JPS6090852A - Treatment of glass for optical fiber - Google Patents

Treatment of glass for optical fiber

Info

Publication number
JPS6090852A
JPS6090852A JP58197945A JP19794583A JPS6090852A JP S6090852 A JPS6090852 A JP S6090852A JP 58197945 A JP58197945 A JP 58197945A JP 19794583 A JP19794583 A JP 19794583A JP S6090852 A JPS6090852 A JP S6090852A
Authority
JP
Japan
Prior art keywords
optical fiber
glass
base material
groups
fiber glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58197945A
Other languages
Japanese (ja)
Other versions
JPH044988B2 (en
Inventor
Kazuaki Yoshida
和昭 吉田
Akira Iino
顕 飯野
Masao Nishimura
西村 真雄
Katsumi Orimo
折茂 勝巳
Motohiro Nakahara
基博 中原
Nobuo Inagaki
稲垣 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP58197945A priority Critical patent/JPS6090852A/en
Publication of JPS6090852A publication Critical patent/JPS6090852A/en
Publication of JPH044988B2 publication Critical patent/JPH044988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/047Silica-containing oxide glass compositions containing deuterium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/22Doped silica-based glasses doped with non-metals other than boron or fluorine doped with deuterium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To improve the radiation resistance of quartz glass for an optical fiber by exposing the glass to an atmosphere contg. D2 or a D2 compound to introduce OD groups. CONSTITUTION:Glass for an optical fiber such as a molded body of quartz glass soot forming a porous glass base material for an optical fiber, a molded body of quartz glass forming a transparent glass base material for an optical fiber or a molded body of glass forming an optical fiber is exposed to an atmosphere contg. D2 or a D2 compound to introduce OD groups into the glass. Thus, an optical fiber enduring a radiation environment in a nuclear power plant is obtd.

Description

【発明の詳細な説明】 本発明は通信、画像伝送、エネルギ伝送などに用いられ
る光ファイバの製造技術に関し、特に長波長域での長期
信頼性が高く、耐放射線性に優れた光ファイバが得られ
るガラス処理方法に関する。
[Detailed Description of the Invention] The present invention relates to a manufacturing technology for optical fibers used for communication, image transmission, energy transmission, etc., and it is possible to obtain optical fibers that have high long-term reliability in the long wavelength region and excellent radiation resistance. The present invention relates to a glass processing method.

石英ガラスをファとする光ファイバが適用される分野の
1つとして、原子力発電所内のような放射線環境下での
用途が急増しつつある。
As one of the fields in which optical fibers made of quartz glass are being applied, applications under radiation environments such as inside nuclear power plants are rapidly increasing.

これの理由として、通信用の場合は光ファイバの軽量、
細径、無誘導性が、イメージガイドやライトガイドの場
合はその優れた低損失性が大きなメリットとなるためで
ある。
The reason for this is that optical fibers are lightweight for communication purposes;
This is because the small diameter, non-inductive property, and excellent low loss properties are major advantages in the case of image guides and light guides.

特にイメージガイドの場合、従来多用されていた多成分
系ガラスに比べ、石英系光ファイバは放射線照射による
損失増がきわめて小さい利点を有しており、これの実用
化が急速に拡がりつつある。
Particularly in the case of image guides, silica-based optical fibers have the advantage that loss increase due to radiation irradiation is extremely small compared to multi-component glasses that have been widely used in the past, and their practical use is rapidly expanding.

しかしながら、γ線、中性子線、X線、電子線など、高
エネルギの放射線環境下では石英系光ファイバといえど
も放射線にともなう伝送損失増を免かれることができな
い。
However, in a high-energy radiation environment such as gamma rays, neutron beams, X-rays, and electron beams, even silica-based optical fibers cannot avoid increased transmission loss due to radiation.

この伝送損失の増加を少しでも抑制するため種々の検討
がなされており、例えばコア中のOH基が多いものは上
記損失増が比較的小さいとか、光ファイバの紡糸条件が
上記損失の増加量に大きな影響をおよぼすことなどが既
知の事項となっている。
Various studies have been conducted to suppress this increase in transmission loss. For example, fibers with a large number of OH groups in the core have a relatively small increase in loss, and optical fiber spinning conditions have been found to influence the amount of increase in loss. It is known that this can have a major impact.

このような検討結果から、例えば、コア中にOH基を数
100 ppr1程度含有する、しかも最適の条件で紡
糸された光ファイバが原子力分野での使用に耐え得ると
考えられたが、放射線照射による損失増は依然として大
きく、更なる特殊に高濃度のOH基を含有した石英系ガ
ラスをコアとする光ファイバの場合、OH基に起因した
波長0.95μm、1.39μmでの吸収損失があり、
波長0.8μmでの光伝送はもちろん、波長1.30μ
mでの光伝送は不可能に近し1と!/)われている。
Based on the results of these studies, it was thought that an optical fiber containing several hundred ppr1 OH groups in its core and spun under optimal conditions would be able to withstand use in the nuclear field. The increase in loss is still large, and in the case of optical fibers with a core made of quartz glass containing a particularly high concentration of OH groups, there is absorption loss at wavelengths of 0.95 μm and 1.39 μm due to OH groups.
Optical transmission at a wavelength of 0.8μm as well as at a wavelength of 1.30μm
Optical transmission at m is nearly impossible! /) It is being done.

このため、耐放射線性に関してOH基と同等の効果をも
つが、吸収損失が長波長帯にシフトしているOD基含有
の石英系ガラスが注目されている。
For this reason, OD group-containing silica glasses are attracting attention, although they have the same effect as OH groups in terms of radiation resistance, but their absorption loss is shifted to longer wavelength bands.

