JPH0312340A - Radiation resistant optical fiber - Google Patents

Radiation resistant optical fiber

Info

Publication number
JPH0312340A
JPH0312340A JP1148132A JP14813289A JPH0312340A JP H0312340 A JPH0312340 A JP H0312340A JP 1148132 A JP1148132 A JP 1148132A JP 14813289 A JP14813289 A JP 14813289A JP H0312340 A JPH0312340 A JP H0312340A
Authority
JP
Japan
Prior art keywords
core
optical fiber
radiation
clad
resistant optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1148132A
Other languages
Japanese (ja)
Inventor
Toshiya Suzuki
俊哉 鈴木
Toshikazu Omae
俊和 御前
Hiroyuki Tanaka
田中 紘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP1148132A priority Critical patent/JPH0312340A/en
Publication of JPH0312340A publication Critical patent/JPH0312340A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To reduce transmission loss due to radiation at low temp. by forming a guartz clad on a specified pure quartz core. CONSTITUTION:A core material made of pure quartz having <=10ppm hydroxyl group content and <=1ppm chlorine content is put in a clad material made of a washed and dried guartz glass tube and they are heated to 500-1,600 deg.C. A compd. contg. at least one among C, N, O, S and Se and at least one kind of halogen but not contg. H2 and having a fluid state at room temp. is fed into the gap between the core and clad materials in a vapor phase and the core and clad materials are melted by further heating and spun to obtain a radiation resistant optical fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温における放射線による伝送損失を改善し
た耐放射線性光ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation-resistant optical fiber with improved transmission loss due to radiation at low temperatures.

〔従来の技術〕[Conventional technology]

光ファイバは近年多方面に多種多様のものが実用化され
つつある。一般に光ファイバは固有の伝送損失特性を示
す。この伝送損失は成る波長帯で特に顕著に現れるため
、光ファイバの使用に際しては吸収帯をできるだけ避け
て、低損失領域で運用することが肝要である。
In recent years, a wide variety of optical fibers have been put into practical use in many fields. Generally, optical fibers exhibit unique transmission loss characteristics. This transmission loss is particularly noticeable in certain wavelength bands, so when using optical fibers, it is important to avoid absorption bands as much as possible and operate in a low-loss region.

特に、光ファイバは放射線(α、β、T線など)で被曝
されると、新たな波長損失帯が生成したり、本来の固を
損失帯においてその吸収損失が一層増加することがある
In particular, when an optical fiber is exposed to radiation (α, β, T-rays, etc.), a new wavelength loss band may be generated or the absorption loss in the original loss band may be further increased.

ところで、純粋石英をコアとする光ファイバでは、コア
内の塩素不純物が放射線による損失増加を大きくするこ
とが知られている。これは、塩素元素が純粋石英ガラス
に存在する場合、塩素元素が何らかの欠陥をガラス中に
生じさせ、放射線照射によって欠陥が助長される可能性
があると考えられるからである。
By the way, it is known that in an optical fiber having a core made of pure quartz, chlorine impurities in the core increase loss due to radiation. This is because when elemental chlorine is present in pure silica glass, it is thought that the elemental chlorine may cause some defects in the glass, and the defects may be promoted by radiation irradiation.

また、コア内の水酸基に関しては、従来からこれを多量
に含有する光ファイバでは、放射線による損失増加が少
ないと言われている。しかし、その含有量の増加に伴っ
て固有損失(放射線未照射時の損失)が増大し、特に1
.3μm帯での使用が難しくなるため、この帯域では使
用されないのが通常である。
Regarding hydroxyl groups in the core, it has been said that optical fibers containing a large amount of hydroxyl groups have less increase in loss due to radiation. However, as the content increases, the inherent loss (loss when not irradiated) increases, especially 1
.. Since it is difficult to use it in the 3 μm band, it is usually not used in this band.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したような光ファイバの特性に濫み、可能な限りコ
ア内の塩素及び水酸基含有量を低くして、耐放射線性に
優れた光ファイバを開発すべく種々の試みがなされてい
る。
Various attempts have been made to exploit the above-mentioned characteristics of optical fibers and to develop optical fibers with excellent radiation resistance by reducing the chlorine and hydroxyl group content in the core as much as possible.

