducer 17, and is also connected to one end of the antifreeze coil 22 provided at the bottom of the outdoor heat exchanger 14. Further, it is connected to the other side of the antifreeze coil 22 from the lower bottom, and the main pressure reducer 17 is connected to this connection point.

次に上記構成に基づく作用を述べる。Next, the operation based on the above configuration will be described.

作用をわか9やすくするために、暖房通常運転時、暖房
低外気温時、冷房運転時に分けて説明する。
To make the effects easier to understand, we will explain them separately for normal heating operation, low outside temperature heating operation, and cooling operation.

まず、暖房通常運転時を説明する。First, the normal heating operation will be explained.

暖房通常運転時は図中実線矢印で示す如く冷媒は流れ圧
縮機11よシ吐出された冷媒は、四方弁12を経て室内
側熱交換器13へと導かれる。室内側熱交換器13より
導かれた冷媒は第一減圧器16にて中間圧まで減圧され
た後、冷媒貯溜タンク21の周囲に密着して巻かれた冷
媒管15を経て、第二減圧器17の方へ導かれる。そし
て第二減圧器17よシ導かれた冷媒は、冷媒貯溜タンク
21の上部よシ導入される。この時、冷媒貯溜タンク2
1内の冷媒は室内側熱交換器13より導かれた比較的温
度の高い冷媒(冷媒貯溜タンク内の冷媒飽和温度よシも
)にて周囲を熱交換されているため、冷媒貯溜タンク2
1内の冷媒はガス状のものと、液状のものに分離される
。そしてガス状の冷媒は貯溜タンク21の上部よp凍結
防止コイル22の方へ、又液状の冷媒は第三減圧器18
の方へと流れる。従って凍結防止コイル22へ流れる冷
媒はガス状であるため、凍結防止コイル22での熱交換
量は非常に少ない。
During normal heating operation, the refrigerant flows as shown by the solid arrow in the figure, and the refrigerant discharged from the compressor 11 is guided to the indoor heat exchanger 13 via the four-way valve 12. The refrigerant led from the indoor heat exchanger 13 is reduced in pressure to an intermediate pressure in the first pressure reducer 16, and then passes through the refrigerant pipe 15 tightly wound around the refrigerant storage tank 21 to the second pressure reducer. It will lead you to 17. The refrigerant guided through the second pressure reducer 17 is then introduced into the upper part of the refrigerant storage tank 21. At this time, refrigerant storage tank 2
The refrigerant in the refrigerant storage tank 2 undergoes heat exchange with the surroundings using a relatively high-temperature refrigerant (even the refrigerant saturation temperature in the refrigerant storage tank) led from the indoor heat exchanger 13.
The refrigerant in 1 is separated into gaseous and liquid. The gaseous refrigerant flows from the upper part of the storage tank 21 toward the antifreeze coil 22, and the liquid refrigerant flows through the third pressure reducer 18.
flows towards. Therefore, since the refrigerant flowing to the antifreeze coil 22 is gaseous, the amount of heat exchanged in the antifreeze coil 22 is very small.

そして冷媒貯溜タンク21よシ導かれた冷媒は第三減圧
器18にて完全に膨張された後、室外側熱交換器14に
て蒸発された後、四方弁12を経て圧縮機11へもどる
サイクルを形成する。この様に除霜を必要としない暖房
通常運転時は、凍結防止コイルにて熱交換される凝縮熱
はわずかであるため暖房能力を低下させることがない。
The refrigerant led from the refrigerant storage tank 21 is completely expanded in the third pressure reducer 18, evaporated in the outdoor heat exchanger 14, and then returned to the compressor 11 via the four-way valve 12. form. In this way, during normal heating operation that does not require defrosting, only a small amount of condensed heat is exchanged in the anti-freeze coil, so the heating capacity is not reduced.

次に暖房低外気温時を説明する。Next, a description will be given of heating when the outside temperature is low.

