JPS6087628A - Flicker compensator - Google Patents

Flicker compensator

Info

Publication number
JPS6087628A
JPS6087628A JP58194549A JP19454983A JPS6087628A JP S6087628 A JPS6087628 A JP S6087628A JP 58194549 A JP58194549 A JP 58194549A JP 19454983 A JP19454983 A JP 19454983A JP S6087628 A JPS6087628 A JP S6087628A
Authority
JP
Japan
Prior art keywords
shunt
circuit
signal
branch
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58194549A
Other languages
Japanese (ja)
Other versions
JPH0311177B2 (en
Inventor
森貞 健二
和之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP58194549A priority Critical patent/JPS6087628A/en
Publication of JPS6087628A publication Critical patent/JPS6087628A/en
Publication of JPH0311177B2 publication Critical patent/JPH0311177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はフリッカ−発生負荷を有する回路において、負
荷と並列に接続したフリッカ−補償装置Nに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flicker compensator N connected in parallel with the load in a circuit having a flicker-generating load.

従来例のフリッカ−補償装置の回路構成を第1図に示す
FIG. 1 shows the circuit configuration of a conventional flicker compensation device.

la、lb、lcは進相用コンデンサ、2as2bs2
Cは直列リアクトル、3a13b13C14a14b1
4Cはサイリスタで、逆並列に接続され、開閉制御を行
う。
la, lb, lc are phase advancing capacitors, 2as2bs2
C is series reactor, 3a13b13C14a14b1
4C is a thyristor connected in antiparallel to perform opening/closing control.

la、 2a、 3a、 4a をA1分路とし、同様
な構成で、1b、 2b、 3b、4b、 1c、 2
c、 3c、 4cにてA2、A3分路となシ、各々の
容阜は1:2:4の比として、各分路の組合せにより7
段制御を行うものであシ、その制御は負荷7の電流を変
流器(CT)6より電流積分回路に導かれる。計器用変
1:に’E’S”!:移相回路】2とタイミング回路1
30サンプリング回路11にパルス信号を送出し、検出
回路14である値を保持し、投入分路選択用の選択回路
15よシ投入指令を送出し、ゲート回路18a、18b
La, 2a, 3a, 4a are A1 branch, and with the same configuration, 1b, 2b, 3b, 4b, 1c, 2
c, 3c, and 4c are A2 and A3 branches, each capacity is 1:2:4 ratio, and the combination of each branch is 7.
It performs stage control, in which the current of the load 7 is guided from a current transformer (CT) 6 to a current integrating circuit. Instrument change 1: 'E'S'!: Phase shift circuit] 2 and timing circuit 1
30 Sends a pulse signal to the sampling circuit 11, holds a certain value in the detection circuit 14, sends a closing command to the selection circuit 15 for selecting a closing branch, and gates circuits 18a and 18b.
.

18Cで受ける。 サイリスタ端子電圧がOV付近にて
パルヌ信号を送出する同期検出回路16a116b、1
6Cからの信号もゲート回路18a、18b%18Cで
受け、他の過電流検出回路17’a、 1’7 b。
Accepted at 18C. Synchronous detection circuit 16a116b, 1 that sends out a PALNU signal when the thyristor terminal voltage is near OV
The signal from 6C is also received by gate circuits 18a, 18b%18C, and other overcurrent detection circuits 17'a, 1'7b.

17Cの信号の論理積が成立したときのみゲート回路よ
り信号を送出し、ゲートアンプ19a、19b%19C
よシ サイリスタトリガーし、各進相電流を流して電圧
降下を補償する。
A signal is sent from the gate circuit only when the logical product of the signals of 17C is established, and the gate amplifiers 19a and 19b%19C
The thyristor is triggered and each phase leading current flows to compensate for the voltage drop.

次に従来例の動作を第2図により説明する。Next, the operation of the conventional example will be explained with reference to FIG.