OD基を含有する石英系ガラスの場合、波長x、28μ
m(OH基での1.95 fimに対応)、波長1.6
8μm(同1.24μmに対応)、波長1.87μm 
(j:It、 39 pmに対応)などにおいて吸収が
みられる。
In the case of quartz glass containing OD groups, wavelength x, 28μ
m (corresponding to 1.95 fim with OH group), wavelength 1.6
8μm (corresponds to 1.24μm), wavelength 1.87μm
Absorption is observed at (j:It, corresponding to 39 pm).

さらにOD基を含有する石英系ガラスの場合、波長0.
8μmでの低損失化が期待されている。
Furthermore, in the case of quartz glass containing OD groups, the wavelength is 0.
Low loss is expected at 8 μm.

かかるOD基含有の石英系光ファイバを製造する手段と
しては、特開昭49−9514号のように、火炎加水分
解反応によるスート合成中にり、を用いる方法やゾルゲ
ル法でつくられたドライゲル(dryget)を、まず
Cム処理し、つぎにDIO雰囲気中でCt→OD交換す
る方法などが知られているが、これらの方法は高価なり
*、DtOなどを大量に使用するため工業的に好ましく
なく、特にDtO雰曲気中でスートを処理する方法では
、ガラスの失透を招きやすく、良質の光フアイバ母材が
得がたい。
Methods for manufacturing such OD group-containing quartz optical fibers include a method using soot synthesis using a flame hydrolysis reaction, as described in JP-A No. 49-9514, and a method using dry gel (produced by a sol-gel method). Methods such as first treating dryget with C and then exchanging Ct → OD in a DIO atmosphere are known, but these methods are expensive* and require large quantities of DtO, so they are not industrially preferred. In particular, a method in which soot is treated in a DtO atmosphere tends to cause devitrification of the glass, making it difficult to obtain a high-quality optical fiber base material.

本発明はOD基を含有する石英系の光フアイバガラスに
つき、より耐放射鈷の優れたものが得られる処理方法を
新規に提供しようとするものである。
The present invention aims to provide a novel processing method for obtaining quartz-based optical fiber glass containing OD groups that has even better radiation resistance.

本発明の処理方法は、石英系の光フフイ/くガラスをD
2またはD!化合物含有雰囲気中にさらして該ガラス中
にOD基を含有させることを特徴としている。
The processing method of the present invention is to process quartz-based optical fiber/glass into D.
2 or D! The glass is characterized by containing OD groups in the glass by exposing it to a compound-containing atmosphere.

以下、本発明方法の具体的実施例について説明する。Hereinafter, specific examples of the method of the present invention will be described.

↓fi o++ +r k) 1.−) X mマツノ
、:yラズシ1号、をファイバ用の多孔質ガラス母材を
構成してしする石英系のガラスス−一ト成形体、光コア
イノく用の透明ガラス母材を構成している石英系のガラ
ス成形体、光ファイバを構成しているガラス成形体など
を含む総称であり、気相あるいは液相のガラス原料など
は含まない。
↓fi o++ +r k) 1. -) A quartz-based glass soot molded body composed of a porous glass base material for a fiber and a transparent glass base material for an optical core. This is a general term that includes quartz-based glass molded bodies, glass molded bodies that make up optical fibers, etc., and does not include glass raw materials in the gas phase or liquid phase.

上記光フアイバガラスに関して、これが多孔質ガラス母
材であるとき、公知のVAD法、OVD法、ゾルゲル法
などにより、つくられ、透明ガラス母材は、これら各法
によりつくられた多孔質ガラス母材を透明ガラス化する
ことにより、または公知のMCVD法、PCVD法によ
り得られ、さらに光ファイバは透明ガラス母材を加熱延
伸することにより得られる。
Regarding the above-mentioned optical fiber glass, when it is a porous glass base material, it is made by a known VAD method, OVD method, sol-gel method, etc., and the transparent glass base material is a porous glass base material made by each of these methods. The optical fiber can be obtained by transparently vitrifying it, or by the well-known MCVD method or PCVD method, and furthermore, the optical fiber can be obtained by heating and stretching a transparent glass base material.

また、光フアイバガラスが上記母材段階にあるとき、ガ
ラスバイブが必要に応じてジャケットされることがある
Further, when the optical fiber glass is in the above-mentioned base material stage, the glass vibrator may be jacketed as necessary.

最終製品としての光フアイバガラスは上記光ファイバで
あり、これにはモノコアをもつ単心型、マルチコアをも
つ多心型などがある。
The optical fiber glass as a final product is the above-mentioned optical fiber, which includes a single core type having a monocore, a multicore type having a multicore, and the like.

光ファイバのコアを構成するガラスは石英系であるが、
そのクラッドに関しては石英系のほか、シリコーンゴム
や弗素系樹脂のごとき低屈折率プラスチック材料からな
るときもある。
The glass that makes up the core of optical fiber is quartz-based.
In addition to quartz, the cladding may also be made of a low refractive index plastic material such as silicone rubber or fluorine resin.

用途別にいうと、上記光ファイバは通信用、イメージガ
イド用、ライトガイド用としてつくられる。
In terms of uses, the above-mentioned optical fibers are made for communications, image guides, and light guides.

光ファイバのコアは純粋なStowであると、放射線照
射による損失増が小さく、好ましい。
It is preferable that the core of the optical fiber is pure Stow, since the increase in loss due to radiation irradiation is small.

コア中のOH基含有量は、1.3μmや1.55μmな
どの長波長域で用いる場合、少ないことが好ましいが、
0.85μmのごとき短波長域、あるいはイメージガイ
ドのごとき可視光領域で用いるとき、コアがあらかじめ
、ある程度のOH基を含有していると、耐放射線特性上
、好結果を得ることが多い。
The OH group content in the core is preferably small when used in a long wavelength range such as 1.3 μm or 1.55 μm, but
When used in a short wavelength region such as 0.85 μm or in a visible light region such as an image guide, good results are often obtained in terms of radiation resistance if the core contains a certain amount of OH groups in advance.

