JPH0367299B2 - - Google Patents

Info

Publication number
JPH0367299B2
JPH0367299B2 JP58193794A JP19379483A JPH0367299B2 JP H0367299 B2 JPH0367299 B2 JP H0367299B2 JP 58193794 A JP58193794 A JP 58193794A JP 19379483 A JP19379483 A JP 19379483A JP H0367299 B2 JPH0367299 B2 JP H0367299B2
Authority
JP
Japan
Prior art keywords
horizontal
magnetic
electron beam
deflection
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58193794A
Other languages
Japanese (ja)
Other versions
JPS6086737A (en
Inventor
Kazuaki Naiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP19379483A priority Critical patent/JPS6086737A/en
Publication of JPS6086737A publication Critical patent/JPS6086737A/en
Priority to US06/899,758 priority patent/US4659961A/en
Publication of JPH0367299B2 publication Critical patent/JPH0367299B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • H01J29/707Arrangements intimately associated with parts of the gun and co-operating with external magnetic excitation devices

Description

【発明の詳細な説明】 本発明はカラー陰極線管に係り、インライン型
電子銃から放射された中央及び一対の両外側電子
ビームが共通の偏向磁界により螢光面上に形成す
るルスターの大きさを、特に水平偏向周波数にか
かわらず等しくさせることが可能なセルフ・コン
バージエンス方式のインライン型電子銃に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color cathode ray tube, in which the size of a ruster formed on a fluorescent surface by a central and a pair of outer electron beams emitted from an in-line electron gun is determined by a common deflection magnetic field. In particular, this invention relates to a self-convergence type in-line electron gun that can make the horizontal deflection frequency equal regardless of the horizontal deflection frequency.

第1図は従来用いられている動的コンバージエ
ンス補正を要しない、所謂セルフ・コンバージエ
ンス方式のインライン型電子銃を用いたカラー陰
極線管の縦断面図である。
FIG. 1 is a longitudinal cross-sectional view of a conventional color cathode ray tube using a so-called self-convergence in-line electron gun that does not require dynamic convergence correction.

