JPS6086737A - In-line type electron gun structure - Google Patents

In-line type electron gun structure

Info

Publication number
JPS6086737A
JPS6086737A JP19379483A JP19379483A JPS6086737A JP S6086737 A JPS6086737 A JP S6086737A JP 19379483 A JP19379483 A JP 19379483A JP 19379483 A JP19379483 A JP 19379483A JP S6086737 A JPS6086737 A JP S6086737A
Authority
JP
Japan
Prior art keywords
electron beam
horizontal
central
magnetic
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19379483A
Other languages
Japanese (ja)
Other versions
JPH0367299B2 (en
Inventor
Kazuaki Naiki
内記 一晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19379483A priority Critical patent/JPS6086737A/en
Publication of JPS6086737A publication Critical patent/JPS6086737A/en
Priority to US06/899,758 priority patent/US4659961A/en
Publication of JPH0367299B2 publication Critical patent/JPH0367299B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • H01J29/707Arrangements intimately associated with parts of the gun and co-operating with external magnetic excitation devices

Abstract

PURPOSE:To remove asymmetric aberration due to coma of scanned picture formed by the central and both side electron beams by shortening the length of cylinder side portion of a cylindrical concentrated magnetic pole with bottom and made non-magnetic material. CONSTITUTION:In a concentrated magnetic pole 20, a pair of magnetism reinforced elements 15, 16 oppositely arranged in such a way as interposing therebetween a central electron beam penetrating opening 22 drilled on the bottom 21 on the vertical axis Y-Y, and annular magnetism screening elements 17, 18 surrounding both outside electron beam penetrating openings 23, 24 drilled on the horizontal axis X-X are arranged. The height h of the cylinder side portion 29 is set to 6.0mm. or less. Then, eddy current loss in horizontal deflection magnetic field can be prevented and convergence error in right and left ends of the picture of both the outside electron beams and the central electron beam can be minimized to prevent deterioration of picture quality due to color slip.

Description

【発明の詳細な説明】 本発明は力2−陰極線管に係り、インライン型電子銃か
ら放射された中央及び一対の両外側電子ビームが共通の
偏向磁界により螢光面上に形成する2スターの大きさを
、特に水平偏向周波数にかかわらず等しくさせることが
可能なセルフ・コンバージェンス方式のイン2イン型電
子銃に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-star cathode ray tube in which a central and a pair of outer electron beams emitted from an in-line electron gun form a two-star cathode ray tube on a fluorescent surface by a common deflection magnetic field. The present invention relates to a self-convergence-type in-2-in type electron gun that can have the same size regardless of the horizontal deflection frequency.

it図は従来用いられている動的コンバージェンス方式
’(要しない、所謂セルフ・コンバージェンス方式のイ
ンライン型電子銃を用いたカラー陰極線管の縦断面図で
ある。
The IT diagram is a longitudinal cross-sectional view of a color cathode ray tube using a conventionally used in-line electron gun of a dynamic convergence method (which does not require a so-called self-convergence method).

