JP2004317750A - Optical fiber with excellent hydrogen-proof property and its manufacturing method - Google Patents

Optical fiber with excellent hydrogen-proof property and its manufacturing method Download PDF

Info

Publication number
JP2004317750A
JP2004317750A JP2003110797A JP2003110797A JP2004317750A JP 2004317750 A JP2004317750 A JP 2004317750A JP 2003110797 A JP2003110797 A JP 2003110797A JP 2003110797 A JP2003110797 A JP 2003110797A JP 2004317750 A JP2004317750 A JP 2004317750A
Authority
JP
Japan
Prior art keywords
optical fiber
loss
wavelength
deuterium
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003110797A
Other languages
Japanese (ja)
Other versions
JP3847269B2 (en
Inventor
Masaru Inoue
大 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003110797A priority Critical patent/JP3847269B2/en
Publication of JP2004317750A publication Critical patent/JP2004317750A/en
Application granted granted Critical
Publication of JP3847269B2 publication Critical patent/JP3847269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber excellent in hydrogen-proof property which is sufficiently exposed in a deuterium-containing atmosphere, requires no long period to measure hydrogen-proof property, and has small product loss, and its manufacturing method. <P>SOLUTION: The optical fiber excellent in hydrogen-proof property is exposed in the deuterium-containing atmosphere and selected on confirming that the difference between an actually measured loss value of the optical fiber at a 630 nm wavelength and a loss value at the 630 nm wavelength which is estimated from loss in a wavelength range wherein loss is proportional to a reciprocal of the wavelength to the 4th power is decreased to 1.5 dB/km or below. The wavelength range wherein the loss is proportional to the reciprocal of the wavelength to 4th power is within 900 to 1,200 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、通信分野で使用される低損失の光ファイバ、特には、耐水素特性に優れた光ファイバ及びその製造方法に関する。
【0002】
【従来の技術】
光ファイバを使用した通信には、800〜900nm、又は1300〜1600nm波長域の赤外光が利用されている。しかしながら、光ファイバには、OH基に起因する吸収損失ピーク(以下、略してWPと称する)が存在するため、これまで1400nm付近の波長帯は、信号波長として使用されなかった。
【0003】
近年、CWDM(波長分割多重)と呼ばれる通信技術が研究され、これに使用される光ファイバとして、WPの極めて小さい光ファイバが注目され、開発されてきている。このWPは、光ファイバが水素含有雰囲気に曝された場合に増加することが知られている。従って、敷設された光ファイバが長期にわたって使用されることを考えると、敷設初期の段階のみならず、水素含有雰囲気に曝された後もWPが小さい状態を維持できる耐水素特性の高い光ファイバが必要とされる。
【0004】
これまでに、耐水素特性の高い光ファイバの製造方法として、光ファイバを重水素含有雰囲気に曝して、ガラス中の欠陥部位にSi‐OD結合を生じさせ、WPによる吸収を通信に使用しない波長域にシフトさせる方法が開発されている(例えば、特許文献1乃至3参照)。
【0005】
波長λでの光ファイバの損失αは、一般的に次式で表される。
【数1】

Figure 2004317750
上式において、A: レーリー散乱係数、αIM: 構造不完全性損失、αIR: 赤外吸収損失、αother : その他の吸収損失であり、αotherにはWPなどの不純物などによる吸収損失ピークが含まれる。