インライン型電子銃1から放射されて同一平面
内にある中央電子ビームB1及び一対の両外側電
子ビームB2,B3は排気された硝子外囲器2の
漏斗状部に配置された偏向装置5により水平及び
垂直に偏向され、硝子外囲器2の頂面にあり、内
側に三色に発光する複数の螢光体画素が披着され
た螢光面4上にこれに対設されたシヤドウマスク
3を通して走査画面を形成する。このカラー陰極
線管を動的コンバージエンス補正を要しないセル
フ・コンバージエンス方式とするには、偏向装置
5の水平偏向磁界を強い糸巻型歪に、垂直偏向磁
界を強い樽型歪にして、第2図に示す様にこれら
偏向磁界により一対の両外側電子ビームB2,B
3のコマ収差をなくして螢光面4上に一致した走
査画面6を形成する。この場合の中央電子ビーム
B1の走査画面7は一般に水平、垂直共両外側電
子ビームB2,B3の形成する走査画面6より小
さくなる。この走査画面の不整合は偏向装置5の
コマ収差によるものであり、コマ収差を除去して
各走査画面を一致させるために、偏向装置5の後
部漏洩磁界が及ぶ電子銃1先端に取付けられた非
磁性材で有底円筒状に形成された集中磁極10の
底面11に高透磁率の磁性部材からなる磁界制御
素子を配設している。第3図は磁界制御素子の一
例を示し、集中磁極10の底面11に穿設された
中央電子ビーム透過開孔12を螢光面4の短軸で
ある垂直軸Y−Y上で挾むように対設された一対
の円盤状磁気増強素子15,16と、螢光面4の
長軸である水平軸X−X上に穿設された両外側電
子ビーム透過開孔13,14を囲む様に配設され
た環状磁気遮蔽素子17,18から構成されてい
る。磁気増強素子15,16は中央電子ビームB
1に対して、偏向装置5の水平偏向磁界FHの偏
向感度を両外側電子ビームB2,B3より増加さ
せ、環状磁気遮蔽素子17,18は両外側電子ビ
ームB2,B3に対して、偏向装置5の水平、垂
直偏向磁界FH,FVの偏向感度を中央電子ビーム
B1より低下させ、又中央電子ビームB1に対し
て垂直偏向磁界FVの偏向感度を両外側電子ビー
ムより働きがある。
A central electron beam B1 emitted from the in-line electron gun 1 and located in the same plane and a pair of outer electron beams B2 and B3 are deflected horizontally by a deflection device 5 disposed in a funnel-shaped portion of the evacuated glass envelope 2. and is vertically deflected through a shadow mask 3 placed on the top surface of the glass envelope 2 and placed opposite to the phosphor surface 4 on which a plurality of phosphor pixels that emit light in three colors are deposited on the inside. Form a scanning screen. In order to make this color cathode ray tube a self-convergence type that does not require dynamic convergence correction, the horizontal deflection magnetic field of the deflection device 5 is made to have a strong pincushion distortion, and the vertical deflection magnetic field is made to have a strong barrel distortion. As shown in the figure, a pair of outer electron beams B2 and B are formed by these deflecting magnetic fields.
The comatic aberration of 3 is eliminated to form a coincident scanning screen 6 on the fluorescent surface 4. In this case, the scanning screen 7 of the central electron beam B1 is generally smaller both horizontally and vertically than the scanning screen 6 formed by the outer electron beams B2 and B3. This misalignment of the scanning screens is due to the comatic aberration of the deflection device 5. In order to remove the comatic aberration and make each scanning screen consistent, an electron gun 1 is attached to the tip of the electron gun 1, which is exposed to the rear leakage magnetic field of the deflection device 5. A magnetic field control element made of a magnetic material with high magnetic permeability is disposed on the bottom surface 11 of the concentrated magnetic pole 10 formed of a non-magnetic material in the shape of a cylinder with a bottom. FIG. 3 shows an example of a magnetic field control element, in which a center electron beam transmission aperture 12 formed in the bottom surface 11 of a concentrated magnetic pole 10 is arranged so as to be sandwiched on the vertical axis Y-Y, which is the short axis of the fluorescent surface 4. It is arranged so as to surround a pair of disk-shaped magnetic enhancement elements 15 and 16 provided therein and both outer electron beam transmission apertures 13 and 14 formed on the horizontal axis XX, which is the long axis of the fluorescent surface 4. It is composed of annular magnetic shielding elements 17 and 18 provided. The magnetic enhancement elements 15 and 16 are connected to the central electron beam B.
1, the deflection sensitivity of the horizontal deflection magnetic field F H of the deflection device 5 is increased from both outer electron beams B2 and B3, and the annular magnetic shielding elements 17 and 18 The deflection sensitivities of the horizontal and vertical deflection magnetic fields F H and F V of No. 5 are lower than those of the center electron beam B1, and the deflection sensitivity of the vertical deflection magnetic field F V has a greater effect on the center electron beam B1 than both outer electron beams.

従がつて磁界制御素子15,16及び17,1
8により中央電子ビームB1の走査画面7は水
平、垂直方向共拡大され、逆に両外側電子ビーム
B2,B3の走査画面6は縮少され、偏向磁界に
よるコマ収差が除去されて走査画面6,7を完全
に一致させることが可能となる。
Therefore, the magnetic field control elements 15, 16 and 17, 1
8, the scanning screen 7 of the central electron beam B1 is enlarged both horizontally and vertically, and conversely, the scanning screen 6 of the outer electron beams B2 and B3 is reduced, and the coma aberration caused by the deflection magnetic field is removed, and the scanning screen 6, 7 can be completely matched.

一方最近では各種の情報を表示するためカラー
陰極線管に高解像度特性を持たせた一所謂デイス
プレイ用カラー陰極線管が用いられており、これ
により英数字、記号、漢字及び図表等が高密度表
示される。
On the other hand, recently, so-called display color cathode ray tubes, which are color cathode ray tubes with high resolution characteristics, have been used to display various types of information.This allows alphanumeric characters, symbols, kanji, charts, etc. to be displayed in high density. Ru.

高密度表示を行うには、カラー陰極線管の解像
度が高く、フオーカス特性が均一であること、表
示画面の水平方向解像度を高めるため映像回路の
周波数帯域が広いこと、表示画面の垂直方向解像
度を高めるためには走査線数が多いことが必要と
なる。
To achieve high-density display, the color cathode ray tube must have high resolution and uniform focus characteristics, the video circuit must have a wide frequency band to increase the horizontal resolution of the display screen, and the vertical resolution of the display screen must be increased. This requires a large number of scanning lines.