イン2イン型電子銃lから放射されて同一平面内にある
中央電子ビームBl及び一対の両外側電子ビームB2.
B3は排気された硝子外囲器2の漏斗状部に配設された
偏向装置5により水平及び垂直に偏向され、硝子外囲器
2の頂面にあり、内側に三色に発光する複数の螢光体画
素が被着された螢光面4上にこれに対設されたシャドウ
マスク3を通して走査画面を形成する。このカラー陰極
線管を動的コンバージェンス補正を要しないセルフ書コ
ンバージェンス方式とするには、偏向装置i5の水平偏
向磁界を強い糸巻型歪に、垂直偏向磁界を強い樽型歪に
して、@2図に示す様にこれら偏向磁界により一対の両
外側電子ビームB2.B3のコマ収差をなくして螢光面
4上に一致した走査画面6を形成する。この場合の中央
電子ビームB1の走査画面7は一般に水平、垂直共両外
側電子ビームB2.B3の形成する走査画面6より小さ
くなる。
A central electron beam Bl emitted from an in-two-in electron gun l and located in the same plane, and a pair of outer electron beams B2.
B3 is deflected horizontally and vertically by a deflection device 5 disposed in the funnel-shaped part of the evacuated glass envelope 2, and is located on the top surface of the glass envelope 2, and has a plurality of lights emitting light in three colors inside. A scanning screen is formed on a phosphor surface 4 on which phosphor pixels are deposited through a shadow mask 3 placed opposite thereto. In order to make this color cathode ray tube a self-writing convergence method that does not require dynamic convergence correction, the horizontal deflection magnetic field of the deflection device i5 is made to have a strong pincushion distortion, and the vertical deflection magnetic field is made to have a strong barrel distortion, as shown in Figure 2. As shown, these deflection magnetic fields cause a pair of outer electron beams B2. The comatic aberration of B3 is eliminated to form a matching scanning screen 6 on the fluorescent surface 4. In this case, the scanning screen 7 of the central electron beam B1 generally has both horizontal and vertical outer electron beams B2. It is smaller than the scanning screen 6 formed by B3.

この走査画面の不整合は偏向装置50コマ収差によるも
のでう9、コマ収差を除去して各走査画面を一致させる
ために、偏向装置5の後部漏洩磁界が及ぶ電子銃lの先
端に取付けられた非磁性材で有底円筒状に形成された集
中磁極lOの底面11に高透磁率の磁性部材からなる磁
界制御素子を配設している。83図は磁界制御素子の一
例を示し、集中磁極10の底面11に穿設された中央電
子ビーム透過開孔12を螢光面4の短軸である垂直軸Y
−Y上で挾むように対設された一対の円盤状磁気増強素
子15.16と、螢光面4の長軸である水平軸X−X上
に穿設された両外側電子ビーム透過開孔13,14を囲
む様に配設された環状磁気遮蔽素子17.18から構成
されている。磁気増強素子15.16は中央電子ビーム
B1に対して、偏向装置5の水平偏向磁界FHの偏向感
度を両外側電子ビームB2.B3より増加させ、環状磁
気遮蔽素子17.18は両外側電子ビーAB2.B3に
対して。
This misalignment of the scanning screen is due to the coma aberration of the deflection device 50. In order to eliminate the coma aberration and make each scanning screen consistent, the deflection device 50 is attached to the tip of the electron gun l, which is exposed to the leakage magnetic field at the rear of the deflection device 5. A magnetic field control element made of a magnetic material with high magnetic permeability is disposed on the bottom surface 11 of the concentrated magnetic pole lO, which is formed in the shape of a cylinder with a bottom and made of a non-magnetic material. FIG. 83 shows an example of a magnetic field control element, in which the central electron beam transmission aperture 12 formed in the bottom surface 11 of the concentrated magnetic pole 10 is aligned with the vertical axis Y, which is the short axis of the fluorescent surface 4.
A pair of disc-shaped magnetic enhancement elements 15 and 16 placed opposite each other on -Y, and both outer electron beam transmission apertures 13 bored on the horizontal axis XX, which is the long axis of the fluorescent surface 4. , 14 are arranged to surround the annular magnetic shielding elements 17, 18. The magnetic enhancement elements 15, 16 increase the deflection sensitivity of the horizontal deflection magnetic field FH of the deflection device 5 with respect to the central electron beam B1 on both outer electron beams B2. B3, the annular magnetic shielding elements 17 and 18 are arranged on both outer sides of the electron beam AB2. For B3.

偏向装置5の水平、垂直偏向磁界FH、FVの偏向感度
を中央電子ビームBlより低下させ、又中央電子ビーム
Blに対して垂直偏向磁界FVの偏向感度を両外側電子
ビームより増加させる働きがある。
It has the function of lowering the deflection sensitivity of the horizontal and vertical deflection magnetic fields FH and FV of the deflection device 5 relative to the center electron beam Bl, and increasing the deflection sensitivity of the vertical deflection magnetic field FV relative to the center electron beam Bl relative to both outer electron beams. .