制御部では応答遅れはないものと仮定し、コンデンサ1
a、1b、lcの充電電圧は−v’T E (V)とす
る。このとき負荷電流(図中の5にょ勺検出回路14よ
シ投入信号■全選択回路]5に送出するが、進相用コン
デンサ(以下scという)充電電圧の極性によシ、半サ
イクル遅れの図中0点にてA1分路がONする。
Assuming that there is no response delay in the control section, capacitor 1
The charging voltage of a, 1b, and lc is -v'T E (V). At this time, the load current is sent to the load current (input signal from the input detection circuit 14 in the figure to the all selection circuit). The A1 branch is turned on at point 0 in the figure.

また負荷電流が図中0点にて増加し、A1分路よシA2
分路に投入信号が切シ換わったとき、墓1分路はOFF
するが、A2分路はsc充充電電圧極性のため、半サイ
クル遅れにてONする。
Also, the load current increases at point 0 in the figure, and the A1 shunt changes to the A2 shunt.
When the input signal is switched to the shunt, the grave 1 shunt is OFF.
However, the A2 branch turns on with a half-cycle delay because of the SC charging voltage polarity.

このためにSC′Ft流は半サイクル間なしとなり、切
れ目発生の欠点を有していた。
For this reason, the SC'Ft flow is not present for half a cycle, which has the disadvantage of generating a cut.

図中[F]点で負荷電流がOFFすると、SC電流もO
FFできるため、電圧変動としては2回の電圧降下を有
することになる。
When the load current turns OFF at point [F] in the diagram, the SC current also turns OFF.
Since FF is possible, the voltage fluctuation has two voltage drops.

このように両サイリスタ方式においても、SCC充電電
圧砕性によシ投入時に応答遅れを有し、また充電の極性
によっては応答遅れなしにすることも可能であるが、分
路切シ換わり時に切れ目が発生する欠点を有しキいた。
In this way, even in the double thyristor system, there is a response delay when the shunt is turned on due to the shunt nature of the SCC charging voltage, and depending on the charging polarity, it is possible to eliminate the response delay, but there is a delay when the shunt is switched. It had the disadvantage of occurring.

これは負荷電流検出後適正容♀を選択し、各分路に投入
指令を送出するのみで、切換時に他分路の投入状況を判
定せずに投入指令を切シ換えるために、切れ目発生が起
こるものである。
This is done by simply selecting the appropriate capacity ♀ after detecting the load current and sending a closing command to each shunt, and switching the closing command without determining the closing status of other shunts at the time of switching. It happens.

このために応答遅れが小さくなっても切れ目発生によシ
フリッカー改善効果があまシ向上しない欠点があった。
For this reason, even if the response delay is reduced, there is a drawback that the Schifflicker improvement effect cannot be improved significantly due to the occurrence of breaks.

本発明は両サイリスタ方式の投入分路の切シ換わシ時に
発生する電流切れ目の欠点をなくすために、投入分路の
切シ換わDllに、切9換わ9後その分路の投入可否を
判定してから次段への投入信号を切り換えることにょシ
、切れ目発生の欠点をすくシ、フリッカ−改善効果の高
いフリッカ−補償装mを提供するものである。
In order to eliminate the drawback of the current cutoff that occurs when switching the closing shunt of the double thyristor system, the present invention has been designed to switch the closing shunt Dll to 9 and then turn on the shunt. The present invention provides a flicker compensating system m which eliminates the drawback of occurrence of a cut and has a high flicker improvement effect by switching the input signal to the next stage after determining whether or not it is possible.

以下、本発明の7リツカー補償装置を第3図および第4
図に示す実施例によシ説明する。
Hereinafter, the 7 Ritzker compensator of the present invention will be explained as shown in FIGS. 3 and 4.
This will be explained based on the embodiment shown in the figures.

直夕1昆アクドル、3as 3bs 3C% 4as 
4j 4cはサイリスタで逆運列接続されている。
Naoyu 1kon Akdol, 3as 3bs 3C% 4as
4j and 4c are thyristors connected in reverse series.