通信用光ファイバでは広帯域性を要求されることがあり
、このような場合、コアはFt Ge5Pなどがドープ
されたGl型屈折率分布のドープト石英であってもよい
Optical fibers for communication may require broadband performance, and in such cases, the core may be doped quartz having a Gl-type refractive index distribution doped with FtGe5P or the like.

コアが上記ドープト石英であるとき、石英系クラッドと
しては純5insでもよいが、コアの屈折率が5ins
と同程度もしくはそれ以下であると、クラッドはF、B
などがドープされたドープト石英が用いられる。
When the core is the above-mentioned doped quartz, the quartz-based cladding may be pure 5ins, but if the refractive index of the core is 5ins
, the cladding is F, B.
Doped quartz is used.

もちろん光ファイバはSI型の場合もあり、単一モード
伝送型、多モード伝送型のいずれもがあり得る。
Of course, the optical fiber may be of the SI type, and may be either a single mode transmission type or a multimode transmission type.

上述の光フアイバガラスは% Ih含有雰囲気中、ある
いはり、化合物(DzO)含有雰囲気中にさらされ、こ
れにより、そのガラス中にOD基を含有することとなる
The above-mentioned optical fiber glass is exposed to an atmosphere containing % Ih, or alternatively, to an atmosphere containing a compound (DzO), thereby causing the glass to contain OD groups.

この際の処理は、既述の説明から理解できるように、多
孔質ガラス母材の段階、透明ガラス母材の段階、光ファ
イバの段階、光フアイバ紡糸工程と同期する段階など、
任意1の段階で、または任意2以上の段階で、あるいは
すべての段階で行なわれる。
As can be understood from the above description, the processing at this time includes a stage for the porous glass base material, a stage for the transparent glass base material, a stage for the optical fiber, and a stage synchronized with the optical fiber spinning process.
It is carried out in any one stage, in any two or more stages, or in all stages.

また、コア用ガラスがクラッド用ガラスよりも先行して
、あるいはクラッド用ガラスと別工程でつくられるよう
な場合とか、クラッドがプラスチック製である場合は、
コア用ガラスのみが上記処理を受けることもある。
In addition, if the core glass is made before the cladding glass or in a separate process from the cladding glass, or if the cladding is made of plastic,
Sometimes only the core glass is subjected to the above treatment.

好ましい処理段階は光フアイバガラスが多孔質ガラス母
材のときであり、その理由はDt(またはり、0)の拡
散が容易となるからである。
A preferred processing step is when the optical fiber glass is a porous glass matrix, since this facilitates the diffusion of Dt (or 0).

イメージガイドの場合は、透明ガラス母材を−たん直径
数1111〜0.数−に加熱延伸し、これにより得られ
た細棒を数千〜数万本引きそろえて溶融一体化し、さら
にその一体化物を直径0.数■〜数■のファイバに加熱
延伸する工程をとるのであり、このイメージガイドでは
、上記細棒をつくっているときは、その細棒をつくった
後、これを溶融一体化するまでの間に上記処理を行なう
のも好ましい。
In the case of an image guide, the transparent glass base material has a diameter of 1,111 to 0. Thousands to tens of thousands of thin rods obtained by this process are drawn together and melted into one piece, and the integrated product is then heated and drawn to a diameter of 0. It takes a process of heating and drawing several to several ■ fibers, and in this image guide, when making the above thin rod, after making the thin rod and before melting and integrating it, It is also preferable to carry out the above treatment.

D、(またはり、0)含有雰囲気中での処理温度は50
℃以上であり、より高温であると処理時間が短縮できる
ので好ましい。
The processing temperature in an atmosphere containing D, (or 0) is 50
℃ or higher, and a higher temperature is preferable because the processing time can be shortened.

光ファイバの段階では、1次被覆材料の劣化を防ぐ上で
処理温度を100〜250℃程度とするのがよく、透明
ガラスlfJ 41’、多孔質ガラス母材の段階では1
00〜1600℃程度の処理温度が選ばれる。
At the optical fiber stage, the processing temperature is preferably about 100 to 250°C to prevent deterioration of the primary coating material.
A treatment temperature of about 00 to 1600°C is selected.

また、透明ガラス母材の処理時ではこれを延伸し得る温
度(131えば2000〜2100℃)での処理も可能
であり、多孔質ガラス母材の処理ではこれを焼結し得る
までの処理温度が好ましい。
In addition, when processing a transparent glass base material, it is possible to process it at a temperature that allows it to be stretched (for example, 2000 to 2100°C), and when processing a porous glass base material, it is possible to process it at a temperature that allows it to be sintered. is preferred.

本発明において、光フアイバガラスをDI(またはDI
O)含有雰囲気中にさらして処理するとき、例えばその
処理温度が室温であるとDtなどが光フアイバガラス中
に入るだけでOD基は生成されがたい。
In the present invention, the optical fiber glass is DI (or DI
When processing by exposing to an atmosphere containing O), for example, if the processing temperature is room temperature, Dt and the like will simply enter the optical fiber glass and OD groups will be difficult to generate.

したがってその処理温度を室温よりも高くすることが大
切である。
Therefore, it is important to set the processing temperature higher than room temperature.

比較的低温にて光フアイバガラスD2などと接触させ、
これによりそのl)1などを光フアイバガラス中に含浸
させた後、該ガラスを高温に加熱することも一有効であ
る。
Contact with optical fiber glass D2 etc. at a relatively low temperature,
It is also effective to impregnate the optical fiber glass with 1) and then heat the glass to a high temperature.