従がって磁界制御素子15.16及び17.18により
中央電子ビームBlの走査画面7は水平、垂直方向共拡
大され、逆に両外側電子ビームB2゜B3の走査画面6
は縮少され、偏向磁界によるコマ収差が除去されて走査
画面6.7を完全に一致させることが可能となる。
Therefore, by the magnetic field control elements 15.16 and 17.18, the scanning screen 7 of the central electron beam Bl is enlarged both horizontally and vertically, and conversely, the scanning screen 6 of the outer electron beams B2 and B3 is enlarged.
is reduced, comatic aberration due to the deflection magnetic field is eliminated, and it becomes possible to perfectly match the scanning planes 6.7.

一方最近では各種の情報を表示するためカラー陰極線管
に高解像度特性を持たせた一所謂デイスプレイ用カラー
陰極線管が用いられており、これにより英数字、記号、
漢字及び図表等が高密度表示される。
On the other hand, recently, so-called display color cathode ray tubes, which are color cathode ray tubes with high resolution characteristics, have been used to display various types of information.
Kanji, charts, etc. are displayed in high density.

高密度表示を行うには、カラー陰極線管の解像度が高く
、フォーカス特性が均一でらること、表示画面の水平方
向解像層を高めるため映像回路の周波数帯域が広いこと
、表示画面の垂直方向解像度を高めるためには走査線数
が多いことが必要となる。
In order to achieve high-density display, color cathode ray tubes must have high resolution and uniform focus characteristics, the video circuit must have a wide frequency band to increase the horizontal resolution layer of the display screen, and the vertical direction of the display screen must be In order to increase the resolution, it is necessary to have a large number of scanning lines.

通常、高密度表示の一手段として走査線数を増加させる
ため、水平偏向周波数fhを現行の標準カラーTV方式
の15.734 KHz以上に高めることが行なわれて
いる。この場合、水平偏向周波数fh = 15.73
4KHz程度では全く問題がなかった水平偏向磁界によ
る内外側及び中央電子ビームが形成する走査画面6′、
7′のコマ収差が生じ、第4図に示す様に中央電子ビー
ムの走査画面7′に対し両外側電子ビームの走査画面6
′が水平方向で若干拡大され、且つその拡大の割合が螢
光面4の左右で相違し、左側の拡大寸法d1の方が右側
の拡大寸法d2より大き(なる非対称性が生じる。この
走査画面のずれが水平偏向周波数に依存するコンバージ
ェンス誤差となり、螢光面上受像画像品位を著しく劣化
させる。例えば20インチ90度偏向力2−陰極線管に
於て、水平偏向周波数fh=15、73 KHzが2倍
のf h −31,5)G(zとすると上述のす九d1
+’2は有効螢光面の最外周部近くでdl=Q、7鴎、
d2=9.3問となる。この様に水平偏向周波数fhの
増加と共に両外側電子ビームと中央電子ビームが形成す
る走査画面s/ 、 71 に水平方向でコマ収差によ
るずれが生じる原因は次の通りである。
Normally, in order to increase the number of scanning lines as a means of high-density display, the horizontal deflection frequency fh is increased to more than 15.734 KHz of the current standard color TV system. In this case, horizontal deflection frequency fh = 15.73
A scanning screen 6' formed by the inner, outer and central electron beams due to the horizontal deflection magnetic field, which had no problems at around 4KHz;
7' coma aberration occurs, and as shown in FIG. 4, the scanning screen 6 of both outer electron beams is
' is slightly enlarged in the horizontal direction, and the rate of enlargement is different on the left and right sides of the fluorescent surface 4, and the enlarged dimension d1 on the left side is larger than the enlarged dimension d2 on the right side (this creates an asymmetry. The deviation causes a convergence error that depends on the horizontal deflection frequency, which significantly deteriorates the quality of the image received on the fluorescent surface.For example, in a 20-inch 90-degree deflection force 2-cathode ray tube, the horizontal deflection frequency fh = 15, 73 KHz. 2 times f h -31,5)G(z, then the above 9d1
+'2 is near the outermost periphery of the effective fluorescent surface, dl=Q, 7gu,
d2=9.3 questions. The reason why a shift due to coma aberration occurs in the horizontal direction in the scanning screen s/, 71 formed by both outer electron beams and the central electron beam as the horizontal deflection frequency fh increases is as follows.