暖房低外気温時の冷媒の流れは上記暖房通常運転時と全
く同じであるが、低外気温時は室内側熱交換器13での
凝縮温度が低くなるため、第一減圧器16と、第二減圧
器17とで減圧されても冷媒飽和温度よりも低い凝縮温
度であるので、冷媒貯溜タンク内の冷媒は常に液である
。従って、冷媒貯溜タンク21の上部より、凍結防止コ
イル22へ流れる冷媒も液状であるため、凍結防止コイ
ル22によって室外側熱交換器14の下底部即ち、除箱
時に凍結かけ念される部分は熱量保有の太きな液冷媒に
より充分熱交換され凍結を防止することができる。
The flow of the refrigerant when the outside temperature is low for heating is exactly the same as during normal heating operation, but when the outside temperature is low, the condensation temperature in the indoor heat exchanger 13 is lower, so the flow of the refrigerant is Even if the pressure is reduced by the second pressure reducer 17, the condensation temperature is lower than the refrigerant saturation temperature, so the refrigerant in the refrigerant storage tank is always liquid. Therefore, since the refrigerant flowing from the upper part of the refrigerant storage tank 21 to the anti-freezing coil 22 is also liquid, the lower part of the outdoor heat exchanger 14, that is, the part that is almost frozen during unpacking, is heated by the anti-freezing coil 22. The thick liquid refrigerant in stock allows for sufficient heat exchange and prevents freezing.

次に冷房運転時を説明する。Next, the cooling operation will be explained.

冷房運転時は図中破線矢印で示す如く冷媒は流れ圧縮機
11より吐出された冷媒は四方弁12を経て室外側熱交
換器14に導かれ、凝縮液化された後、第二逆止弁を経
て凍結防止コイル22と冷媒貯溜タンク21の方向へと
7分される。凍結防止コイル22へ流れた冷媒は冷媒貯
溜タンク21の上部より導かれ、合流する。さらに冷媒
は冷媒貯溜タンク21より冷媒貯溜タンク21の上部よ
り第一逆止弁19を経て第一減圧器16にて減圧膨張さ
れた後室内側熱交換器13にて蒸発し、室内側を冷房し
た後四方弁12を経て圧縮機11にもどるサイクルを形
成する。従って冷房運転時冷媒貯溜タンク21で蒸発し
蒸発熱ロスが発生する恐れは全くない。
During cooling operation, the refrigerant flows as shown by the broken line arrow in the figure.The refrigerant discharged from the compressor 11 is led to the outdoor heat exchanger 14 via the four-way valve 12, where it is condensed and liquefied, and then passed through the second check valve. Then, it is divided into seven parts in the direction of the antifreeze coil 22 and the refrigerant storage tank 21. The refrigerant that has flowed to the antifreeze coil 22 is guided from the upper part of the refrigerant storage tank 21 and joins therewith. Furthermore, the refrigerant is decompressed and expanded from the upper part of the refrigerant storage tank 21 through the first check valve 19 in the first pressure reducer 16, and then evaporated in the indoor heat exchanger 13 to cool the indoor side. After that, a cycle is formed in which the air returns to the compressor 11 via the four-way valve 12. Therefore, there is no possibility that the refrigerant will evaporate in the refrigerant storage tank 21 during cooling operation and loss of heat of evaporation will occur.