【0006】
光ファイバには、構造上の欠陥が含まれていることが多く、その代表的なものとして、Si・(E’センター)、Si‐O・(非架橋酸素ホールセンター、NBOHC)、Si‐O‐O・(パーオキシラジカル)などがある。このうち、NBOHCが拡散してきた水素と結合してOH基を形成し、WPが増加するというのが、水素によるWP増のメカニズムと考えられている。
【0007】
一方、光ファイバの損失を測定すると、630nm付近に吸収ピークが生じることがある。一般的にはこのピークはNBOHCに起因すると考えられている。この630nm付近の吸収ピークは、水素含有雰囲気に光ファイバを曝すと無くなることがすでに報告されている(例えば、非特許文献1参照)。
【0008】
水素が光ファイバ中に拡散されるときの630nmの吸収とWPの関係については、すでに報告がなされている(特許文献4参照)。しかし、630nm付近の吸収ピークの決定方法については言及しておらず、数式1におけるレーリー散乱係数が光ファイバごとに異なる可能性を考慮すると、ルーチンで行うには吸収ピークの決定方法が定められていないと、レーリー散乱係数の違いによっては、630nm付近の吸収ピークの大きさを見誤る可能性がある。また、特許文献4は、重水素含有雰囲気に曝した場合の630nm付近の吸収ピークの挙動については、何ら言及していない。
【0009】
【特許文献1】特開昭60‐90852号公報(第1頁)
【特許文献2】GB2149392A(第1頁)
【特許文献3】EP1182176A1(第1頁)
【特許文献4】特開平9−132430号公報(第1乃至4頁、図1乃至6)
【非特許文献1】OFC1999, PD22−1(第2頁)
【0010】
【発明が解決しようとする課題】
光ファイバの耐水素特性を調べるには、国際規格IEC 60793−2に規定された試験方法によればよい。この試験方法は、水素を1 %含む室温・常圧の雰囲気中に光ファイバを、波長1240nmでの損失が0.03dB/km以上上昇するまで曝した後、14日間大気中に放置し、その後、WPを測定して試験前の測定値と比較する、という方法である。
しかしながらこの方法は、1240nmでの損失が0.03dB/km以上上昇するのに、一般的な光ファイバで3日から7日程度を要する。その結果、1本の光ファイバを試験するのに、3週間程度を要していた。
【0011】
しかもこの方法は、出荷する製品から1km以上をサンプリングして行う必要があり、試験に使用した光ファイバは、製品として出荷できず、試験後廃棄することになる。
以上の結果、製品の耐水素特性を確認する方法としてこの方法を使用すると、測定に長期間かかるだけでなく、廃棄物も大量に出てしまうという問題点があった。また、水素試験による確認を行わずに、重水素含有雰囲気中での曝露処理のみで済まそうとすると、重水素含有雰囲気に曝露する設備の不具合、あるいは操作ミスにより、重水素含有雰囲気への曝露が不十分なままで出荷されてしまうおそれがあった。
【0012】
本発明は、上記事情に鑑み、重水素含有雰囲気中での曝露処理が十分になされ、耐水素特性を測定するために長期間を必要とせず、かつ製品ロスの少ない、耐水素特性に優れた光ファイバ及びその製造方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
本発明は、耐水素特性を高めるために重水素含有雰囲気に光ファイバを曝すと、波長630nmでの吸収ピークが消失することを見出し、これを耐水素特性の確認方法としたものである。
【0014】
すなわち、本発明の光ファイバは、重水素含有雰囲気に曝した光ファイバであって、該光ファイバの実測した波長630nmにおける損失値と、損失が波長の4乗分の一に比例している波長領域の損失から推定して得た630nmにおける損失値との差が、1.5dB/km以下まで減少したことを確認し、選別してなることを特徴としており、耐水素特性に優れている。なお、前記損失が波長の4乗分の一に比例している波長領域は、900nmから1200nmである。
【0015】
本発明の耐水素特性に優れた光ファイバの製造方法は、重水素含有雰囲気に光ファイバを曝した後、該光ファイバの損失が波長の4乗分の一に比例している波長領域の損失から該光ファイバの630nmにおける損失を推定し、この推定した損失値と実測した630nmにおける損失値との差が1.5dB/km以下まで減少したことを確認し、選別することを特徴としている。
【0016】
【発明の実施の態様】
図1は、光ファイバを重水素含有雰囲気に曝す重水素試験の前後において、1200nmから1600nmの波長帯域での損失を測定したものであり、重水素試験後においても損失の増加は認められない。
他方、図2に示すように、重水素含有雰囲気に暴露していない光ファイバを、水素含有雰囲気に曝す水素試験を行うと、1400nm付近において顕著な損失の増加が認められる。
【0017】
光ファイバの損失を構成する要素については、上記数式1で示したが、これらの要素のうち赤外吸収損失αIRは、波長1600nm以上で顕著になる。従って、1600nmよりも短い波長帯域での損失は、その他の吸収損失αotherが比較的大きな値となる吸収損失ピークを除けば、1/λでフィッティングさせることができる。
【0018】
一般に使用される石英系の光ファイバでは、波長900nmから1200nmの波長帯域には、目立った吸収損失ピークは存在しないため、この波長帯域での損失を1/λでフィッティングさせた曲線と、実際に測定された損失を比較すると、吸収損失ピークの大きさを求めることができる。
【0019】
例えば、図3に示すように、WPの小さい光ファイバの波長帯域900nm〜1200nmの損失から、光ファイバのレーリー散乱係数Aを考慮に入れて、波長900nmから600nmまでA/λでフィッティングさせて得た曲線(以下、フィッティング曲線と称する、破線で示す)と、実際に測定して得た損失曲線(実線)とを比較することで、NBOHCに起因すると考えられる630nmにおける吸収損失ピークの大きさを求めることができる。