先ず第一に、有底円筒状の集中磁極10の画面垂直軸Y
−Y方向の部側部19を貫通する水平偏向磁界の磁束に
より、この磁束貫通面に渦電流が生じ、これにより水平
偏向磁界の磁束変化を妨げる磁束が発生して、磁束を減
殺させ、中央及び両外側電子ビームB1.B2.B3の
偏向感度を低下させてその水平方向の偏向振幅を減少さ
せ、磁束の減少は環状磁気遮蔽子17.18の磁気遮蔽
効果を減少させる。この渦電流による磁束の損失は従来
の水平偏向周波数fh=ts、7aKHz程度では全く
無視出来たが、周波数の増加に従がって渦電流による磁
束損失は無視出来なくなり、第4図に示す様に両外側電
子ビームの走査画面6′が中央電子ビームの走査画面7
′に対し左右方向で広がることになる。
First of all, the screen vertical axis Y of the bottomed cylindrical concentrated magnetic pole 10
- The magnetic flux of the horizontal deflection magnetic field penetrating the side part 19 in the Y direction generates an eddy current in the magnetic flux passing surface, which generates a magnetic flux that obstructs the change in the magnetic flux of the horizontal deflection magnetic field, attenuates the magnetic flux, and and both outer electron beams B1. B2. Reducing the deflection sensitivity of B3 and reducing its horizontal deflection amplitude, the reduction in magnetic flux reduces the magnetic shielding effect of the annular magnetic shield 17,18. The loss of magnetic flux due to this eddy current was completely negligible at the conventional horizontal deflection frequency fh=ts, about 7aKHz, but as the frequency increases, the loss of magnetic flux due to the eddy current becomes impossible to ignore, as shown in Figure 4. The scanning screen 6' of both outer electron beams is the scanning screen 7 of the central electron beam.
′, it will spread in the left and right direction.