この場合は光フアイバガラスの中心にまでり。In this case, it goes all the way to the center of the optical fiber glass.

などが一様に含浸できるので、これを加熱して例えばO
H基+D、;!OD基+HD交換を行なわせると、コア
中のOD基濃度がOH基濃度よりも多くなるので好まし
い。
etc. can be uniformly impregnated, so by heating it, for example, O
H group + D,;! It is preferable to perform OD group + HD exchange because the OD group concentration in the core becomes higher than the OH group concentration.

Dtなどの圧力は特に限定しないが高圧であるほど処理
時間を短縮できる利点が得られる。
The pressure such as Dt is not particularly limited, but the higher the pressure, the more advantageous the processing time can be obtained.

D、含有雰囲気中においてOH基濃度の高い光フアイバ
ガラスを処理するとき、上記交換式の繰り返しによりO
H基の反応が起ると、はじめ光フアイバガラスの外表面
に近いところから内部にわたってOD基10H基濃度が
減少していくことになる。
D. When processing optical fiber glass with a high concentration of OH groups in an atmosphere containing O
When the reaction of H groups occurs, the concentration of OD groups and 10H groups decreases from near the outer surface to the inside of the optical fiber glass.

多孔質ガラス母材の場合、これをそのままD2処理する
とOD基含有率は増加するがOH基も含有することにな
り、OH基による吸収損失が都合悪いときもある。
In the case of a porous glass base material, if it is directly subjected to D2 treatment, the OD group content will increase, but it will also contain OH groups, and absorption loss due to OH groups may be inconvenient.

このときは多孔質ガラス母材をノ・ロゲン、例えばCz
+、Ftなどのハロゲンガスあるいはハロゲン化合物ガ
スの存在下で処理して脱水処理した後、D、(またはD
!O)処理するとよく、これによりOH基はないがOD
基のある光フアイバガラスが得られる。
At this time, the porous glass base material is treated with nitrogen, such as Cz.
+, after dehydration by treatment in the presence of halogen gas or halogen compound gas such as Ft,
! O) It is good to treat it, so that there is no OH group but OD
A grouped optical fiber glass is obtained.

この脱水処理は〜5 vat%以下のct、または塩素
化合物を含むHe雰囲気が用いられる。
This dehydration treatment uses a ct of ~5 vat% or less or a He atmosphere containing a chlorine compound.

逆にOH基が100 ppm以上、好しくハlo00p
pm程度になると損失が徐々に減少することになる。
On the contrary, the OH group is 100 ppm or more, preferably halo00p
The loss gradually decreases when it reaches about pm.

このような場合はDt(またはDxO)処理前の多孔質
ガラス母材にOH基を多針に含有させる。
In such a case, the porous glass base material before the Dt (or DxO) treatment is made to contain multiple OH groups.

また、光フアイバガラスに分子構造上の欠陥があると都
合のよい場合があり、このような場合はDt(またはD
t0)処理前の透明ガラス母材を加熱延伸するとか、放
射線照射するなどして上記欠陥を増加させる。
In addition, it may be advantageous if the optical fiber glass has a molecular structural defect, and in such cases Dt (or D
t0) The above-mentioned defects are increased by heating and stretching the transparent glass base material before treatment or irradiating it with radiation.

つぎに本発明の具体例とその比較例について説明する。Next, specific examples of the present invention and comparative examples thereof will be explained.

具体例1 純粋SiO諌らなるコア用多孔質ガラス母材をVAD法
により作製し、これを常法により透明ガラス化する一方
、BおよびFをドープしたドープト石英をMCVD法に
より石英管の外周に堆積させてクラッド用ガラスをつく
り、この石英管を、上記コア用透明ガラス母材の外周に
ジャケットした後、当該母材を紡糸するとともに1次コ
ートしてコア直径50μms外径125μm1シリスー
ンゴムによる被覆外径400μmの光ファイバを得た。
Specific example 1 A porous glass base material for the core made of pure SiO was produced by the VAD method, and made into transparent glass by a conventional method, while doped quartz doped with B and F was applied to the outer periphery of a quartz tube by the MCVD method. This quartz tube is deposited to make a cladding glass, and this quartz tube is jacketed around the outer periphery of the transparent glass base material for the core, and then the base material is spun and primary coated to form a core with a diameter of 50 μm and an outer diameter of 125 μm. An optical fiber with a diameter of 400 μm was obtained.

この光ファイバは比屈折率が0.75%、コア中のOH
基含有量が0.1 ppm程度である。
This optical fiber has a relative refractive index of 0.75% and an OH in the core.
The group content is about 0.1 ppm.

つぎに上記光ファイバを、200℃、1h/lriのり
、含有雰囲気中にて24時間処理したところ、その光フ
、アイバガラスは約301)Pm f) OD基基金含
有た。
Next, the optical fiber was treated at 200° C. for 24 hours in an atmosphere containing 1 h/lri, and the optical fiber contained approximately 301) Pm f) OD base material.

その後、上記光ファイバにT線(Co”、10’rad
/hr )を照射したところ、1時間後の損失増は20
 dB/Kmであった(使用波長0.85 ttm )
After that, the above optical fiber is connected to a T-line (Co”, 10'rad
/hr), the loss increase after 1 hour was 20
dB/Km (used wavelength 0.85 ttm)
.

比較例1 具体例1と同様の光ファイバをつくり、これをり、処理
することなく上記と同様の放射線照射を行なったところ
、1時間後の損失増が200 dB/kmにもなった。
Comparative Example 1 An optical fiber similar to that of Example 1 was made, and when it was irradiated with radiation in the same manner as above without any treatment, the loss increase after 1 hour was as much as 200 dB/km.