さらにコンデンサ投入時に過渡現象を起こさせないため
に、サイリスタ両端電圧がτV付近にてパルス信号を発
生する同期検出回路16a% 16b%16 Cカ各す
イリx!l 3a、 4aN 3b% 4b、 3C。
Furthermore, in order to prevent transient phenomena from occurring when the capacitor is turned on, the synchronization detection circuit 16a% 16b% 16C generates a pulse signal when the voltage across the thyristor is around τV. l 3a, 4aN 3b% 4b, 3C.

4Cに各々接続されている。4C, respectively.

この1a、2a13a、4a をA1分路とし、これと
同一構成で他に2分路1b、2b、3b、4b11c、
2C,3C,4Cを有し、各々屋2分路、/163分路
とする。各々の容量は1 :2:4の比とし、各分路の
組合せによシフ段階の容量が得られる。
These 1a, 2a13a, 4a are the A1 branch, and two other branches with the same configuration are 1b, 2b, 3b, 4b11c,
It has 2C, 3C, and 4C, each with 2 branches and /163 branches. The respective capacitances are in a ratio of 1:2:4, and the shunt combination provides a shunt stage capacitance.

制御部として負荷7の電流を変疏器(CT)6にて検出
し、電流偵分回路10、サンプリング回路l】にて直流
電圧に変換する。また計8g用変圧オ取PT)5と移相
回路12とタイミン表゛回路13よりサンプリング回路
1】への投入信号により、検出回路14に検出値を保持
させ、選択回路15により投入分路が選択され信号を送
出し、判定回路20a、 20bx 20cへ送られる
。判定回路20a、 20b、20cはその分路以外の
同期検出回路16a、16b、16cから信号を受けて
おシ、投入段切シ換わシ時に他分路の投入nf否を判定
させている。判定回路20a、 20b、 20cより
ゲート回路18a’、 18b、 18cへ投入信−号
が送られ、その分路の同ル」検出回路16a、 16b
S16cからの信号もゲート回路18a、 18b、 
18cに送られる。また過電流検出回路17a、 17
b117cの信号もゲート回路18 as 18 bs
 18 cに送られる。
As a control section, the current of the load 7 is detected by a transformer (CT) 6, and converted into a DC voltage by a current detection circuit 10 and a sampling circuit 1]. In addition, the detection circuit 14 is made to hold the detected value by the input signal to the sampling circuit 1 from the transformer (PT) 5 for a total of 8g, the phase shift circuit 12, and the timing table circuit 13, and the selection circuit 15 causes the input branch to be set. The selected signal is sent to the determination circuits 20a, 20bx, and 20c. The determination circuits 20a, 20b, and 20c receive signals from the synchronization detection circuits 16a, 16b, and 16c other than the shunt, and determine whether the other shunt is closed (nf) or not when the closing stage is switched. A closing signal is sent from the judgment circuits 20a, 20b, 20c to the gate circuits 18a', 18b, 18c, and the same detection circuits 16a, 16b of the branch circuits are sent.
The signal from S16c is also sent to gate circuits 18a, 18b,
Sent to 18c. In addition, overcurrent detection circuits 17a, 17
The signal of b117c is also gate circuit 18 as 18 bs
Sent to 18c.

ゲート回路18 a s 18 b s 18 cでは
投入信号、同期検出回路16a、 16b、’16cの
信号などの論11¥が成立したとき、ゲートアンプ19
a、 19b、 19cに投入信号として送られ、サイ
リスタをトリガーする。
In the gate circuit 18 a s 18 b s 18 c, when logic 11 such as the input signal and the signals of the synchronization detection circuits 16 a, 16 b, '16 c is established, the gate amplifier 19
a, 19b, 19c as a closing signal to trigger the thyristor.

次に動作原理を@4図により説明する。Next, the principle of operation will be explained with reference to Fig. 4.