【0020】
本発明においては、重水素含有雰囲気に暴露した光ファイバの630nmでのフィッティング曲線の損失と、実際に測定して得た630nmにおける損失値との差が、1.5dB/km以下まで減少し、耐水素特性に優れていることを確認するものである。
【0021】
図4は、WPの小さい光ファイバを、重水素含有雰囲気に一定期間曝露した後に、実際に測定した損失曲線とフィッティング曲線とを比較するグラフであり、フィッティング曲線と実際に測定して得た損失曲線とは、極めて一致しており、曝露前には大きかった630nm付近の吸収ピーク(図3参照)が、曝露後にはほぼ消滅していることがわかる。
【0022】
630nm付近の吸収ピークの消失は、重水素が水素と同様に光ファイバ中に拡散し、NBOHCと結合してSi−OD基を形成したためと考えられる。しかしながらSi−OD基は、Si−OH基と異なる位置に吸収ピークを生じ、光ファイバの伝送に使用される波長帯に目立った吸収ピークを生じない。Si−OD基は、Si−OH基と同様に、通常使用される環境では安定した結合であり、水素がさらに光ファイバ中に拡散してきても、Si−OH基となることはなく、効果的にWPの上昇を抑制することができる。
【0023】
【実施例】
(実施例1)
WPの小さい光ファイバを製造し、損失スペクトルを測定したところ、630nmに6dB/kmという大きな吸収損失ピークが見られた。この光ファイバを重水素1%、窒素99%の雰囲気に曝し、室温で4日間放置した後に、再度、損失スペクトルを測定したところ、630nmにおける損失は、900nmから1200nmの波長帯域の損失をフィッティングしたフィッティング曲線上の630nmの値と比較して、僅かに0〜1.50dB/km大きいだけであった。
さらにこの光ファイバを水素含有雰囲気に曝した後に、IEC 60793−2に規定された試験方法で試験したところ、1240nmでのWPの増加は皆無で、耐水素特性に優れていた。
【0024】
(比較例1)
実施例1と同じ630nmでの損失が6dB/kmの光ファイバを、重水素0.5%、窒素99.5%の雰囲気に曝し、室温で4日間放置した後に、損失スペクトルを測定したところ、630nmにおける損失は、フィッティング曲線上の630nmの損失値と比較して2.00dB/km大きく、重水素処理が不充分であった。
この光ファイバを水素含有雰囲気に曝した後に、IEC 60793−2に規定された試験方法で試験したところ、1240nmにおいてWPが0.08dB/km増加していた。
【0025】
なお、重水素処理後に、実測した630nmでの損失が、フィッティング曲線から得た損失と比較して、1.50dB/km以下であれば、水素含有雰囲気に曝した後の光ファイバのWPの増加は0.05dB/km以下となり、実質的に問題のないレベルであった。
【0026】
【発明の効果】
本発明により、水素含有雰囲気に光ファイバを曝すという、時間がかかり廃棄物が増加する試験方法によることなく、単に630nmでの損失スペクトルを測定するだけで、光ファイバの重水素雰囲気処理が十分に行われていることを、簡単な手段で確認し、選別することができる。
その結果、従来、複数のロットに1本の割合でしか行えなかった耐水素特性の確認試験を全数について実施することができ、信頼性が向上した。
【図面の簡単な説明】
【図1】光ファイバを重水素含有雰囲気に曝す重水素試験の前後において、1200nmから1600nmの波長帯域での損失を測定したグラフである。
【図2】重水素含有雰囲気に暴露していない光ファイバについて、水素含有雰囲気に曝す水素試験の前後において、1200nmから1600nmの波長帯域での損失を測定したグラフである。
【図3】WPの小さい光ファイバを、重水素含有雰囲気への曝露前に、実際に測定した損失とフィッティング曲線とを比較するグラフである。
【図4】WPの小さい光ファイバを、重水素含有雰囲気に一定期間曝露した後に、実際に測定した損失とフィッティング曲線とを比較するグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-loss optical fiber used in the field of communications, and more particularly to an optical fiber having excellent hydrogen resistance and a method for manufacturing the same.
[0002]
[Prior art]
For communication using an optical fiber, infrared light in a wavelength range of 800 to 900 nm or 1300 to 1600 nm is used. However, since an optical fiber has an absorption loss peak (hereinafter abbreviated as WP) due to an OH group, a wavelength band around 1400 nm has not been used as a signal wavelength until now.
[0003]