具体例2 He気流中にて900℃、3時間の加熱により脱水処理
した後、500℃のD?含有雰囲気(気流)にて3時間
処理した。
Specific Example 2 After dehydration treatment by heating at 900°C in a He gas stream for 3 hours, D? The treatment was carried out for 3 hours in a containing atmosphere (airflow).

このあと、He雰囲気にかえて上記母材を1380℃に
て透明ガラス化した。
Thereafter, the atmosphere was changed to He, and the base material was turned into transparent glass at 1380°C.

上記によりOD基を含有したコア用透明ガラス母材の外
周に、具体例と同様のクラッド用ガラス付石英管をジャ
ケットし、以下具体例1と同様にして光ファイバを得た
A quartz tube with glass for cladding similar to that in the specific example was jacketed around the outer periphery of the transparent glass base material for the core containing OD groups as described above, and an optical fiber was obtained in the same manner as in specific example 1.

この光ファイバOD基はs o o ppmに達してい
たが、OH基は1 ppm以下であった。
The OD groups in this optical fiber reached so ppm, but the OH groups were less than 1 ppm.

さらに具体例2の光ファイバにつき、具体例1と同様の
放射線照射を行なったところ、1時間後の損失増は18
 dB/Kmであった(使用波長085μm)。
Furthermore, when the optical fiber of Specific Example 2 was irradiated with radiation in the same manner as in Specific Example 1, the loss increase after 1 hour was 18
dB/Km (wavelength used: 085 μm).

以上の事項は光ファイバを耐放射線性の観点から述べた
ものであるが、本発明方法により処理された光ファイバ
は長期にわたって安定な伝送特性を有するので、この点
についても説明する。
The above matters have been described from the viewpoint of radiation resistance of the optical fiber, but since the optical fiber treated by the method of the present invention has stable transmission characteristics over a long period of time, this point will also be explained.

すなわち、ある特殊環境下では、光ファイバの周辺に水
素の存在することがあり、例えば異種金属があるところ
に水が注入されたり、ある種の被覆材を有するときの加
熱下では光ファイバの周辺にHlが発生し、この水素が
光フアイバ中に拡散して損失増を招く。
That is, under certain special circumstances, hydrogen may be present around the optical fiber, for example, when water is injected into a place where dissimilar metals are present, or under heating when the optical fiber has a certain kind of coating material. Hl is generated, and this hydrogen diffuses into the optical fiber, causing increased loss.

本発明のごとく処理を受けた光フアイバガラスではH7
による損失増がきわめて小さく、その伝送特性につき長
期安定性を有する。
For optical fiber glass treated as in the present invention, H7
The increase in loss caused by transmission is extremely small, and its transmission characteristics have long-term stability.

これに関する具体例とその比較例を以下に示す。Specific examples and comparative examples regarding this are shown below.

具体例3 ・ MCVD法により、Ge0t Psis S 1ot(
621%)のGI型屈折率分布をもつコア用ガラスとs
 P鵞Os−F S i Oxからなるノラツド用ガラ
スとをもつ透明ガラス母材をつくり、これを常法により
紡糸してコア直径50μm1 クラッド外径56μm1
外径125μmの光ファイバを得た。
Specific example 3 Ge0t Psis S 1ot(
Core glass with GI type refractive index distribution of 621%) and s
A transparent glass base material having a Norad glass made of Os-FSiOx was made, and this was spun using a conventional method to obtain a core diameter of 50 μm1 and a cladding outer diameter of 56 μm1.
An optical fiber with an outer diameter of 125 μm was obtained.

この光ファイバを100℃、] h/cttlのり、含
有雰囲気中(気流中)にて8時間処理したところ、当該
処理後の損失増は】。OdB/Kmであった(使用波長
13μm)。
When this optical fiber was treated for 8 hours at 100° C. in an atmosphere containing h/cttl glue (in an air flow), the loss increase after the treatment was as follows. OdB/Km (wavelength used: 13 μm).

つぎに上記処理後の光ファイバをH2雰囲気中(100
℃、I Ky/ca )に24時間保持し、その伝送特
性の安定性を上記と同じ波長で測定したところ、損失増
はo6dB/Kmであった。
Next, the optical fiber after the above treatment is placed in an H2 atmosphere (100
C, I Ky/ca ) for 24 hours, and the stability of its transmission characteristics was measured at the same wavelength as above, and the loss increase was o6 dB/Km.

比較例2 具体例2と同じ光ファイバをつくり、これをD2処理す
ることなく上記と同じ測定を行なったところ、損失増が
2.4 dB/−にもなった。
Comparative Example 2 When the same optical fiber as in Example 2 was made and the same measurements as above were performed on it without D2 treatment, the loss increase was as much as 2.4 dB/-.

なお、波長0.95μmでの吸収ピークに関して、具体
例3では0.3 dB/Kmの損失増であったのに対し
、比較例2では1. a dB/に+nの損失増となっ
た。
Regarding the absorption peak at a wavelength of 0.95 μm, specific example 3 had an increase in loss of 0.3 dB/Km, whereas comparative example 2 had an increase of 1. The loss increased by +n in a dB/.

また、波長1.3μmにおける具体813、比較例2の
伝送特性の安定性はわずがな差であるといえるが、波長
0.8μmに関しては具体例2の安定性が比較例2を大
きく上回った。
Furthermore, it can be said that there is a slight difference in the stability of the transmission characteristics between Specific 813 and Comparative Example 2 at a wavelength of 1.3 μm, but at a wavelength of 0.8 μm, the stability of Specific Example 2 greatly exceeds that of Comparative Example 2. Ta.