特にこれからは、例えば航空機、通信衛星、宇宙ステー
ションなどにみられるように、より低温で、しかも温度
変化が太き(、放射線に被曝され易い環境で光ファイバ
を使用することが多くなると考えられるが、現状の光フ
ァイバは低温での伝送特性において改良の余地がある。
In particular, from now on, it is thought that optical fibers will be used more often in environments where the temperature is lower and the temperature changes are more pronounced (and where there is greater risk of exposure to radiation), such as in aircraft, communication satellites, space stations, etc. However, there is room for improvement in the transmission characteristics of current optical fibers at low temperatures.

従って本発明の目的は、低温における放射線照射による
伝送損失の増加をできるだけ抑制した耐放射線性光ファ
イバを提供することにある。
Therefore, an object of the present invention is to provide a radiation-resistant optical fiber in which increase in transmission loss due to radiation irradiation at low temperatures is suppressed as much as possible.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは前記目的を達成するために鋭意研究に努め
た結果、MRT法(詳細は後述)を用いて作製した光フ
ァイバであって、光ファイバが純粋石英からなるコアと
、コア上に設けた石英からなるクラッドとを有し、コア
の水酸基含有量が10ppm以下で、かつコアの塩素台
[1がIPPm以下であることにより、前記目的が達成
されることを見出し、本発明を完成するに至った。
As a result of intensive research to achieve the above object, the present inventors have developed an optical fiber manufactured using the MRT method (details will be described later), in which the optical fiber has a core made of pure quartz and a It has been discovered that the above object can be achieved by having a cladding made of quartz provided, the hydroxyl content of the core is 10 ppm or less, and the chlorine base [1 of the core is IPPm or less], and the present invention has been completed. I ended up doing it.

すなわち、本発明の光ファイバは、MRT法を用い、し
かもコアの水酸基含有量及び塩素含有量が特定値以下で
あり、これにより低温での耐放射線性が大幅に改善され
た。
That is, the optical fiber of the present invention uses the MRT method and has a core with a hydroxyl group content and a chlorine content below a specific value, thereby significantly improving radiation resistance at low temperatures.

しかして本発明でいうところの低温とは、常温(10〜
30°C程度)に対して一55°C程度以下1.特には
−80°C程度以下を指すもので、本発明の光ファイバ
はこの低温中でも特に−80゛C付近の温度域での耐放
射線特性が優秀である。
However, the low temperature referred to in the present invention refers to room temperature (10 to
(approximately 30°C) to approximately -55°C or less 1. In particular, this refers to temperatures below about -80°C, and the optical fiber of the present invention has excellent radiation resistance even at this low temperature, particularly in the temperature range around -80°C.

本発明の光ファイバの製造法であるMRT法は、ロッド
インチューブ法の一種で、門odified Rodi
n Tube法の略称である。その概略は、コア材をク
ラツド材の中に挿入して加熱し、コア材とクラツド材を
溶着させて紡糸する製造方法において、コア材とクラツ
ド材の溶着前に該コア材とクラ・ンド材の間隙にC,N
、OlS、Seよりなる群の中から選ばれた少なくとも
一種とハロゲンの少なくとも一種とを含みかつ水素を含
まない室温で流体をなす化合物を気相で流すことを特徴
とする光伝送用素材の製造方法である(特開昭55−7
1636号公報参照)。
The MRT method, which is a manufacturing method for the optical fiber of the present invention, is a type of rod-in-tube method, and is a method for manufacturing the optical fiber of the present invention.
It is an abbreviation for n-Tube method. The outline of this method is to insert the core material into the cladding material, heat it, weld the core material and cladding material, and then spin the material. C, N in the gap
, OlS, Se, and at least one halogen, and does not contain hydrogen and is a compound that forms a fluid at room temperature. method (Japanese Unexamined Patent Publication No. 55-7
(See Publication No. 1636).