第4図(a)は負荷電流および″心源電圧波形図、To
)は負何電流量′!i−面流分で示す波形図、(C)は
選択回路からの扁1分路投入信号波形図、0)は選択回
路からのA2分路投入信号波形図、(e)はA1分路用
判定回路から送出される18号波形図、(f)はA1゜
A2分路の同期検出回路より送出されるパルス信号波形
図、@)はコンデンサ1aの進相電流iG1、波形図Q
l)はコンデンサ1bの進相電流tct波形図、(1)
は合成電流ic1 + icgの波形図、(j)は電圧
降下に等価的な電圧波形図である。
Figure 4(a) shows the load current and core voltage waveform diagram, To
) is the negative current amount′! Waveform diagram shown in I-plane flow, (C) is flat 1 branch input signal waveform diagram from the selection circuit, 0) is A2 branch input signal waveform diagram from the selection circuit, (e) is for A1 branch No. 18 waveform diagram sent from the judgment circuit, (f) is a pulse signal waveform diagram sent out from the synchronization detection circuit of A1゜A2 branch, @) is the advanced phase current iG1 of capacitor 1a, waveform diagram Q
l) is the leading phase current tct waveform diagram of capacitor 1b, (1)
is a waveform diagram of the composite current ic1 + icg, and (j) is a voltage waveform diagram equivalent to a voltage drop.

fJ4図(a)において、Eは°成源″シ圧、1wは負
荷1!流を示し、負荷が図中の点より投入し、変流器よ
シ検出され、選択回路15によシ、A1分路に、第4図
(C)のごとぐ投入指令を送出したとする。
In Fig. 4 (a), E indicates the source pressure, 1w indicates the load 1! current, the load is applied from the point in the diagram, the current is detected by the current transformer, and the selection circuit 15 selects the current. Assume that a closing command is sent to the A1 branch as shown in FIG. 4(C).

このとき、進相用コンデンサ1aは負に充電されている
とすると、同期検出回路16a よりのパルス信号は、
第4図(f)のごとく電源電圧Eが真のピーク付近にて
同期パルスを送出している。
At this time, assuming that the phase advance capacitor 1a is negatively charged, the pulse signal from the synchronization detection circuit 16a is
As shown in FIG. 4(f), the synchronizing pulse is sent out when the power supply voltage E is near its true peak.

上述の投入1g号第4図(C)と、この同期パルスが一
致するC点よりサイリスタ3a14aがON Ll、4
FLi分路の進相電流が流れる。
Thyristor 3a14a turns ON from point C where this synchronizing pulse matches the above-mentioned input No. 1g (C) in Figure 4.
The leading phase current of the FLi shunt flows.

さらに0点より負荷電流が約2倍に増加し、遅れ無効電
力も2倍となると、選択回路15によ一す、第4図(C
)、(d)のごとく、A1分路から扁2分路に投入信号
が切り換えられる。
Furthermore, when the load current increases approximately twice from the zero point and the delayed reactive power also doubles, the selection circuit 15 selects the
), (d), the input signal is switched from the A1 branch to the flat 2 branch.

しかしA2分路はA1分路と同様に、進相用コンデンサ
1bは負に充電されていると仮定すると、に、 1分路
と同様に第4図(f)のごとく同期ノ(ルヌを送出して
いるだめ、投入信号が切り換A)つたIt& a。
However, like the A1 branch, the A2 branch, assuming that the phase advance capacitor 1b is negatively charged, will send out the synchronizing signal as shown in Figure 4(f), just like the A1 branch. If it is not working, the input signal is switched A) It&a.

では、A2分路はONできないことになる。In this case, the A2 branch cannot be turned on.

このようなとき、AI分路用判定回路20a は投入指
令を継続し、半サイクル後篇2分路の同J′gj検出回
路16b よりの同期ノ(ルスを受けて力・ら、A、 
1分路の投入信号を消し、同時にA2分路用判定回路2
0bでは、同J’d3 )< )Vスと投入信号により
サイリスタ3b、4bをONL、第4図(h)の[F]
、弘より進相電流を流し、合成でみると第4図(i)の
ごとく切れ目がなく連続的に流れることになる。
In such a case, the AI branch judgment circuit 20a continues to issue the input command, and receives the synchronization signal from the same J'gj detection circuit 16b of the second branch after half a cycle, and then outputs the force, ra, A,
Turn off the input signal of branch 1 and at the same time turn off the judgment circuit 2 for branch A2.
At 0b, the thyristors 3b and 4b are turned ONL by the same J'd3)
, a phase-advanced current is passed from Hiro, and when viewed in combination, it flows continuously without any breaks as shown in Figure 4 (i).