具体例4 VAD法ニヨリ、Ge0t−F S iO*(621%
)のGl型分布をもつフッ用多孔質ガラスと純S i 
Oxからなるクラッド用多孔質ガラスとをもつ多孔質ガ
ラス母材をつくり、これを常法により透明ガラス化なら
びに紡糸してコア直径50μm1外径125μmの光フ
ァイバを得た。
Specific example 4 VAD method Niyori, Ge0t-F SiO* (621%
) with a Gl-type distribution and pure Si
A porous glass base material having a porous glass for cladding made of Ox was prepared, and this was made transparent and vitrified by a conventional method and spun to obtain an optical fiber having a core diameter of 50 μm and an outer diameter of 125 μm.

この光ファイバを具体例3と同様にり、処理し、具体例
3と同様に耐水素性のテストを行なったところ、損失増
はOdB/Kmであった。
When this optical fiber was fabricated and treated in the same manner as in Example 3 and tested for hydrogen resistance in the same manner as in Example 3, the loss increase was OdB/Km.

比較例3 具体例4と同様の光ファイバをつくり、これをD2処理
することなく既述の耐水素性テストを行なったところ、
損失増が0.24 dB/I[mになった。
Comparative Example 3 An optical fiber similar to that of Specific Example 4 was made, and the hydrogen resistance test described above was conducted without D2 treatment.
The loss increase was 0.24 dB/I[m.

以上説明した通り、本発明の処理方法によるときは、光
フアイバガラス中に充分かつ効果的にOD基を含有させ
ることができ、これにより光7フイパガラスの耐放射線
性、長期にわたる伝送特性の信頼性などが確保できると
ともに処理易度も充分にあるので、光フアイバガラス処
理が簡単に実施できる。
As explained above, when using the treatment method of the present invention, it is possible to sufficiently and effectively incorporate OD groups into the optical fiber glass, thereby improving the radiation resistance of the optical fiber glass and the reliability of its long-term transmission characteristics. etc., and is sufficiently easy to process, so that optical fiber glass processing can be carried out easily.

特許出願人 代理人 弁理士 井 藤 誠 手続補正書(方式) 1.事件の表示 特願昭58−1979452 発明の
名称 光フアイバガラスの処理方法3、補正をする者 事件との関係 特許出願人 古河電気工業株式会社 4、賦理人〒100 6 補正の対象 明細書全文、委任状 7゜補正の内容 別紙の通シ、委任状、タイプ浄書した明細書全文(内容
に変更なし)を提出します。
Patent applicant's agent Patent attorney Makoto Ito Procedural amendment (method) 1. Indication of the case Japanese Patent Application No. 58-1979452 Title of the invention Process for processing optical fiber glass 3, person making the amendment Relationship to the case Patent applicant Furukawa Electric Co., Ltd. 4, person making the amendment 100 6 Full text of the specification subject to the amendment , 7゜Contents of amendment to power of attorney Submit a separate copy of the document, power of attorney, and the full text of the typewritten specification (no changes to the contents).

以 上that's all

Claims (1)

【特許請求の範囲】 (1)石英系の光フアイバガラスをDtまたはり、化合
物含有雰囲気中にさらして該ガラスにOD基を含有させ
ることを特徴とする光フアイバガラスの処理方法。 (2) 光フアイバ用の多孔質ガラス母材を構成してい
る光フアイバガラスを所定の雰囲気中にさらす特許請求
の範囲第1項記載の光フアイバガラスの処理方法。 (3)光フアイバ用の透明ガラス母材を構成している光
フアイバガラスを所定の雰囲気中にさらす特許請求の範
囲第1項記載の光フアイバガラスの処理方法。 (4) 光ファイバを構成している光フアイバガラスを
所定の雰囲気中にさらす特許請求の範囲第1項記載の光
フアイバガラスの処理方法。 l唱 ハcrh’■今倉+/ズ臂聞摺出で11か絡め光
フアイバガラスを所定の雰囲気中にさらす特許請求の範
囲第2]j1記載の光フアイバガラスの処理方法。 (6) Dtまたはり、化合物含有雰囲気が室温よりも
高い温度を有して特許請求の範囲第1項ないし第5項い
ずれかに記載の光フアイバガラスの処理方法。
[Scope of Claims] (1) A method for processing optical fiber glass, which comprises exposing quartz-based optical fiber glass to a Dt or compound-containing atmosphere to cause the glass to contain OD groups. (2) The method for treating optical fiber glass according to claim 1, which comprises exposing the optical fiber glass constituting the porous glass preform for optical fibers to a predetermined atmosphere. (3) A method for processing optical fiber glass according to claim 1, in which optical fiber glass constituting a transparent glass base material for optical fiber is exposed to a predetermined atmosphere. (4) A method for processing optical fiber glass according to claim 1, which comprises exposing the optical fiber glass constituting the optical fiber to a predetermined atmosphere. 1. The method for treating optical fiber glass according to claim 2]j1, wherein the optical fiber glass is exposed to a predetermined atmosphere in a predetermined atmosphere by exposing the optical fiber glass to a predetermined atmosphere. (6) A method for treating optical fiber glass according to any one of claims 1 to 5, wherein the Dt or compound-containing atmosphere has a temperature higher than room temperature.
JP58197945A 1983-10-22 1983-10-22 Treatment of glass for optical fiber Granted JPS6090852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58197945A JPS6090852A (en) 1983-10-22 1983-10-22 Treatment of glass for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197945A JPS6090852A (en) 1983-10-22 1983-10-22 Treatment of glass for optical fiber

Publications (2)

Publication Number Publication Date
JPS6090852A true JPS6090852A (en) 1985-05-22
JPH044988B2 JPH044988B2 (en) 1992-01-30