In recent years, a communication technique called CWDM (wavelength division multiplexing) has been studied, and an optical fiber having an extremely small WP has attracted attention and has been developed as an optical fiber used therein. This WP is known to increase when the optical fiber is exposed to a hydrogen-containing atmosphere. Therefore, considering that the laid optical fiber is used for a long period of time, not only in the initial stage of laying but also in an optical fiber having a high hydrogen-resistant property capable of maintaining a small WP state even after being exposed to a hydrogen-containing atmosphere. Needed.
[0004]
Until now, as a method of manufacturing an optical fiber having a high hydrogen resistance, a method of exposing an optical fiber to a deuterium-containing atmosphere to cause a Si-OD bond at a defect site in glass, and using a wavelength at which absorption by WP is not used for communication. A method of shifting to a range has been developed (for example, see Patent Documents 1 to 3).
[0005]
The loss α of the optical fiber at the wavelength λ is generally expressed by the following equation.
(Equation 1)
Figure 2004317750
In the above formula, A: Rayleigh scattering coefficient, α IM : loss of structural imperfection, α IR : infrared absorption loss, α other : other absorption loss, and α other is absorption loss peak due to impurities such as WP. Is included.
[0006]
Optical fibers often contain structural defects, and typical examples thereof include Si (E 'center), Si-O (non-crosslinked oxygen hole center, NBOHC), and Si-O —O. (Peroxy radical) and the like. Among these, it is considered that the mechanism of WP increase by hydrogen is that NBOHC combines with diffused hydrogen to form an OH group and WP increases.
[0007]
On the other hand, when the loss of the optical fiber is measured, an absorption peak may occur around 630 nm. It is generally believed that this peak is due to NBOHC. It has been reported that the absorption peak around 630 nm disappears when the optical fiber is exposed to a hydrogen-containing atmosphere (for example, see Non-Patent Document 1).
[0008]
The relationship between 630 nm absorption and WP when hydrogen is diffused into an optical fiber has already been reported (see Patent Document 4). However, the method of determining the absorption peak near 630 nm is not mentioned, and considering the possibility that the Rayleigh scattering coefficient in Equation 1 differs for each optical fiber, the method of determining the absorption peak is routinely performed. Otherwise, the size of the absorption peak near 630 nm may be misunderstood depending on the difference in the Rayleigh scattering coefficient. Patent Document 4 does not mention at all the behavior of an absorption peak near 630 nm when exposed to a deuterium-containing atmosphere.