ただ、負荷電流iwが0点より増加しているにもかかわ
らず、進相電流は充電電圧の極性により半サイクル遅れ
となり、第4図(j)のごとく電圧降下が発生するが、
従来例のごとく切れ目発生に比較し、フリッカ−改善効
果が著しく向−ヒできるものである。
However, even though the load current iw is increasing from the 0 point, the leading phase current is delayed by half a cycle due to the polarity of the charging voltage, and a voltage drop occurs as shown in Figure 4 (j).
Compared to the conventional example in which cuts occur, the flicker improvement effect can be significantly improved.

なお、上述の実施例では、A1分路から扁2分路への切
シ換わりについて述べたが、A1分路から扁3分路へ、
A2分路から扁3分路へ等々も同様に行なうことができ
る。
In addition, in the above-mentioned embodiment, switching from A1 branch to flat 2 branch was described, but when switching from A1 branch to flat 3 branch,
The same can be done from the A2 branch to the flat 3 branch, etc.

また逆並列サイリスタと同等の機能を有するトライアッ
クを使用しても同様に行うことができる。
Further, the same operation can be performed using a triac having the same function as an anti-parallel thyristor.

本発明によシ、負荷通電中に容9が頻繁に変化するもの
や、敢接機が多数あり、1Jf1電中の各種型なり電流
のため、容量切り換えが頻繁にある場合でも、フリッカ
−改善効果が高いものとなる。
According to the present invention, flicker can be improved even when the capacity 9 changes frequently while the load is energized, there are many connected machines, and the capacity is frequently changed due to the various types of current during 1 Jf 1 electric current. It will be highly effective.

以トのように本発明のフリッカ−補償装置は、両サイリ
スタによる高速応答性を生かし、かつ分路切り換わシ時
に発生する切れ目をなくすことにより、従来に比較して
フリッカ−改善効果を向上でき、工業的ならびに実用的
価値の大なるものである。
As described above, the flicker compensation device of the present invention takes advantage of the high-speed response of both thyristors and eliminates the break that occurs when switching the shunt, thereby improving the flicker improvement effect compared to the conventional one. It is of great industrial and practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第11は従来のフリッカ−補償装置の1!」1路ブロツ
クダイヤグラム、第2図は同従来のフリッカ補償装置の
各部の波形図、第3図は本発明のフリ、−。 力補償装置の一実施例の回路ブロックダイヤグラム、第
41図は同本発明のフリッカ補償装置の各部の波形図で
ある。 1as 1bs IC: 進相用コンテy−9−2a、
2b、2C:i列!J7り)/l/3a、 3b、 3
C,4a、 4b、 4C:サイリスタ7:負荷 15:選択回路 ”ia% 16b% 16C:同期検出回路18a、 
18b% 180 :ゲート回路2tJas 20b、
 20c :判定回路特杵出願人 日本コンデンサ工業株式会社 第1図 第2図 第8図 第4図
No. 11 is 1 of the conventional flicker compensation device! 2 is a waveform diagram of each part of the conventional flicker compensator, and FIG. 3 is a diagram of the present invention. FIG. 41, which is a circuit block diagram of an embodiment of the force compensator, is a waveform diagram of each part of the flicker compensator of the present invention. 1as 1bs IC: phase advance conte-9-2a,
2b, 2C: i column! J7ri)/l/3a, 3b, 3
C, 4a, 4b, 4C: Thyristor 7: Load 15: Selection circuit "ia% 16b% 16C: Synchronous detection circuit 18a,
18b% 180: Gate circuit 2tJas 20b,
20c: Judgment circuit Special pestle Applicant: Nippon Capacitor Industry Co., Ltd. Figure 1 Figure 2 Figure 8 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 進相用コンデンサ、直列リアクトμおよび半導体スイッ
チによシ構成された分路を負荷と並列に複数群設け、該
分路を開閉制御してなるフリッカ−補償装置において、
各半導体スイッチの両端子電圧が盲付近にてパルレス信
号赫発、生する同期検出回路と、負荷容けt検出して投
入、分路を選択し投入4M号を送出する選択回路と、投
入された分路以外の他の分路の信号を上記同期検出回路
から受けるとともに、投入分路がある分路から他の分路
に変換されたとき、他の分路の同期パルスが発生するま
で継続しである分路の投入、信号を保持する判定回路と
、該判定回路および同期検出回路からの1a号を受けて
半導体スイッチにゲート信号を送出するゲート回路とを
備え、分路切換時に電流の切れ目なく制御することを特
徴とするフリッカ−補償装置。
A flicker compensator comprising a plurality of groups of shunts each composed of a phase advance capacitor, a series reactor μ, and a semiconductor switch is provided in parallel with a load, and the shunts are controlled to open and close,
A synchronization detection circuit generates a pulse-less signal when the voltage at both terminals of each semiconductor switch is near the dead line, a selection circuit detects the load capacity, selects closing or shunting, and sends the closing 4M signal. The signal from the other shunt is received from the synchronization detection circuit, and when the input shunt is converted from one shunt to another shunt, it continues until the synchronization pulse of the other shunt is generated. It is equipped with a judgment circuit that holds the signal when the shunt is turned on, and a gate circuit that receives No. 1a from the judgment circuit and the synchronization detection circuit and sends a gate signal to the semiconductor switch. A flicker compensation device characterized by continuous control.
JP58194549A 1983-10-17 1983-10-17 Flicker compensator Granted JPS6087628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58194549A JPS6087628A (en) 1983-10-17 1983-10-17 Flicker compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194549A JPS6087628A (en) 1983-10-17 1983-10-17 Flicker compensator