通常、高密度表示の手段として走査線数を増加
させるため、水平方向周波数hを現行の標準カ
ラーTV方式の15.734KHz以上に高めることが行
なわれている。この場合、水平偏向周波数h=
15.734KHz程度では全く問題がなかつた水平偏向
磁界による両外側及び中央電子ビームが形成する
走査画面6′,7′にコマ収差が生じ、第4図に示
す様に中央電子ビームの走査画面7′に対し両外
側電子ビームの走査画面6′が水平方向で若干拡
大され、且つその拡大の割合が螢光面4の左右で
相違し、左側の拡大寸法d1の方が右側の拡大寸法
d2より大きくなる非対称性が生じる。この走査画
面のずれが水平偏向周波数に依存するコンバージ
エンス誤差となり、螢光面上受像画像品位を著し
く劣化させる。例えば20インチ90度偏向カラー陰
極線管に於て、水平偏向周波数h=15.73KHzが
2倍のh=31.5KHzとすると上述のずれd1,d2
有効螢光面の最外周部近くでd1=0.7mm、d2=0.3
mmとなる。この様に水平偏向周波数hの増加と
共に両外側電子ビームと中央電子ビームが形成す
る走査画面6′,7′に水平方向でコマ収差による
ずれが生じる原因は次の通りである。
Normally, in order to increase the number of scanning lines as a means of high-density display, the horizontal frequency h is increased to more than 15.734 KHz of the current standard color TV system. In this case, horizontal deflection frequency h=
At about 15.734 KHz, there was no problem at all, but coma aberration occurs in the scanning screens 6' and 7' formed by the outer and central electron beams due to the horizontal deflection magnetic field, and as shown in Figure 4, the scanning screen 7' of the central electron beam In contrast, the scanning screen 6' of both outer electron beams is slightly expanded in the horizontal direction, and the rate of expansion is different on the left and right sides of the fluorescent surface 4, with the enlarged dimension d1 on the left side being larger than the enlarged dimension on the right side.
An asymmetry occurs that is larger than d 2 . This shift in the scanning screen results in a convergence error that depends on the horizontal deflection frequency, which significantly deteriorates the quality of the image received on the fluorescent surface. For example, in a 20-inch 90-degree polarization color cathode ray tube, if the horizontal deflection frequency h = 15.73KHz is doubled, h = 31.5KHz, the above-mentioned deviations d 1 and d 2 will be d near the outermost part of the effective fluorescent surface. 1 = 0.7mm, d2 = 0.3
mm. The reason why the scanning screens 6' and 7' formed by both outer electron beams and the central electron beam are shifted in the horizontal direction due to coma aberration as the horizontal deflection frequency h increases is as follows.

先ず第一に、有底円状の集中磁極10の画面垂
直軸Y−Y方向の筒側部19を貫通する水平偏向
磁界の磁束におり、この磁束貫通面に渦電流が生
じ、これにより水平偏向磁この界磁束変化を妨げ
る磁束が発生して、磁束を減殺させ、中央及び両
外側電子ビームB1,B2,B3の変更感度を低
下させてその水平方向の偏向振幅を減少させ、磁
束の減少は環状磁気遮蔽素子17,18の磁気遮
蔽効果を減少させる。この渦電流による磁束の損
失は従来の水平偏向周波数h=15.73KHz程度で
は全く無視出来たが、周波数の増加に従がつて渦
電流による磁束損失は無視出来なくなり、第4図
に示す様に両外側電子ビームの走査画面6′が中
央電子ビームの走査画面7′に対し左右方向で広
がることになる。
First of all, there is a magnetic flux of a horizontal deflection magnetic field that penetrates the cylinder side part 19 of the bottomed circular concentrated magnetic pole 10 in the screen vertical axis Y-Y direction, and an eddy current is generated in the magnetic flux passing surface, which causes a horizontal deflection. Deflection magnet A magnetic flux is generated that obstructs the magnetic flux change in this field, which attenuates the magnetic flux, reduces the change sensitivity of the center and both outer electron beams B1, B2, B3, and reduces their horizontal deflection amplitude, reducing the magnetic flux. reduces the magnetic shielding effect of the annular magnetic shielding elements 17,18. The loss of magnetic flux due to this eddy current could be completely ignored at the conventional horizontal deflection frequency h = 15.73KHz, but as the frequency increases, the loss of magnetic flux due to eddy current becomes impossible to ignore, and as shown in Figure 4, The scanning screen 6' of the outer electron beam is expanded in the horizontal direction with respect to the scanning screen 7' of the central electron beam.