本発明において、コア材料として使用される石英ガラス
は、ガラス状の高純度な5iOzであって、コアの水酸
基含有量及び塩素含有量がそれぞれloppm以下、1
ppm以下であればよい。
In the present invention, the quartz glass used as the core material is glass-like and highly pure 5iOz, and the hydroxyl group content and chlorine content of the core are 1 loppm or less, respectively.
It is sufficient if it is less than ppm.

しかして、コア内に含まれる水酸基含有量は10ppm
以下であれば十分であるが、好ましくは0、1 p p
 m以下で、特にはOPPmであることが好ましい。
Therefore, the hydroxyl group content contained in the core is 10 ppm.
The following is sufficient, but preferably 0, 1 p p
m or less, particularly preferably OPPm.

同様にコア内の塩素含有量も1.1)pm以下であれば
よく、好ましくは0.1 p p m以下で、特にはO
ppmであることが好ましい。
Similarly, the chlorine content in the core may be 1.1) pm or less, preferably 0.1 ppm or less, especially O
Preferably it is ppm.

なお、クラッドは石英からなれば通常のもので十分であ
る。
Note that a normal cladding is sufficient as long as it is made of quartz.

次に、MRT法を用いた光ファイバの製造例を簡潔に述
べる。但し、MRT法は基本的には口・ノドインチュー
ブ法と類似に行えばよく、以下には特徴のある製造工程
を中心に概説する。
Next, an example of manufacturing an optical fiber using the MRT method will be briefly described. However, the MRT method can basically be carried out in a manner similar to the mouth-in-tube method, and the following is an overview focusing on the characteristic manufacturing process.

まず、水酸基及び塩素含有量がそれぞれ10ppm、I
PPm以下の純粋石英ガラス棒を機械研磨により、例え
ば直径10mm程度のコア材とし、これをトリクロルエ
チレン、メタノール、純水、10%HF、純水の順に洗
浄し、次いで真空乾燥品中で乾燥する。一方、B及びF
を適当量ドープした石英ガラス管からなるクラツド材は
上記コア材と同様に洗浄、乾燥した後、ガラス旋盤に配
置し、当該クラツド材内に上記コア材を挿入し、抵抗炉
、酸水素炎などにより500〜1600°Cの範囲に加
熱する。当該所要温度に加熱されたコア材とクラツド材
の溶着前の状態において、コア材とクラツド材との間隙
にCC1,をN、と共に流し、さらに温度を上昇させ、
コア材をクラツド材に溶着させ、これを紡糸することに
より、低温での耐放射線性に優れた光ファイバが得られ
る。
First, the hydroxyl group and chlorine contents are each 10 ppm, I
A pure quartz glass rod of PPm or less is mechanically polished to form a core material with a diameter of, for example, about 10 mm, which is washed in the order of trichlorethylene, methanol, pure water, 10% HF, and pure water, and then dried in a vacuum dryer. . On the other hand, B and F
The cladding material, which is made of a quartz glass tube doped with an appropriate amount of Heat to a temperature in the range of 500 to 1600°C. In the state before welding of the core material and the cladding material heated to the required temperature, CC1, along with N is flowed into the gap between the core material and the cladding material, and the temperature is further increased.
By welding the core material to the cladding material and spinning this, an optical fiber with excellent radiation resistance at low temperatures can be obtained.

なお、本発明の耐放射線性光ファイバは、前述した如き
素材からなるコア及びクラッドを有するファイバをMR
T法によって作製したもので、それ以外は、従来の光フ
ァイバと同様構造であれば十分である。すなわち、例え
ばクランド上には通常の光ファイバと同様に水の侵入を
防止するためにシリコン樹脂店及び熱可塑性樹脂などか
らなるプラスチックジャケットが設けられる。
The radiation-resistant optical fiber of the present invention is a fiber having a core and a cladding made of the above-mentioned materials.
It is sufficient if it is manufactured by the T method and has the same structure as a conventional optical fiber in other respects. That is, for example, a plastic jacket made of silicone resin, thermoplastic resin, or the like is provided on the crund to prevent water from entering, similar to a normal optical fiber.