一方、水平方向の走査を行うために偏向装置5の水平偏
向コイルに流す電流波形は第5図に示す鋸歯状波であり
、図中a点からb点迄の時間【1が水平走査時間であり
、b点からC点迄の時間t2が水平帰線時間であり、通
常t2はtlの約115程度に設定されている。a点或
いは0点が水平走査の画面上左端に、b点が右端位置に
対応している。即ち、水平走査画面の左端位置は水平帰
線時間t2の終端に対応し、右端は水平走査時間t1の
終端に対応し、水平帰線期間t2中は水平走査期間tl
中の約5倍の速さで変化する電流による磁界が発生し、
従がってその高調波成分磁界による渦電流損失に基づく
磁束の減少で環状磁気遮蔽素子17.18の磁気遮蔽効
果損失は蛍光面左側の方が右側より太きく、第4図に示
す様に両外側電子ビーム走査画面6′の中央電子ビーム
走査画面7′に対する水平方向での拡大幅は左側のdl
が右側のd2より大きくなシ、水平方向でのコマ収差に
非対称性が生じる。従来の標準カラーTV方式(NTS
C方式)で用いられているfh=15.734KHzで
はt1==st 〜53μsec 、 t 2 = l
 O〜l 21’虹で、これによる渦電流損失は全く無
視出来て、上述のコマ収差及びその非対称性は実質的に
は見出せなかったが、fhの増加と共にtlとtlの相
違、更には有効走査時間t1を大きくするために帰線時
間t2は出来るだけ小さくなるように設定されて、渦電
流損失に基く水平偏向磁束減少の非対称性は無視出来な
い量となって上記の現象が顕著となってくる。
On the other hand, the current waveform applied to the horizontal deflection coil of the deflection device 5 to perform horizontal scanning is a sawtooth wave shown in FIG. The time t2 from point b to point C is the horizontal retrace time, and t2 is usually set to about 115 of tl. Point a or point 0 corresponds to the left end of the horizontal scanning screen, and point b corresponds to the right end position. That is, the left end position of the horizontal scanning screen corresponds to the end of the horizontal retrace time t2, the right end corresponds to the end of the horizontal retrace time t1, and during the horizontal retrace time t2, the horizontal retrace time tl
A magnetic field is generated by the current that changes about five times faster than the inside.
Therefore, due to the reduction in magnetic flux due to eddy current loss due to the harmonic component magnetic field, the magnetic shielding effect loss of the annular magnetic shielding elements 17 and 18 is greater on the left side of the phosphor screen than on the right side, as shown in Figure 4. The horizontal expansion width of both outer electron beam scanning screens 6' with respect to the central electron beam scanning screen 7' is dl on the left side.
is larger than d2 on the right side, an asymmetry occurs in the comatic aberration in the horizontal direction. Conventional standard color TV system (NTS
At fh=15.734KHz used in C method), t1==st ~53μsec, t2=l
O~l 21' rainbow, the eddy current loss caused by this can be completely ignored, and the above-mentioned coma aberration and its asymmetry were not found substantially, but as fh increases, the difference between tl and tl, and even more effective In order to increase the scanning time t1, the retrace time t2 is set to be as small as possible, and the asymmetry of the horizontal deflection magnetic flux reduction based on eddy current loss becomes a non-negligible amount, and the above phenomenon becomes noticeable. It's coming.

本発明は上述の欠点に鑑みてなされたものであす、セル
フコンバージェンス方式のインライン型電子銃を用いた
陰極線管の水平偏向周波数増加に対し両外側電子ビーム
と中央電子ビームの形成する走査画面にコマ収差による
ずれが生じないようにしたものである。
The present invention has been made in view of the above-mentioned drawbacks.The present invention has been made in view of the above-mentioned drawbacks.The present invention has been made in view of the increase in the horizontal deflection frequency of a cathode ray tube using a self-convergence type in-line electron gun. This is to prevent deviations due to aberrations.

即ち、インライン型電子銃の電子ビーム射出側先端に取
付けられた非磁性材から成る有底円筒状集中磁極の部側
部長を短く制限したものである。
That is, the lateral length of a bottomed cylindrical concentrated magnetic pole made of a non-magnetic material attached to the tip of the electron beam exit side of an in-line electron gun is limited to a short length.

このように構成することによって集中磁極筒側部を貫通
する水平偏向磁界の渦電流損失を防止可能となり、水平
偏向周波数の増加にかかわらず中央及び両外側電子ビー
ムが形成する走査画面のコマ収差による非対称なずれを
除去出来て、イン2イン型電子銃を高密度の映像情報表
示可能な電子銃構体とすることが出来る。
With this configuration, it is possible to prevent eddy current loss in the horizontal deflection magnetic field penetrating the side part of the concentrated magnetic pole tube, and it is possible to prevent eddy current loss due to the scanning screen formed by the central and both outer electron beams, regardless of the increase in the horizontal deflection frequency. The asymmetric shift can be eliminated, and the in-2-in type electron gun can be made into an electron gun assembly capable of displaying high-density video information.