発明の効果 以上の様に本発明によれば、室内側熱交換器と室外側熱
交換器との間に周囲を凝縮液冷媒が流れる冷媒で熱交換
された冷媒貯溜タンクを設け、冷媒管を冷媒貯溜タンク
の上部よシ室外側熱交換器の下底部に設けられた凍結防
止コイルへと導び〈構成であるから、除霜全必要とする
暖房低外気温時には、凍結防止コイルに凝縮液冷媒が流
れ、室外側熱交換器下底部の凍結を防止することができ
る。さらに除霜の必要としない暖房通常運転時には、凍
結防止コイルにガス冷媒が流れるため、凍結防止コイル
での熱損失が少なく、室内側熱交換器で充分な暖房能力
を発揮することができるものである。
Effects of the Invention As described above, according to the present invention, a refrigerant storage tank in which heat is exchanged with a refrigerant around which a condensate refrigerant flows is provided between an indoor heat exchanger and an outdoor heat exchanger, and a refrigerant pipe is connected to the refrigerant storage tank. The upper part of the refrigerant storage tank is guided to the antifreeze coil installed at the bottom of the outdoor heat exchanger. The refrigerant flows and can prevent the bottom of the outdoor heat exchanger from freezing. Furthermore, during normal heating operation that does not require defrosting, gas refrigerant flows through the anti-freeze coil, so there is less heat loss in the anti-freeze coil, and the indoor heat exchanger can provide sufficient heating capacity. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のヒートポンプ式空気調和機の冷凍サイク
ル図、第2図は本発明の一実施例を示すヒートポンプ式
空気調和機の冷凍サイクル図である。 11・・・・・・圧縮機、13 ・・・室内側熱交換器
、14・・・・・・室外側熱交換器、21・ ・・冷媒
貯溜タンク、22 ・・凍結防止コイル。 代理人の氏名 弁理士 中 尾敏 男 ほか1名第 1
 図 −昨澹吋
FIG. 1 is a refrigeration cycle diagram of a conventional heat pump type air conditioner, and FIG. 2 is a refrigeration cycle diagram of a heat pump type air conditioner showing an embodiment of the present invention. 11...Compressor, 13...Indoor heat exchanger, 14...Outdoor heat exchanger, 21...Refrigerant storage tank, 22...Anti-freeze coil. Name of agent Patent attorney Toshio Nakao and 1 other person No. 1
Figure-Last day

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、室外側熱交換器等を環状に接
続して構成され、前記室内側熱交換器と、前記室外側熱
交換器との間に冷媒貯溜タンクを設け、前記冷媒貯溜タ
ンクの上部と前記室外側熱交換器の下底部に設けられた
凍結防止コイルとを接続するとともに前記冷媒貯溜タン
クの周囲に凝縮冷媒が流れる冷媒管を配設したヒートポ
ンプ式空気調和機。
It is configured by connecting a compressor, an indoor heat exchanger, an outdoor heat exchanger, etc. in an annular manner, and a refrigerant storage tank is provided between the indoor heat exchanger and the outdoor heat exchanger, and the refrigerant A heat pump type air conditioner, which connects the upper part of a storage tank to an anti-freeze coil provided at the bottom of the outdoor heat exchanger, and arranges a refrigerant pipe around the refrigerant storage tank through which condensed refrigerant flows.
JP19942983A 1983-10-25 1983-10-25 Heat pump type air conditioner Pending JPS6091162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19942983A JPS6091162A (en) 1983-10-25 1983-10-25 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19942983A JPS6091162A (en) 1983-10-25 1983-10-25 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS6091162A true JPS6091162A (en) 1985-05-22

Family

ID=16407663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19942983A Pending JPS6091162A (en) 1983-10-25 1983-10-25 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS6091162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678635U (en) * 1993-04-09 1994-11-04 住友エール株式会社 Input shaft and clutch disc in forklift with manual clutch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678635U (en) * 1993-04-09 1994-11-04 住友エール株式会社 Input shaft and clutch disc in forklift with manual clutch

Similar Documents

Publication Publication Date Title
JP3882056B2 (en) Refrigeration air conditioner
JP2000205735A (en) Refrigerator
JPS6091162A (en) Heat pump type air conditioner
JP3408022B2 (en) Refrigeration equipment
JPS6226465A (en) Air conditioner
JPS5837457A (en) Refrigerant circuit for refrigerator
JPS608665A (en) Heat pump type air conditioner exclusive for heating
JPS5981453A (en) Refrigerator
JPS6243249Y2 (en)
JPS60114666A (en) Antifreezing device for air conditioner
JPS5922440Y2 (en) air conditioner
JPH086203Y2 (en) Air conditioner
JPS637811Y2 (en)
JPS6039720Y2 (en) Heat pump air conditioner
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JPS6039721Y2 (en) Heat pump air conditioner
JPH01312365A (en) Cooling and heating device
JPS6349673A (en) Air conditioner
JPS6213961A (en) Heat pump type air conditioner
JPS6016274A (en) Refrigerator
JPH01123965A (en) Air conditioner
JP2002206815A (en) Freezer device
JP2003176960A (en) Air conditioner
JP2002022312A (en) Refrigerant gas cooled condenser and refrigerating cycle system
JPS605863B2 (en) Air conditioning equipment