Publications (2)

Publication Number Publication Date
JPS6087628A true JPS6087628A (en) 1985-05-17
JPH0311177B2 JPH0311177B2 (en) 1991-02-15

Family

ID=16326381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194549A Granted JPS6087628A (en) 1983-10-17 1983-10-17 Flicker compensator

Country Status (1)

Country Link
JP (1) JPS6087628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641348U (en) * 1992-10-22 1994-05-31 日新電機株式会社 Injection circuit type active filter
JP2014079080A (en) * 2012-10-10 2014-05-01 Shizuki Electric Co Inc Capacitor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641348U (en) * 1992-10-22 1994-05-31 日新電機株式会社 Injection circuit type active filter
JP2014079080A (en) * 2012-10-10 2014-05-01 Shizuki Electric Co Inc Capacitor device

Also Published As

Publication number Publication date
JPH0311177B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
CA1213320A (en) Device for generating alternating current from direct current
CA1220814A (en) Neutrally clamped pwm inverter
JPS63242135A (en) Reactive power compensator
US5808378A (en) Control arrangement and method for high-speed source transfer switching system
US4079443A (en) Circuit arrangement for starting up a converter having forced commutation with correct phase
JPS6087628A (en) Flicker compensator
JPH07110152B2 (en) Control method and apparatus for alternating current regulator
Dubet Classification of thyristor commutation methods
JPS648531B2 (en)
JPH0320977B2 (en)
JPH11353969A (en) Breaker closing control device
EP0409477A2 (en) Inductive inrush current control for off-line battery charger plant
JPS6318967A (en) Controller for cycloconverter
SU655021A1 (en) Reactive power control arrangement
SU849409A1 (en) Device for changing-over stages of multimode thyristorized converter
SU851640A1 (en) Method of switching-over two m-phase ac networks
JPH03203533A (en) Ac uninterruptible power supply
SU1130987A2 (en) A.c.switching device
SU813636A1 (en) Method of control of reversible ac-to-dc voltage converter
JP2703586B2 (en) Flicker compensator
JPH03222638A (en) Alternating current power source system
KR940002619Y1 (en) Controlling circuit for three phase thyristor
JPH0832364B2 (en) Power supply for welding machine
JPH01298950A (en) Device for improvement of power factor
SU1140204A1 (en) Pulse synchronizer