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第6図は横軸に集中磁極筒側部長りをとり、水平偏向周
波数fhをパラメータとして、20インチ90度偏向陰
極線の画面上左端に於ける中央と両外側電子ビームの前
述の水平方向コマ収差量d1を示す図である。第6図か
ら明らかなようにh=8、Qmm を越えるとfh=3
1.5〜64KHziC対1゜dlはQ、1mm以上と
なり急激に増加する。h=s、。
Figure 6 shows the above-mentioned horizontal coma aberration of the center and both outer electron beams at the left end of the screen of a 20-inch 90-degree deflection cathode ray, with the horizontal axis representing the side length of the concentrated magnetic pole tube and the horizontal deflection frequency fh as a parameter. It is a figure showing quantity d1. As is clear from Fig. 6, when h=8 and Qmm is exceeded, fh=3
For 1.5 to 64 KHz C vs. 1° dl, Q becomes 1 mm or more and increases rapidly. h=s,.

mmの時fh = 31.5KHz ではd1=Q、Q
9mm。
When mm, fh = 31.5KHz, d1 = Q, Q
9mm.

fh=64KHzではdl=0.18mmでアリ、h=
6.0mmの時f h =31.5 KHzではdl 
=0.05mm 、 fh= 64 KHzではd 1
=O,l mmとなっている。
fh=64KHz, dl=0.18mm, h=
At 6.0 mm, f h = 31.5 KHz, dl
=0.05mm, d1 at fh=64 KHz
=O, l mm.

一般にコンバージェンス誤差は0.2mm以上になると
目立ち、画質品位を劣化させ、O,1mm以下であれは
実質上色ずれは気にならない。
Generally, if the convergence error is 0.2 mm or more, it becomes noticeable and deteriorates the image quality, but if it is 0.1 mm or less, the color shift is not a problem.

一方、従来の集中磁極の部側部には複数のバルプスベー
丈が取付けられ、これは電子銃構体を陰極線管顕部内に
固定し、陰極線管漏斗状部から頚部内壁に塗布された内
部導波膜より高電圧を電子銃構体に供給する機能を持ち
、或いは陰極線管内を高真空に保つに必要なゲッター容
器を取付けたゲッター支持体が取付けられるため、通常
部側部長は15〜25mm程度に十分大きく選定されて
いる。
On the other hand, a plurality of bulbous bases are attached to the side of the conventional concentrated magnetic pole, which fixes the electron gun assembly within the cathode ray tube microscope section, and connects the internal waveguide film applied from the funnel-shaped part of the cathode ray tube to the inner wall of the neck. Because it has the function of supplying a higher voltage to the electron gun structure, or is equipped with a getter support with a getter container necessary to maintain a high vacuum inside the cathode ray tube, the side length of the normal part is sufficiently large, approximately 15 to 25 mm. Selected.

本発明では水平偏向周波数の高周波化により集中磁極筒
側部に於ける上記コンバージェンス誤差の発生を画質品
位を劣化させることのない水準に維持するために、部側
部長さを5.Qmm以下に制限したもので、第7図に集
中磁極20の斜視図を示す。集中riIi極20は従来
と同様に底面21に穿設された中央電子ビーム透過開孔
22を螢光面短軸である垂直軸Y−Y上で挾むように対
設された一対の磁気増強素子15.16と、螢光面の長
軸である水平軸X−X上に穿設された内外側電子ヒーム
透過開孔23.24′t−囲んで環状磁気遮蔽素子17
゜18が配設されている。但しその部側部29の高さh
は5. Q m m以下に設定されているが、従来と同
様に部側部29に(図示しないが)複数のバルブスペー
サやファンネルゲッター支持体を固定することは可能で
ある。
In the present invention, in order to maintain the occurrence of the convergence error at the side part of the concentrated magnetic pole tube at a level that does not deteriorate the image quality by increasing the horizontal deflection frequency, the length of the side part is set to 5. FIG. 7 shows a perspective view of the concentrated magnetic pole 20. The concentrated riIi pole 20 includes a pair of magnetic enhancement elements 15 that are arranged opposite to each other so as to sandwich the central electron beam transmission aperture 22 formed in the bottom surface 21 on the vertical axis YY, which is the short axis of the fluorescent surface, as in the conventional case. .16, and an annular magnetic shielding element 17 surrounding the inner and outer electron beam transmission apertures 23 and 24't formed on the horizontal axis XX, which is the long axis of the fluorescent surface.
゜18 is arranged. However, the height h of the side part 29
is 5. Although it is set below Q m m, it is possible to fix a plurality of valve spacers or funnel getter supports (not shown) to the side portion 29 as in the conventional case.