Family

ID=16382908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197945A Granted JPS6090852A (en) 1983-10-22 1983-10-22 Treatment of glass for optical fiber

Country Status (1)

Country Link
JP (1) JPS6090852A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189806A (en) * 1987-02-02 1988-08-05 Sumitomo Electric Ind Ltd Quartz image fiber
US5269825A (en) * 1989-04-28 1993-12-14 Fujikura, Ltd. Method of manufacturing radiation-resistant optical fiber
JP2000258810A (en) * 1999-03-08 2000-09-22 Shin Etsu Chem Co Ltd Secondary optical nonlinear glass material and its production
EP1182176A1 (en) * 2000-08-25 2002-02-27 Alcatel Method for reducing the hydrogen sensitivity of optical fibers at 1380nm-1410nm
JP2002187733A (en) * 2000-12-14 2002-07-05 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber preform and method for manufacturing optical fiber
JP2003335540A (en) * 2002-05-17 2003-11-25 Sumitomo Electric Ind Ltd Method for manufacturing glass preform for optical fiber
WO2004031085A1 (en) * 2002-09-30 2004-04-15 Corning Incorporated Method for treating an optical fiber preform with deuterium
JP2004131324A (en) * 2002-10-09 2004-04-30 Furukawa Electric Co Ltd:The Production method of optical fiber
NL1021992C2 (en) * 2002-11-26 2004-05-27 Draka Fibre Technology Bv Rod in tube process for preparing optical fibre preform, by heating rod and mantle separated by cavity containing deuterium
JP2004317750A (en) * 2003-04-15 2004-11-11 Shin Etsu Chem Co Ltd Optical fiber with excellent hydrogen-proof property and its manufacturing method
WO2005040872A1 (en) * 2003-10-28 2005-05-06 Shin-Etsu Chemical Co., Ltd. Optical fiber treating device, treating method and optical fiber
JP2005514636A (en) * 2001-12-20 2005-05-19 コーニング・インコーポレーテッド Isotope substituted optical fiber
JP2005325019A (en) * 2004-05-12 2005-11-24 Boc Group Inc:The Method for manufacturing optical fiber
JP2008162880A (en) * 2006-11-30 2008-07-17 Corning Inc Optical member comprising od-doped silica glass
KR100866266B1 (en) * 2001-06-26 2008-11-03 피텔 유.에스.에이. 코포레이션 Method and apparatus for fabricating optical fiber using improved oxygen stoichiometry and deuterium exposure
EP2096088A1 (en) * 2008-02-26 2009-09-02 Furukawa Electric North America Inc. (a Delaware Corporation) Accelerated aging of phosphorus-doped optical fibers
JP2010515940A (en) * 2007-01-12 2010-05-13 コヒラス アクティーゼルスカブ MICROSTRUCTURE OPTICAL FIBER, OPTICAL SYSTEM, LIGHT SOURCE, AND OPTICAL FIBER MANUFACTURING METHOD WITH IMPROVED LIFETIME AND PERFORMANCE BY LOADING AT HIGH TEMPERATURE
US8445059B2 (en) 2008-02-26 2013-05-21 Ofs Fitel, Llc Accelerated aging of phosphorus-doped optical fibers
US9971230B2 (en) 2008-07-11 2018-05-15 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US10228510B2 (en) 2014-12-18 2019-03-12 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
CN112094052A (en) * 2019-09-16 2020-12-18 中国科学院上海光学精密机械研究所 Radiation-resistant quartz optical fiber preform core rod and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727937A (en) * 1980-06-16 1982-02-15 Cselt Centro Studi Lab Telecom Reduction of hydroxyl group content from preform for optical fiber made by mcvd process
JPS6051625A (en) * 1983-08-29 1985-03-23 Nippon Telegr & Teleph Corp <Ntt> Preparation of transparent glass body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727937A (en) * 1980-06-16 1982-02-15 Cselt Centro Studi Lab Telecom Reduction of hydroxyl group content from preform for optical fiber made by mcvd process
JPS6051625A (en) * 1983-08-29 1985-03-23 Nippon Telegr & Teleph Corp <Ntt> Preparation of transparent glass body