[0009]
[Patent Document 1] Japanese Patent Application Laid-Open No. 60-90852 (page 1)
[Patent Document 2] GB2149392A (1st page)
[Patent Document 3] EP 1 182 176 A1 (page 1)
[Patent Document 4] JP-A-9-132430 (pages 1 to 4, FIGS. 1 to 6)
[Non-Patent Document 1] OFC1999, PD22-1 (page 2)
[0010]
[Problems to be solved by the invention]
In order to check the hydrogen resistance of the optical fiber, a test method defined in International Standard IEC 60793-2 may be used. In this test method, an optical fiber was exposed to an atmosphere containing 1% of hydrogen at room temperature and normal pressure until the loss at a wavelength of 1240 nm increased by 0.03 dB / km or more, and then left in the air for 14 days. , WP is measured and compared with the measured value before the test.
However, this method requires about 3 to 7 days for a general optical fiber to increase the loss at 1240 nm by 0.03 dB / km or more. As a result, it took about three weeks to test one optical fiber.
[0011]
Moreover, in this method, it is necessary to sample 1 km or more from the product to be shipped, and the optical fiber used for the test cannot be shipped as a product, and is discarded after the test.
As a result, when this method is used as a method for confirming the hydrogen resistance characteristics of a product, there is a problem that not only long time is required for measurement but also a large amount of waste is generated. In addition, if only exposure treatment in a deuterium-containing atmosphere is attempted without confirmation by a hydrogen test, exposure to the deuterium-containing atmosphere may occur due to a defect in equipment that exposes to the deuterium-containing atmosphere or an operation error. May be shipped with insufficient.
[0012]
In view of the above circumstances, the present invention has been sufficiently subjected to exposure treatment in a deuterium-containing atmosphere, does not require a long period of time to measure the hydrogen resistance, and has a low product loss and excellent hydrogen resistance. It is an object to provide an optical fiber and a method for manufacturing the same.
[0013]
[Means for Solving the Problems]
The present invention has been found that when the optical fiber is exposed to a deuterium-containing atmosphere in order to enhance the hydrogen resistance, the absorption peak at a wavelength of 630 nm disappears, and this is used as a method for confirming the hydrogen resistance.
[0014]
That is, the optical fiber of the present invention is an optical fiber exposed to a deuterium-containing atmosphere, and has a measured loss value at a wavelength of 630 nm of the optical fiber and a wavelength at which the loss is proportional to one fourth of the wavelength. It is confirmed that the difference from the loss value at 630 nm obtained from the loss in the region has been reduced to 1.5 dB / km or less, and selection is performed. The wavelength range where the loss is proportional to one fourth of the wavelength is from 900 nm to 1200 nm.
[0015]
The method for producing an optical fiber having excellent hydrogen-resistant properties according to the present invention comprises the steps of: exposing the optical fiber to a deuterium-containing atmosphere; , The loss at 630 nm of the optical fiber is estimated, the difference between the estimated loss value and the actually measured loss value at 630 nm is reduced to 1.5 dB / km or less, and the optical fiber is sorted.
[0016]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows the loss measured in a wavelength band of 1200 nm to 1600 nm before and after a deuterium test in which the optical fiber is exposed to a deuterium-containing atmosphere. No increase in loss is observed even after the deuterium test.
On the other hand, as shown in FIG. 2, when a hydrogen test is performed in which an optical fiber that has not been exposed to a deuterium-containing atmosphere is exposed to a hydrogen-containing atmosphere, a remarkable increase in loss is observed at around 1400 nm.
[0017]
The elements constituting the loss of the optical fiber are shown by the above equation 1, but among these elements, the infrared absorption loss α IR becomes significant at a wavelength of 1600 nm or more. Therefore, the loss in the wavelength band shorter than 1600 nm can be fitted with 1 / λ 4 except for the absorption loss peak where the other absorption loss α other has a relatively large value.