以上述べた様に本発明の実施例によれば、水平偏向周波
数fhが15.75 KHzから64KH1迄高周波化
されても両外側電子ビームと中央電子ビームの画面左右
端でのコンバージェンス誤差’irO,tmm以下とす
ることが出来、又、誤差量を小さくすることでその非対
称性も無視可能となりカラー陰極線管の水平偏向周波数
を高めて高密度表示を行っても色ずれによる画質品位を
劣化させることはなくなる。更に水平偏向周波数に対す
るコンバージェンス誤差の依存性がなくなるため集中磁
極内に設置する磁界制御素子を使用される水平偏向周波
数毎に最適化したものに変更することなく同一の磁界制
御素子を用いることが出来て、陰極線管製造工程を単純
化出来る利点もあり、その工業的実用価値は極めて高い
と云える。
As described above, according to the embodiment of the present invention, even if the horizontal deflection frequency fh is increased from 15.75 KHz to 64 KH1, the convergence error 'irO, tmm or less, and by reducing the amount of error, the asymmetry can be ignored, and even if the horizontal deflection frequency of the color cathode ray tube is increased and high-density display is performed, image quality due to color shift will not deteriorate. will disappear. Furthermore, since the dependence of the convergence error on the horizontal deflection frequency is eliminated, the same magnetic field control element can be used without having to change the magnetic field control element installed in the concentrated magnetic pole to one optimized for each horizontal deflection frequency used. It also has the advantage of simplifying the cathode ray tube manufacturing process, and its industrial practical value can be said to be extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

m1図は従来用いられているセルフ・コンバージェンス
方式のインライン型電子銃を用いたカラー陰極線管の縦
断面図、第2図はこのカラー陰極線管の螢光面上に中央
及び両外側電子銃の電子ビームが形成する走査画面を、
第3図は前記走査画面のコマ収差を補正する磁界制御素
子と、その水平、垂直偏向磁界に対する作用を、第4図
は水平偏向コイルが大きくなった時螢光面上に表われる
中央及び両外側電子銃の電子ビームが形成する走査画面
のずれを説明する図、第5図は水平偏向コイルに流れる
電流波形を、第6図は水平偏向周波数をパラメータとし
て集中磁極筒側部長とコンバージェンス誤差の関係を示
す図、第7図は本発明の一実施例を示す集中磁極の斜視
図を夫々示す。 l・・・・・・インライン型電子銃、2・・・・・・硝
子外囲器。 4・・・・・・螢光面、5・・・・・・偏向装置、6.
6′・・・・・・両外側電子ビームが形成する走査画面
、7.7’・・・・・・中央電子ビームが形成する走査
画面、10.20・・・・・・集中磁極、12.22・
・・・・・中央電子ビーム透過開孔。 13.14,23.24・・・・・・両外側電子ビーム
透過開孔。 19.29・・・・・・部側部、15.16・・・・・
・磁気増強素子。 17.18・・・・・・環状磁気遮蔽素子。 T)4(2) 拓5区
Figure m1 is a vertical cross-sectional view of a color cathode ray tube using a conventional self-convergence type in-line electron gun, and Figure 2 shows electrons from the center and both outer electron guns on the fluorescent surface of this color cathode ray tube. The scanning screen formed by the beam is
Figure 3 shows the magnetic field control element that corrects the coma aberration of the scanning screen and its effect on the horizontal and vertical deflection magnetic fields. Figure 5 shows the waveform of the current flowing through the horizontal deflection coil, and Figure 6 shows the deviation of the convergence error between the side length of the concentrated magnetic pole tube and the horizontal deflection frequency as a parameter. FIG. 7 shows a perspective view of a concentrated magnetic pole according to an embodiment of the present invention. l... In-line electron gun, 2... Glass envelope. 4... Fluorescent surface, 5... Deflection device, 6.
6'...Scanning screen formed by both outer electron beams, 7.7'...Scanning screen formed by central electron beam, 10.20...Concentrated magnetic pole, 12 .22・
...Central electron beam transmission aperture. 13.14, 23.24...Both outer electron beam transmission apertures. 19.29... side part, 15.16...
・Magnetic enhancement element. 17.18...Annular magnetic shielding element. T)4(2) Taku 5th Ward