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189806A (en) * 1987-02-02 1988-08-05 Sumitomo Electric Ind Ltd Quartz image fiber
US5269825A (en) * 1989-04-28 1993-12-14 Fujikura, Ltd. Method of manufacturing radiation-resistant optical fiber
JP2000258810A (en) * 1999-03-08 2000-09-22 Shin Etsu Chem Co Ltd Secondary optical nonlinear glass material and its production
EP1182176A1 (en) * 2000-08-25 2002-02-27 Alcatel Method for reducing the hydrogen sensitivity of optical fibers at 1380nm-1410nm
JP2002187733A (en) * 2000-12-14 2002-07-05 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber preform and method for manufacturing optical fiber
US7546750B2 (en) 2001-06-26 2009-06-16 Fitel Usa Corp. Method for fabricating optical fiber using deuterium exposure
KR100866266B1 (en) * 2001-06-26 2008-11-03 피텔 유.에스.에이. 코포레이션 Method and apparatus for fabricating optical fiber using improved oxygen stoichiometry and deuterium exposure
JP2005514636A (en) * 2001-12-20 2005-05-19 コーニング・インコーポレーテッド Isotope substituted optical fiber
JP2003335540A (en) * 2002-05-17 2003-11-25 Sumitomo Electric Ind Ltd Method for manufacturing glass preform for optical fiber
WO2004031085A1 (en) * 2002-09-30 2004-04-15 Corning Incorporated Method for treating an optical fiber preform with deuterium
JP2004131324A (en) * 2002-10-09 2004-04-30 Furukawa Electric Co Ltd:The Production method of optical fiber
NL1021992C2 (en) * 2002-11-26 2004-05-27 Draka Fibre Technology Bv Rod in tube process for preparing optical fibre preform, by heating rod and mantle separated by cavity containing deuterium
JP2004317750A (en) * 2003-04-15 2004-11-11 Shin Etsu Chem Co Ltd Optical fiber with excellent hydrogen-proof property and its manufacturing method
JP2005134469A (en) * 2003-10-28 2005-05-26 Shin Etsu Chem Co Ltd Device and method for processing optical fiber, and optical fiber
WO2005040872A1 (en) * 2003-10-28 2005-05-06 Shin-Etsu Chemical Co., Ltd. Optical fiber treating device, treating method and optical fiber
JP2005325019A (en) * 2004-05-12 2005-11-24 Boc Group Inc:The Method for manufacturing optical fiber
JP2008162880A (en) * 2006-11-30 2008-07-17 Corning Inc Optical member comprising od-doped silica glass
JP2022166858A (en) * 2007-01-12 2022-11-02 エヌケイティー フォトニクス アクティーゼルスカブ Lifetime extension and performance improvement of micro-structured fibers via high-temperature loading process
JP2017076137A (en) * 2007-01-12 2017-04-20 エヌケイティー フォトニクス アクティーゼルスカブNkt Photonics A/S Method for manufacturing micro-structured fiber with improved lifetime and performance, and method for manufacturing super-continuum light source having the fiber
JP2010515940A (en) * 2007-01-12 2010-05-13 コヒラス アクティーゼルスカブ MICROSTRUCTURE OPTICAL FIBER, OPTICAL SYSTEM, LIGHT SOURCE, AND OPTICAL FIBER MANUFACTURING METHOD WITH IMPROVED LIFETIME AND PERFORMANCE BY LOADING AT HIGH TEMPERATURE
JP2020074032A (en) * 2007-01-12 2020-05-14 エヌケイティー フォトニクス アクティーゼルスカブNkt Photonics A/S Lifetime extension and performance improvement of micro-structured fibers via high-temperature loading process
JP2019064914A (en) * 2007-01-12 2019-04-25 エヌケイティー フォトニクス アクティーゼルスカブNkt Photonics A/S Lifetime extension and performance improvement of micro-structured fibers via high-temperature loading process
JP2009203157A (en) * 2008-02-26 2009-09-10 Furukawa Electric North America Inc Acceleration of aging of phosphorus-doped optical fiber
EP2196441A1 (en) * 2008-02-26 2010-06-16 Furukawa Electric North America Inc. (a Delaware Corporation) Accelerated aging of phosphorus-doped optical fibers
EP2096088A1 (en) * 2008-02-26 2009-09-02 Furukawa Electric North America Inc. (a Delaware Corporation) Accelerated aging of phosphorus-doped optical fibers
US8445059B2 (en) 2008-02-26 2013-05-21 Ofs Fitel, Llc Accelerated aging of phosphorus-doped optical fibers
US10474003B2 (en) 2008-07-11 2019-11-12 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US9971230B2 (en) 2008-07-11 2018-05-15 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US10281797B2 (en) 2008-07-11 2019-05-07 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US11048145B2 (en) 2008-07-11 2021-06-29 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US11988940B2 (en) 2008-07-11 2024-05-21 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US10557987B2 (en) 2014-12-18 2020-02-11 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
US10928584B2 (en) 2014-12-18 2021-02-23 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
US11409033B2 (en) 2014-12-18 2022-08-09 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
US10228510B2 (en) 2014-12-18 2019-03-12 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
US11719881B2 (en) 2014-12-18 2023-08-08 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
CN112094052A (en) * 2019-09-16 2020-12-18 中国科学院上海光学精密机械研究所 Radiation-resistant quartz optical fiber preform core rod and preparation method thereof
CN112094052B (en) * 2019-09-16 2022-01-28 中国科学院上海光学精密机械研究所 Radiation-resistant quartz optical fiber preform core rod and preparation method thereof
US12001052B2 (en) 2019-09-16 2024-06-04 Shanghai Institute Of Optics And Fine Mechanics, Chinese Academy Of Sciences Radiation-resistant laser optical fiber preform core rod and preparation method therefor

Also Published As

Publication number Publication date
JPH044988B2 (en) 1992-01-30

Similar Documents

Publication Publication Date Title
JPS6090852A (en) Treatment of glass for optical fiber
US6817213B2 (en) Method of fabricating optical fiber preform and method of fabricating optical fiber
US3791714A (en) Method of producing glass for optical waveguides
FR2269089B1 (en)
US4504297A (en) Optical fiber preform manufacturing method
US4335934A (en) Single mode fibre and method of making
JPS6090853A (en) Treatment of glass for optical fiber
GB2149392A (en) Surface treatment of glass
Yamane et al. Preparation of gradient-index glass rods by the sol-gel process
JP2005510434A (en) Silica glass optical parts and process
CA1221545A (en) Process for producing image fiber
Bisyarin et al. Radiation-induced loss of silica optical fibres with fluorine-doped cladding
JPH0471019B2 (en)
Chida et al. Fabrication of OH-free multimode fiber by vapor phase axial deposition
JPS63129035A (en) Production of optical fiber
JP2002060238A (en) Method for manufacturing quartz optical fiber
Nassau The diffusion of water in optical fibers
JPH0312340A (en) Radiation resistant optical fiber
JP2002060248A (en) Quartz-base optical fiber
JP2001335337A (en) Optical fiber for transmission of ultraviolet light and its production method
JPS60153004A (en) Single-mode optical fiber
JPS6131328A (en) Optical fiber
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPS62143835A (en) Production of glass material for light transmission
JPS6272541A (en) Production of radiation-resistant optical fiber