〔実施例〕〔Example〕

次に、本発明の光ファイバが低温(特に−80°C付近
の温度域)での伝送損失の点で如何に有利であるかとい
うことを明確にするために、実施例及び実験例について
述べる。
Next, in order to clarify how advantageous the optical fiber of the present invention is in terms of transmission loss at low temperatures (particularly in the temperature range around -80°C), examples and experimental examples will be described. .

実施例1 実施例として、コア材料に純粋石英を用い、上記MRT
法による製造例に基づいて表Iに示す如き水酸基及び塩
素含有量のコア材で光ファイバを作製した。
Example 1 As an example, using pure quartz as the core material, the above MRT
Optical fibers were prepared using core materials having hydroxyl group and chlorine contents as shown in Table I based on production examples using the method.

なお、クラッドに添加されるB、Fドープ量はコアとク
ラッドとの比屈折率差が1%となるように調整し、屈折
率分布はステップインデックス型である。また、サポー
ト層には合成石英パイプを用いた。
The amount of B and F doped into the cladding is adjusted so that the relative refractive index difference between the core and the cladding is 1%, and the refractive index distribution is of a step index type. In addition, a synthetic quartz pipe was used for the support layer.

比較例1〜3 比較例として、同様にMRT法を用いて作製した光ファ
イバを用意した。但し、コアの水酸基含有量及び塩素含
有量は表Iに示す通りである。
Comparative Examples 1 to 3 As comparative examples, optical fibers similarly produced using the MRT method were prepared. However, the hydroxyl group content and chlorine content of the core are as shown in Table I.

なお、上記実施例及び比較例で得られた光ファイバは、
コア径/光フアイバ径が50/125 μmである。
Note that the optical fibers obtained in the above Examples and Comparative Examples are as follows:
The core diameter/optical fiber diameter is 50/125 μm.

実験例1 実験例として、上記各光ファイバにコバルト60を線源
とするγ線を10’ R/H(レントゲン/時間)の線
量率で1時間照射し、照射中及び照射後の伝送損失を測
定し、その結果を表Iに示した。
Experimental Example 1 As an experimental example, each of the above optical fibers was irradiated with gamma rays using cobalt-60 as a radiation source at a dose rate of 10'R/H (roentgen/hour) for 1 hour, and the transmission loss during and after the irradiation was measured. The results are shown in Table I.

但し、照射中の条件は、照射室内に設置した恒温槽内に
50m長の光ファイバを直径約30cmの束状態にして
配置し、液体窒素を利用して光ファイバの温度を一80
°Cに保持した。測定条件は、光源に0.85μm帯及
び1.3μm帯の波長を発するLEDを使用し、LED
の光パワーを一20dBm及び−30dBmに設定した
However, the conditions during irradiation are as follows: 50 m long optical fibers are arranged in a bundle with a diameter of about 30 cm in a constant temperature chamber installed in the irradiation chamber, and the temperature of the optical fibers is kept at -80°C using liquid nitrogen.
It was kept at °C. The measurement conditions were to use an LED that emits wavelengths in the 0.85 μm band and 1.3 μm band as the light source;
The optical power was set to -20 dBm and -30 dBm.

(余白) 〔発明の効果〕 以上説明した如く、本発明の光ファイバは、コアの水酸
基含有量が10ppm以下で、かつコアの塩素台’ff
fiが1ppm以下であって、しかもMRT法によって
作製されるものであるから、実施例及び実験例からも明
らかなように低温(特に−80゛C近辺の温度域)にお
いて放射線が照射されても新たな波長吸収帯の生成、固
有波長吸収帯(特に0.85μm及び1.3μm吸収帯
)での損失増大などが極力抑制され、低温での放射線に
対する伝送損失が極めて少ない。
(Margin) [Effects of the Invention] As explained above, the optical fiber of the present invention has a core with a hydroxyl group content of 10 ppm or less, and a core with a chlorine content of 10 ppm or less.
fi is 1 ppm or less, and since it is manufactured by the MRT method, it can be irradiated with radiation at low temperatures (particularly in the temperature range around -80°C), as is clear from the examples and experimental examples. The generation of new wavelength absorption bands and the increase in loss in the characteristic wavelength absorption bands (particularly 0.85 μm and 1.3 μm absorption bands) are suppressed as much as possible, and the transmission loss for radiation at low temperatures is extremely small.