Claims (1)

【特許請求の範囲】[Claims] 電子銃の電子ビーム射出側先端に取付けられた非磁性金
属材から成る有底円筒状集中磁極の部側部長を5.Qm
m以下に制限したことを特徴としたインライン型電子銃
構体。
5. The side length of the bottomed cylindrical concentrated magnetic pole made of a non-magnetic metal material attached to the tip of the electron beam exit side of the electron gun. Qm
An in-line electron gun structure characterized by being limited to less than m.
JP19379483A 1983-10-17 1983-10-17 In-line type electron gun structure Granted JPS6086737A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19379483A JPS6086737A (en) 1983-10-17 1983-10-17 In-line type electron gun structure
US06/899,758 US4659961A (en) 1983-10-17 1986-08-21 Cup member of an in-line electron gun capable of reducing a coma aberration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19379483A JPS6086737A (en) 1983-10-17 1983-10-17 In-line type electron gun structure

Publications (2)

Publication Number Publication Date
JPS6086737A true JPS6086737A (en) 1985-05-16
JPH0367299B2 JPH0367299B2 (en) 1991-10-22

Family

ID=16313889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19379483A Granted JPS6086737A (en) 1983-10-17 1983-10-17 In-line type electron gun structure

Country Status (1)

Country Link
JP (1) JPS6086737A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571394U (en) * 1980-05-30 1982-01-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571394U (en) * 1980-05-30 1982-01-06

Also Published As

Publication number Publication date
JPH0367299B2 (en) 1991-10-22

Similar Documents

Publication Publication Date Title
FI60086C (en) SJAELVKONVERGERANDE FAERGTELEVISIONSAOTERGIVNINGSSYSTEM
US4443736A (en) Electron gun for dynamic beam shape modulation
KR900002906B1 (en) Color cathode ray tube device
JPH03141540A (en) Color picture tube
EP0178857B1 (en) Electron gun
US5606216A (en) Color cathode-ray tube with reduced moire
JPS63166126A (en) Cathode-ray tube
JPS6086737A (en) In-line type electron gun structure
JPH0367298B2 (en)
JPS6129046A (en) Inline electron gun structure
US5754007A (en) Method of degaussing cathode ray tube
JPS6129047A (en) Inline electron gun structure
JPS5824372Y2 (en) Denshiji Yukoutai
US4723094A (en) Color picture device having magnetic pole pieces
JPH077643B2 (en) Color television picture tube having aberration correction element and aberration correction method
JPS63254645A (en) Color cathode ray tube
JPH0433238A (en) Color picture tube device
JP2886614B2 (en) Color cathode ray tube
JPH0127252Y2 (en)
JP3015471B2 (en) Color picture tube equipment
JPH0367297B2 (en)
JPH0367296B2 (en)
JP2671608B2 (en) In-line type electron gun structure
KR840001000B1 (en) Self conversing color image display system
JPH04181637A (en) In-line type electron gun body structure