[0018]
In a generally used silica-based optical fiber, there is no noticeable absorption loss peak in the wavelength band from 900 nm to 1200 nm. Therefore, a curve obtained by fitting the loss in this wavelength band with 1 / λ 4 and the actual curve By comparing the measured losses, the magnitude of the absorption loss peak can be determined.
[0019]
For example, as shown in FIG. 3, the loss in the wavelength band 900nm~1200nm small optical fibers WP, taking into account the Rayleigh scattering coefficient A of the optical fiber, by fitting in A / lambda 4 wavelength 900nm to 600nm By comparing the obtained curve (hereinafter, referred to as a fitting curve, indicated by a broken line) with a loss curve (solid line) obtained by actually measuring, the magnitude of the absorption loss peak at 630 nm considered to be caused by NBOHC is obtained. Can be requested.
[0020]
In the present invention, the difference between the loss of the fitting curve at 630 nm of the optical fiber exposed to the deuterium-containing atmosphere and the actually measured loss value at 630 nm is reduced to 1.5 dB / km or less; It is to confirm that it has excellent hydrogen resistance.
[0021]
FIG. 4 is a graph comparing an actually measured loss curve and a fitting curve after exposing a small WP optical fiber to a deuterium-containing atmosphere for a certain period. The curve is in excellent agreement with the curve, indicating that the absorption peak near 630 nm, which was large before the exposure (see FIG. 3), almost disappeared after the exposure.
[0022]
The disappearance of the absorption peak near 630 nm is considered to be due to the fact that deuterium diffused into the optical fiber in the same manner as hydrogen, and bonded to NBOHC to form a Si-OD group. However, the Si-OD group generates an absorption peak at a position different from that of the Si-OH group, and does not generate a noticeable absorption peak in a wavelength band used for transmission of an optical fiber. The Si-OD group, like the Si-OH group, is a stable bond in a normally used environment. Even if hydrogen is further diffused into the optical fiber, the Si-OD group does not become a Si-OH group, and is effectively used. Therefore, the increase in WP can be suppressed.
[0023]
【Example】
(Example 1)
When an optical fiber having a small WP was manufactured and a loss spectrum was measured, a large absorption loss peak of 6 dB / km was found at 630 nm. This optical fiber was exposed to an atmosphere of 1% deuterium and 99% nitrogen, left at room temperature for 4 days, and then measured for loss spectrum again. As for loss at 630 nm, loss in the wavelength band from 900 nm to 1200 nm was fitted. Compared to the value of 630 nm on the fitting curve, it was only 0 to 1.50 dB / km larger.
Furthermore, when this optical fiber was exposed to a hydrogen-containing atmosphere and tested by the test method specified in IEC 60793-2, there was no increase in WP at 1240 nm, and it was excellent in hydrogen resistance.
[0024]
(Comparative Example 1)
The same optical fiber having a loss of 6 dB / km at 630 nm as in Example 1 was exposed to an atmosphere of deuterium 0.5% and nitrogen 99.5%, and allowed to stand at room temperature for 4 days. The loss at 630 nm was larger by 2.00 dB / km than the loss value at 630 nm on the fitting curve, and the deuterium treatment was insufficient.
After exposing this optical fiber to a hydrogen-containing atmosphere, the WP was increased by 0.08 dB / km at 1240 nm according to a test method specified in IEC 60793-2.
[0025]
If the measured loss at 630 nm after deuterium treatment is 1.50 dB / km or less as compared with the loss obtained from the fitting curve, the WP of the optical fiber after exposure to the hydrogen-containing atmosphere increases. Was 0.05 dB / km or less, which was a level having substantially no problem.
[0026]
【The invention's effect】
According to the present invention, a deuterium atmosphere treatment of an optical fiber can be sufficiently performed by merely measuring a loss spectrum at 630 nm without exposing the optical fiber to a hydrogen-containing atmosphere, which is a time-consuming and wasteful test method. What is being done can be checked and sorted by simple means.