従って、本発明の光ファイバは低温における耐放射線性
に関しては最も有利である。
Therefore, the optical fiber of the present invention is most advantageous in terms of radiation resistance at low temperatures.

Claims (1)

【特許請求の範囲】[Claims]  純粋石英からなるコアと、コア上に設けた石英からな
るクラッドとを有し、コアの水酸基含有量が10ppm
以下で、かつコアの塩素含有量が1ppm以下である光
ファイバであって、MRT法によって作製してなること
を特徴とする耐放射線性光ファイバ。
It has a core made of pure quartz and a cladding made of quartz provided on the core, and the hydroxyl group content of the core is 10 ppm.
A radiation-resistant optical fiber characterized in that the optical fiber has a chlorine content of 1 ppm or less in the core, and is produced by an MRT method.
JP1148132A 1989-06-09 1989-06-09 Radiation resistant optical fiber Pending JPH0312340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148132A JPH0312340A (en) 1989-06-09 1989-06-09 Radiation resistant optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148132A JPH0312340A (en) 1989-06-09 1989-06-09 Radiation resistant optical fiber

Publications (1)

Publication Number Publication Date
JPH0312340A true JPH0312340A (en) 1991-01-21

Family

ID=15445980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148132A Pending JPH0312340A (en) 1989-06-09 1989-06-09 Radiation resistant optical fiber

Country Status (1)

Country Link
JP (1) JPH0312340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289161B1 (en) * 1998-07-28 2001-09-11 Heraeus Quarzglas Gmbh & Co. Kg Optical component containing a maximum of 200 wt.-ppm of chlorine
KR100478262B1 (en) * 2002-08-19 2005-03-22 이원재 Drawer-type case for keeping parts
JP2013174867A (en) * 2012-01-23 2013-09-05 Sumitomo Electric Ind Ltd Optical fiber and optical fiber base material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289161B1 (en) * 1998-07-28 2001-09-11 Heraeus Quarzglas Gmbh & Co. Kg Optical component containing a maximum of 200 wt.-ppm of chlorine
KR100478262B1 (en) * 2002-08-19 2005-03-22 이원재 Drawer-type case for keeping parts
JP2013174867A (en) * 2012-01-23 2013-09-05 Sumitomo Electric Ind Ltd Optical fiber and optical fiber base material

Similar Documents

Publication Publication Date Title
US3791714A (en) Method of producing glass for optical waveguides
US5474589A (en) UV light-permeable glass and article comprising the same
US4787927A (en) Fabrication of optical fibers
US5983673A (en) Silica glass article and manufacturing process therefor
US4441788A (en) Optical wave guide with fluorine-doped core
JPS6090852A (en) Treatment of glass for optical fiber
Tomashuk et al. Enhanced Radiation Resistance of Silica Optical Fibers Fabricated in High O $ _ {\bf 2} $ Excess Conditions
US5509101A (en) Radiation resistant optical waveguide fiber and method of making same
GB2449164A (en) A method of forming optical fibres
JPS60257408A (en) Optical fiber and its production
US4504297A (en) Optical fiber preform manufacturing method
US5335306A (en) Ultraviolet resistant silica glass fiber
JPH0312340A (en) Radiation resistant optical fiber
JP2542356B2 (en) Radiation resistant method for silica optical fiber glass
KR100445046B1 (en) Core glass for a preform for an optical fiber, preform made from the core glass, and method for making the core glass and an optical fiber
EP0136708B1 (en) Process for producing image fiber
DK162279B (en) PROCEDURE FOR MANUFACTURING A FRAME FOR OPTICAL FIBERS
JPH0425682Y2 (en)
JPS6096545A (en) Optical fiber
Zhang et al. New glasses based on tellurium and selenium halide for IR fiber optics
JPH1059730A (en) Production of synthetic quartz glass
JP2002060248A (en) Quartz-base optical fiber
GB2083921A (en) Optical Fibres
GB2056965A (en) Optical fibers
JPS60153004A (en) Single-mode optical fiber