一方、水平方向の走査を行うために偏向装置5
の水平偏向コイルに流す電流波形は第5図に示す
鋸歯状波であり、図中a点からb点迄の時間t1
水平走査時間であり、b点からc点迄の時間t2
水平帰線時間であり、通常t2はt1の約1/5程度に
設定されている。a点或いはc点が水平走査の画
面上左端に、b点が右端位置に対応している。即
ち、水平走査画面の左端位置は水平帰線時間t2
終端に対応し、右端は水平走査時間t1の終端に対
応し、水平帰線期間t2中は水平走査期間t1中の約
5倍の速さで変化する電流による磁界が発生し、
従がつてその高調波成分磁界による渦電流損失に
基づく磁束の減少で環状磁気遮蔽素子17,18
の磁気遮蔽効果損失は螢光面左側の方が右側より
大きく、第4図に示す様に両外側電子ビーム走査
画面6′の中央電子ビーム走査画面7′に対する水
平方向での拡大幅は左側のd1が右側のd2より大き
くなり、水平方向でのコマ収差に非対称が生じ
る。従来の標準カラーTV方式(NTSC方式)で
用いられているh=15.734KHzではt1=51〜
53μsec、t2=10〜12μsecで、これによる渦電流損
失は全く無視出来て、上述のコマ収差及びその非
対称性は実現的には見出せなかつたが、hの増
加と共にt1とt2の相違、更には有効走査時間t1
大きくするために帰線時間t2は出来るだけ小さく
なるように設定されて、渦電流損失に基く水平偏
向磁束減少の非対称性は無視出来ない量となつて
上記の現象が顕著となつてくる。
On the other hand, in order to perform horizontal scanning, the deflection device 5
The current waveform flowing through the horizontal deflection coil is a sawtooth wave shown in Figure 5, where the time t1 from point a to point b in the figure is the horizontal scanning time, and the time t2 from point b to point c is the horizontal scanning time. This is the horizontal retrace time, and t2 is usually set to about 1/5 of t1 . Point a or point c corresponds to the left end of the horizontal scanning screen, and point b corresponds to the right end position. That is, the left end position of the horizontal scanning screen corresponds to the end of the horizontal retrace time t 2 , the right end corresponds to the end of the horizontal retrace time t 1 , and during the horizontal retrace period t 2 it corresponds to the end of the horizontal retrace time t 1 . A magnetic field is generated by a current that changes five times faster,
Therefore, the annular magnetic shielding elements 17, 18 due to a decrease in magnetic flux due to eddy current loss due to the harmonic component magnetic field.
The magnetic shielding effect loss is larger on the left side of the fluorescent surface than on the right side, and as shown in FIG. d 1 becomes larger than d 2 on the right side, causing asymmetry in coma aberration in the horizontal direction. At h = 15.734KHz used in the conventional standard color TV system (NTSC system), t 1 = 51~
53 μsec, t 2 = 10 to 12 μsec, the eddy current loss caused by this can be completely ignored, and the above-mentioned coma aberration and its asymmetry could not be found in reality, but as h increases, the difference between t 1 and t 2 Furthermore, in order to increase the effective scanning time t 1 , the retrace time t 2 is set to be as small as possible, and the asymmetry of the horizontal deflection magnetic flux reduction due to eddy current loss becomes a non-negligible amount. This phenomenon is becoming more noticeable.

本発明は上述の欠点に鑑みてなされたものであ
り、セルフコンバージエンス方式のインライン型
電子銃を用いた陰極線管の水平偏向周波数の高周
波化に対し両外側電子ビームと中央電子ビームの
形成する走査画面にコマ収差によるずれが生じな
いようにしたものである。
The present invention has been made in view of the above-mentioned shortcomings, and is aimed at increasing the horizontal deflection frequency of a cathode ray tube using a self-convergence type in-line electron gun. This is to prevent displacement due to coma aberration from occurring on the screen.

即ち、インライン型電子銃の電子ビーム射出側
先端に取付けられた非磁性材から成る有底円筒状
集中磁極の筒側部長を短く制限したものである。
このように構成することによつて集中磁極筒側部
を貫通する水平偏向磁界により発生する渦電流損
失を防止可能となり、水平偏向周波数の高周波化
にかかわらず中央及び両外側電子ビームが形成す
る走査画面のコマ収差による非対称なずれを除去
出来て、インライン型電子銃を高密度の映像情報
表示可能な電子銃構体とすることが出来る。
That is, the cylindrical concentrated magnetic pole with a bottom, which is made of a non-magnetic material and is attached to the tip of the electron beam exit side of the in-line electron gun, has a short length on the cylindrical side.
With this configuration, it is possible to prevent eddy current loss caused by the horizontal deflection magnetic field penetrating the side of the concentrated magnetic pole cylinder, and the scanning formed by the central and both outer electron beams can be prevented regardless of the high horizontal deflection frequency. It is possible to eliminate asymmetric shifts due to screen coma aberration, and the in-line electron gun can be made into an electron gun structure capable of displaying high-density video information.

以下、図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第6図は横軸に集中磁極筒側部長hをとり、水
平偏向周波数hをパラメータとして、20インチ
90度偏向陰極線管の画面上左端に於ける中央と両
外側電子ビームの前述の水平方向コマ収差d1を示
す図である。第6図から明らかなようにh=8.0
mmを越えるとh=31.5〜64KHzに対しd1は0.1mm以
上となり急激に増加する。h=8.0mmの時h=
31.5KHzではd1=0.09mm、h=64KHzではdmm=
0.18mmであり、h=6.0mmの時h=31.5KHzではd1
=0.05、h=64KHzではd1=0.1mmとなつている。
In Figure 6, the horizontal axis represents the side length h of the concentrated magnetic pole tube, and the horizontal deflection frequency h is used as a parameter.
FIG. 3 is a diagram showing the above-mentioned horizontal coma aberration d 1 of the center and both outer electron beams at the upper left end of the screen of a 90-degree deflection cathode ray tube. As is clear from Figure 6, h = 8.0
When it exceeds mm, d1 increases rapidly to 0.1 mm or more for h=31.5 to 64 KHz. When h=8.0mm h=
For 31.5KHz, d 1 = 0.09mm, for h = 64KHz, dmm =
0.18mm, and when h=6.0mm and h=31.5KHz, d 1
= 0.05, and when h = 64KHz, d 1 = 0.1mm.

一般にコンバージエンス誤差は0.2mm以上にな
ると目立ち、画質品位を劣化させ、0.1mm以下で
あれば実質上色ずれは気にならない。
In general, if the convergence error is 0.2 mm or more, it becomes noticeable and degrades the image quality, but if it is 0.1 mm or less, color shift is virtually unnoticeable.

一方、従来の集中磁極の筒側部には複数のバル
ブスペーサが取付けられ、これは電子銃構体を陰
極線管頚部内に固定し、陰極線管漏斗状部から頚
部内壁に塗布された内部導電膜より高電圧を電子
銃構体に供給する機能を持ち、或いは陰極線管内
を高真空に保つに必要なゲツター容器を取付けた
ゲツター支持体が取付けられるため、通常筒側部
長は15〜25mm程度に十分大きく選定されている。
On the other hand, a plurality of valve spacers are attached to the cylinder side of the conventional concentrated magnetic pole, and these spacers fix the electron gun assembly inside the neck of the cathode ray tube, and are connected to the internal conductive film applied from the funnel-shaped part of the cathode ray tube to the inner wall of the neck. Since the getter support is attached with a getter container that has the function of supplying high voltage to the electron gun structure or that is necessary to maintain a high vacuum inside the cathode ray tube, the tube side length is usually selected to be sufficiently large, approximately 15 to 25 mm. has been done.

本発明では水平偏向周波数の高周波化により集
中磁極筒側部に於ける上記コンバージエンス誤差
の発生を画質品位を劣化させることのない水準に
維持するために、筒側部長さを6.0mm以下に制限
したもので、第7図に集中磁極20の斜視図を示
す。集中磁極20は従来と同様に底面21に穿設
された中央電子ビーム透過開孔22を螢光面短軸
である垂直軸Y−Y上で挾むように対設された一
対の磁気増強素子15,16と、螢光面の長軸で
ある水平軸X−X上に穿設された両外側電子ビー
ム透過開孔23,24を囲んで環状磁気遮蔽素子
17,18が配設されている。但しその筒側部2
9の高さhは6.0mm以下に設定されているが、従
来と同様に筒側部29に(図示しないが)複数の
バルブスペーサやフアンネルゲツター支持体を固
定することは可能である。
In the present invention, the length of the cylinder side part is limited to 6.0 mm or less in order to maintain the occurrence of the above-mentioned convergence error in the concentrated magnetic pole cylinder side part at a level that does not deteriorate the image quality by increasing the horizontal deflection frequency. FIG. 7 shows a perspective view of the concentrated magnetic pole 20. The concentrated magnetic pole 20 includes a pair of magnetic enhancement elements 15, which are arranged oppositely to sandwich the central electron beam transmission aperture 22 formed in the bottom surface 21 on the vertical axis Y-Y, which is the short axis of the fluorescent surface, as in the conventional case. 16, and annular magnetic shielding elements 17 and 18 are disposed surrounding both outer electron beam transmission apertures 23 and 24 formed on the horizontal axis XX, which is the long axis of the fluorescent surface. However, the cylinder side part 2
Although the height h of 9 is set to 6.0 mm or less, it is possible to fix a plurality of valve spacers and funnel getter supports (not shown) to the cylinder side part 29 as in the conventional case.

以上述べた様に本発明の実施例によれば、水平
偏向周波数hが15.75KHzから64KHz迄高周波化さ
れても両外側電子ビームと中央電子ビームの画面
左右端でのコンバージエンズ誤差を0.1mm以下と
することが出来、又、誤差量を小さくすることで
その非対称性も無視可能となりカラー陰極線管の
水平偏向周波数を高めて高密度表示を行つても色
ずれによる画質品位を劣化させることはなくな
る。更に水平偏向周波数に対するコンバージエン
ス誤差の依存性がなくなるため集中磁極内に設置
する磁界制御素子を使用される水平偏向周波数毎
に最適化したものに変更することなく同一の磁界
制御素子を用いることが出来て、陰極線管製造工
程を単純化出来る利点もあり、その工業的実用価
値は極めて高いと云える。
As described above, according to the embodiment of the present invention, even if the horizontal deflection frequency h is increased from 15.75 KHz to 64 KHz, the convergence error at the left and right edges of the screen for both outer electron beams and the center electron beam can be kept below 0.1 mm. In addition, by reducing the amount of error, the asymmetry can be ignored, and even if the horizontal deflection frequency of the color cathode ray tube is increased to perform high-density display, the image quality will not deteriorate due to color shift. . Furthermore, since the dependence of the convergence error on the horizontal deflection frequency is eliminated, the same magnetic field control element can be used without having to change the magnetic field control element installed in the concentrated magnetic pole to one optimized for each horizontal deflection frequency used. It has the advantage of simplifying the cathode ray tube manufacturing process, and its practical industrial value can be said to be extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来用いられているセルフ・コンバー
ジエンス方式のインライン型電子銃を用いたカラ
ー陰極線管の縦断面図、第2図はこのカラー陰極
線管の螢光面上に中央及び両外側電子銃の電子ビ
ームが形成する走査画面を、第3図は前記走査画
面のコマ収差を補正する磁界制御素子と、その水
平、垂直偏向磁界に対する作用を、第4図は水平
変更周波数が大きくなつた時螢光面上に現われる
中央及び両外側電子銃の電子ビームが形成する走
査画面のずれを説明する図、第5図は水平偏向コ
イルに流れる電流波形を、第6図は水平偏向周波
数をパラメータとして集中磁極筒側部長とコンバ
ージエンス誤差の関係を示す図、第7図は本発明
の一実施例を示す集中磁極の斜視図を夫々示す。 1……インライン型電子銃、2……硝子外囲
器、4……螢光面、5……偏向装置、6,6′…
…両外側電子ビームが形成する走査画面、7,
7′……中央電子ビームが形成する走査画面、1
0,20……集中磁極、12,22……中央電子
ビーム透過開孔、13,14,23,24……両
外側電子ビーム透過開孔、19,29……筒側
部、15,16……磁気増強素子、17,18…
…環状磁気遮蔽素子。
Figure 1 is a vertical cross-sectional view of a color cathode ray tube that uses a conventional self-convergence type in-line electron gun, and Figure 2 shows the central and both outer electron guns on the fluorescent surface of this color cathode ray tube. Figure 3 shows the magnetic field control element that corrects the coma aberration of the scanning screen and its effect on the horizontal and vertical deflection magnetic fields, and Figure 4 shows the scanning screen formed by the electron beam. A diagram explaining the deviation of the scanning screen formed by the electron beams of the central and both outer electron guns appearing on the fluorescent surface. Figure 5 shows the current waveform flowing through the horizontal deflection coil, and Figure 6 shows the horizontal deflection frequency as a parameter. FIG. 7 is a diagram showing the relationship between the side length of a concentrated magnetic pole cylinder and a convergence error, and FIG. 7 is a perspective view of a concentrated magnetic pole showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... In-line electron gun, 2... Glass envelope, 4... Fluorescent surface, 5... Deflection device, 6, 6'...
...Scanning screen formed by both outer electron beams, 7,
7'... Scanning screen formed by the central electron beam, 1
0,20...Concentrated magnetic pole, 12,22...Central electron beam transmitting aperture, 13,14,23,24...Both outer electron beam transmitting apertures, 19,29...Cylinder side part, 15,16... ...Magnetic enhancement element, 17, 18...
...Annular magnetic shielding element.

Claims (1)

【特許請求の範囲】[Claims] 1 電子銃の電子ビーム射出側先端に取付けられ
た非磁性金属材から成る有底円筒状集中磁極の底
面に電子ビームを集中のための磁界制御素子を備
えるセルフ・コンバージエンス方式のインライン
型電子銃構体において、有底円筒状集中磁極の筒
側部長を6.0mm以下に制限したことを特徴とする
インライン型電子銃構体。
1. A self-convergence type in-line electron gun equipped with a magnetic field control element for concentrating the electron beam on the bottom surface of a bottomed cylindrical concentrating magnetic pole made of a non-magnetic metal material attached to the tip of the electron beam exit side of the electron gun. An in-line electron gun structure characterized in that the length of the tube side of the bottomed cylindrical concentrated magnetic pole is limited to 6.0 mm or less.
JP19379483A 1983-10-17 1983-10-17 In-line type electron gun structure Granted JPS6086737A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19379483A JPS6086737A (en) 1983-10-17 1983-10-17 In-line type electron gun structure
US06/899,758 US4659961A (en) 1983-10-17 1986-08-21 Cup member of an in-line electron gun capable of reducing a coma aberration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19379483A JPS6086737A (en) 1983-10-17 1983-10-17 In-line type electron gun structure

Publications (2)

Publication Number Publication Date
JPS6086737A JPS6086737A (en) 1985-05-16
JPH0367299B2 true JPH0367299B2 (en) 1991-10-22

Family

ID=16313889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19379483A Granted JPS6086737A (en) 1983-10-17 1983-10-17 In-line type electron gun structure

Country Status (1)

Country Link
JP (1) JPS6086737A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571394U (en) * 1980-05-30 1982-01-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571394U (en) * 1980-05-30 1982-01-06

Also Published As

Publication number Publication date
JPS6086737A (en) 1985-05-16

Similar Documents

Publication Publication Date Title
CA1159874A (en) Deflection yoke comprising magnetically permeable members forming a pincushion shape field within the neck of a crt
US4231009A (en) Deflection yoke with a magnet for reducing sensitivity of convergence to yoke position
US4443736A (en) Electron gun for dynamic beam shape modulation
KR900002906B1 (en) Color cathode ray tube device
US4523123A (en) Cathode-ray tube having asymmetric slots formed in a screen grid electrode of an inline electron gun
EP0178857B1 (en) Electron gun
JPH0367298B2 (en)
KR890004872B1 (en) Color cathode ray tube
JPH0367299B2 (en)
US4593226A (en) Color cathode ray tube having electron gun with reduced eddy current loss at shield cup
JPS6129046A (en) Inline electron gun structure
JPS6129047A (en) Inline electron gun structure
JPH077643B2 (en) Color television picture tube having aberration correction element and aberration correction method
JPH0367296B2 (en)
JP3015471B2 (en) Color picture tube equipment
JP2886614B2 (en) Color cathode ray tube
JPH0367297B2 (en)
US6465944B1 (en) Space-saving cathode ray tube employing a six-pole neck coil
USRE31552E (en) Electron beam and deflection yoke alignment for producing convergence of plural in-line beams
JP2671608B2 (en) In-line type electron gun structure
JPH07118280B2 (en) Cathode ray tube
JPH0127252Y2 (en)
JPH0618111B2 (en) Inline electron gun
KR840001000B1 (en) Self conversing color image display system
JPH04181637A (en) In-line type electron gun body structure