As a result, a confirmation test of the hydrogen resistance characteristic, which was conventionally performed only in one lot for a plurality of lots, can be performed for all of the lots, and the reliability has been improved.
[Brief description of the drawings]
FIG. 1 is a graph showing loss measured in a wavelength band from 1200 nm to 1600 nm before and after a deuterium test in which an optical fiber is exposed to a deuterium-containing atmosphere.
FIG. 2 is a graph showing loss measured in a wavelength band of 1200 nm to 1600 nm for an optical fiber that has not been exposed to a deuterium-containing atmosphere before and after a hydrogen test to be performed in a hydrogen-containing atmosphere.
FIG. 3 is a graph comparing the actually measured loss to a fitting curve before exposing a low WP optical fiber to a deuterium-containing atmosphere.
FIG. 4 is a graph comparing a measured loss with a fitting curve after exposing a low WP optical fiber to a deuterium-containing atmosphere for a certain period of time.

Claims (4)

重水素含有雰囲気に曝した光ファイバであって、該光ファイバの実測した波長630nmにおける損失値と、損失が波長の4乗分の一に比例している波長領域の損失から推定して得た波長630nmにおける損失値との差が、1.5dB/km以下まで減少したことを確認し、選別してなることを特徴とする耐水素特性に優れた光ファイバ。An optical fiber exposed to a deuterium-containing atmosphere, obtained by estimating from a measured loss value of the optical fiber at a wavelength of 630 nm and a loss in a wavelength region where the loss is proportional to a fourth power of the wavelength. An optical fiber having excellent hydrogen resistance, characterized in that the difference from the loss value at a wavelength of 630 nm has been reduced to 1.5 dB / km or less, and selected. 前記損失が波長の4乗分の一に比例している波長領域が、900nmから1200nmである請求項1に記載の光ファイバ。The optical fiber according to claim 1, wherein the wavelength region in which the loss is proportional to a fourth power of the wavelength is from 900 nm to 1200 nm. 重水素含有雰囲気に光ファイバを曝した後、該光ファイバの損失が波長の4乗分の一に比例している波長領域の損失から該光ファイバの630nmにおける損失を推定し、この推定した損失値と実測した630nmにおける損失値との差が1.5dB/km以下まで減少したことを確認し、選別することを特徴とする耐水素特性に優れた光ファイバの製造方法。After exposing the optical fiber to a deuterium-containing atmosphere, the loss at 630 nm of the optical fiber is estimated from the loss in the wavelength region where the loss of the optical fiber is proportional to the fourth power of the wavelength. A method for producing an optical fiber having excellent hydrogen resistance characteristics, wherein it is confirmed that the difference between the measured value and the actually measured loss value at 630 nm is reduced to 1.5 dB / km or less. 前記損失が波長の4乗分の一に比例している波長領域が、900nmから1200nmである請求項3に記載の光ファイバの製造方法。4. The method of manufacturing an optical fiber according to claim 3, wherein the wavelength range in which the loss is proportional to one fourth of the wavelength is from 900 nm to 1200 nm.
JP2003110797A 2003-04-15 2003-04-15 Optical fiber manufacturing method with excellent hydrogen resistance Expired - Fee Related JP3847269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110797A JP3847269B2 (en) 2003-04-15 2003-04-15 Optical fiber manufacturing method with excellent hydrogen resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110797A JP3847269B2 (en) 2003-04-15 2003-04-15 Optical fiber manufacturing method with excellent hydrogen resistance

Publications (2)

Publication Number Publication Date
JP2004317750A true JP2004317750A (en) 2004-11-11
JP3847269B2 JP3847269B2 (en) 2006-11-22

Family

ID=33471550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110797A Expired - Fee Related JP3847269B2 (en) 2003-04-15 2003-04-15 Optical fiber manufacturing method with excellent hydrogen resistance

Country Status (1)

Country Link
JP (1) JP3847269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018044A (en) * 2014-07-07 2016-02-01 株式会社フジクラ Method of processing optical fiber and method of estimating therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090852A (en) * 1983-10-22 1985-05-22 Furukawa Electric Co Ltd:The Treatment of glass for optical fiber
GB2149392A (en) * 1983-11-11 1985-06-12 Central Electr Generat Board Surface treatment of glass
JPH04260634A (en) * 1990-09-24 1992-09-16 Corning Inc Method for production of optical fiber
JPH09132430A (en) * 1995-11-09 1997-05-20 Sumitomo Electric Ind Ltd Glass body for optical fiber and optical fiber
JP2002148450A (en) * 2000-08-25 2002-05-22 Alcatel METHOD FOR LOWERING HYDROGEN SENSITIVITY OF OPTICAL FIBER AT 1,380-1,410 nm
JP2004109124A (en) * 2002-08-28 2004-04-08 Furukawa Electric Co Ltd:The Optical fiber and method of estimating optical fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090852A (en) * 1983-10-22 1985-05-22 Furukawa Electric Co Ltd:The Treatment of glass for optical fiber
GB2149392A (en) * 1983-11-11 1985-06-12 Central Electr Generat Board Surface treatment of glass
JPH04260634A (en) * 1990-09-24 1992-09-16 Corning Inc Method for production of optical fiber
JPH09132430A (en) * 1995-11-09 1997-05-20 Sumitomo Electric Ind Ltd Glass body for optical fiber and optical fiber
JP2002148450A (en) * 2000-08-25 2002-05-22 Alcatel METHOD FOR LOWERING HYDROGEN SENSITIVITY OF OPTICAL FIBER AT 1,380-1,410 nm
JP2004109124A (en) * 2002-08-28 2004-04-08 Furukawa Electric Co Ltd:The Optical fiber and method of estimating optical fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. H. CHANG ET AL.: "New Hydrogen Aging Loss Mechanism in the 1400nm Window", OFC-1999, JPN4006014865, 1999, pages 22 - 1, ISSN: 0000764284 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018044A (en) * 2014-07-07 2016-02-01 株式会社フジクラ Method of processing optical fiber and method of estimating therefor

Also Published As

Publication number Publication date
JP3847269B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
AU716039B2 (en) Optical fiber grating and method of manufacturing the same
EP1281988A2 (en) Single mode optical fiber as well as method and apparatus for its manufacture
Vlasov et al. Losses in single-mode silicon-on-insulator strip waveguides and bends
EP0909965A1 (en) Recoatable temperature-insensitive long-period gratings
WO2005082801A3 (en) Optical fiber and method for making such fiber
JP2005227786A (en) Optical fiber having reduced bending loss
US8980369B2 (en) Accelerated aging of phosphorus-doped optical fibers
Tankala et al. Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers
JP2006154421A (en) Single mode optical fiber, optical fiber cable, optical fiber cord and service life guaranteeing method of optical fiber
JP2004317750A (en) Optical fiber with excellent hydrogen-proof property and its manufacturing method
CN1375067A (en) Fiber Bragg grating with cladding mode suppression
Dong et al. Suppression of cladding mode coupling loss in fiber Bragg gratings
CN100363765C (en) Method and apparatus for the photosensitization of optical fiber
Li et al. Reduced coating diameter fibers for high density cables
JP2006335638A (en) Method and apparatus for manufacturing single mode optical fiber,
JP5770517B2 (en) Optical fiber cut-off wavelength measurement method
JP2004107184A (en) Coated optical fiber
JP2008209603A (en) Optical fiber
WO2006137212A1 (en) Method for treating optical fiber
US9919964B2 (en) Method of processing optical fiber
JP3993198B2 (en) Optical fiber, optical fiber coupler using the same, erbium-doped optical fiber amplifier, optical waveguide
EP1342700A1 (en) Method of producing optical fiber
Yamamoto et al. Water-free pure-silica-core fibre and its stability against hydrogen ageing
JP2004109124A (en) Optical fiber and method of estimating optical fiber
JP2005069932A (en) Life prediction method for plastic optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Ref document number: 3847269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees