JPH0367296B2 - - Google Patents

Info

Publication number
JPH0367296B2
JPH0367296B2 JP58020111A JP2011183A JPH0367296B2 JP H0367296 B2 JPH0367296 B2 JP H0367296B2 JP 58020111 A JP58020111 A JP 58020111A JP 2011183 A JP2011183 A JP 2011183A JP H0367296 B2 JPH0367296 B2 JP H0367296B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
scanning
horizontal
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58020111A
Other languages
Japanese (ja)
Other versions
JPS59146131A (en
Inventor
Kazuaki Naiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2011183A priority Critical patent/JPS59146131A/en
Priority to DE8484300804T priority patent/DE3462200D1/en
Priority to EP84300804A priority patent/EP0116465B1/en
Priority to US06/578,673 priority patent/US4593226A/en
Publication of JPS59146131A publication Critical patent/JPS59146131A/en
Publication of JPH0367296B2 publication Critical patent/JPH0367296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4858Aperture shape as viewed along beam axis parallelogram
    • H01J2229/4865Aperture shape as viewed along beam axis parallelogram rectangle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4872Aperture shape as viewed along beam axis circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4886Aperture shape as viewed along beam axis polygonal
    • H01J2229/4889Aperture shape as viewed along beam axis polygonal cross shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4896Aperture shape as viewed along beam axis complex and not provided for

Description

【発明の詳細な説明】 本発明はカラー陰極線管に係り、インライン型
電子銃から放射された中央及び一対の両外側電子
ビームが共通の偏向磁界により蛍光面上に形成す
るラスターの大きさを、特に水平偏向周波数にか
かわらず等しくさせることが可能なセルフ・コン
バージエンス方式のインライン型電子銃に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color cathode ray tube, in which the size of a raster formed on a phosphor screen by a central and a pair of outer electron beams emitted from an in-line electron gun by a common deflection magnetic field is determined by In particular, the present invention relates to a self-convergence type in-line electron gun that can make the horizontal deflection frequency equal regardless of the horizontal deflection frequency.

第1図は従来用いられる動的コンバージエンス
補正を要しない、所謂セルフ・コンバージエンス
方式のインライン型電子銃を用いた陰極線管の縦
断面図である。インライン型電子銃1か放射され
て同一平面内にある中央電子ビームB1及び一対
の両外側電子ビームB2,B3は排気された硝子
外囲器2の漏斗状部に配設された偏向装置5によ
り水平及び垂直に偏向され、硝子外囲器2の頂面
にあり、内側に三色に発光する複数の蛍光体画素
が被着された蛍光面4上にこれに対設されたシヤ
ドウマスク3を通して走査画面を形成する。この
カラー陰極線管を動的コンバージエンス補正を要
しないセルフ・コンバージエンス方式とするに
は、偏向装置5の水平偏向磁界を強い毛巻型歪
に、垂直偏向磁界を強い樽型歪にして、第2図に
示す様にこれら偏向磁界により一対の両外側電子
ビームB2,B3のコマ収差をなくして蛍光面4
上に一致した走査画面6を形成する。この場合の
中央電子ビームB1の走査画面7は一般に水平、
垂直共両外側電子ビームB2,B3の形成する走
査画面6より小さくなる。この走査画面の不整合
は偏向装置5のコマ収差によるものであり、コマ
収差を除去して各走査画面を一致させるために、
偏向装置5の後部漏洩磁界が及ぶ電子銃1の先端
に取付けられた非磁性材で有底円筒状に形成され
た集中磁極10の底面11に高透磁率の磁性部材
からなる磁界制御素子を配設している。第3図は
磁界制御素子の一例を示し、集中磁極10の底面
11に穿設された中央電子ビーム透過開孔12を
蛍光面4の短軸である垂直軸Y−Yで挟むように
対設された一対の円盤状磁気増強素子15,16
と蛍光面4の長軸である水平軸X−X上に穿設さ
れた両外側電子ビーム透過開13,14を囲む様
に配設された環状磁気遮蔽素子17,18から構
成されている。磁気増強素子15,16は中央電
子ビームB1に対して、偏向装置5の水平偏向磁
界FHの偏向感度を両外側電子ビームB2,B3
より増加させ、環状磁気遮蔽素子17,18は両
外側電子ビームB2,B3に対して、偏向装置5
の水平、垂直偏向磁界FH,FVの偏向感度を中央
電子ビームB1より低下させ、又中央電子ビーム
B1に対して垂直偏向磁界FVの偏向感度を両外
側電子ビームより増加させ働きがある。
FIG. 1 is a longitudinal sectional view of a conventional cathode ray tube using a so-called self-convergence type in-line electron gun that does not require dynamic convergence correction. A central electron beam B1 emitted from the in-line electron gun 1 and located in the same plane and a pair of outer electron beams B2 and B3 are deflected by a deflection device 5 disposed in a funnel-shaped portion of the evacuated glass envelope 2. Scanning is performed through a shadow mask 3 which is deflected horizontally and vertically and which is placed on the top surface of the glass envelope 2 and is placed opposite to a phosphor screen 4 on which a plurality of phosphor pixels that emit light in three colors are deposited on the inside. Form the screen. In order to make this color cathode ray tube a self-convergence type that does not require dynamic convergence correction, the horizontal deflection magnetic field of the deflection device 5 is made to have a strong capillary distortion, and the vertical deflection magnetic field is made to have a strong barrel distortion. As shown in Figure 2, these deflection magnetic fields eliminate the coma aberration of the pair of outer electron beams B2 and B3, and the phosphor screen 4
A scanning screen 6 corresponding to the top is formed. In this case, the scanning screen 7 of the central electron beam B1 is generally horizontal,
The scanning screen 6 formed by both the vertical and outer electron beams B2 and B3 is smaller. This misalignment of the scanning screens is due to comatic aberration of the deflection device 5, and in order to remove the comatic aberration and make each scanning screen consistent,
A magnetic field control element made of a magnetic material with high magnetic permeability is disposed on the bottom surface 11 of a concentrated magnetic pole 10 formed in a bottomed cylindrical shape made of a non-magnetic material and attached to the tip of the electron gun 1 to which the rear leakage magnetic field of the deflection device 5 is applied. It is set up. FIG. 3 shows an example of a magnetic field control element, in which the central electron beam transmission aperture 12 formed in the bottom surface 11 of the concentrated magnetic pole 10 is arranged opposite to each other so as to be sandwiched between the vertical axis Y-Y, which is the short axis of the fluorescent screen 4. A pair of disc-shaped magnetic enhancement elements 15 and 16
and annular magnetic shielding elements 17 and 18 arranged so as to surround both outer electron beam transmission apertures 13 and 14 formed on the horizontal axis XX, which is the long axis of the phosphor screen 4. The magnetic enhancement elements 15 and 16 increase the deflection sensitivity of the horizontal deflection magnetic field F H of the deflection device 5 with respect to the central electron beam B1 on both outer electron beams B2 and B3.
The annular magnetic shielding elements 17 and 18 are configured to deflect the deflection device 5 with respect to both outer electron beams B2 and B3.
It has the function of lowering the deflection sensitivity of the horizontal and vertical deflection magnetic fields F H and F V of the center electron beam B1 compared to the center electron beam B1, and increasing the deflection sensitivity of the vertical deflection magnetic field F V with respect to the center electron beam B1 compared to both outer electron beams. .

従つて磁界制御子15,16及び17,18に
より中央電子ビームB1の走査画面7は水平、垂
直方向共拡大され、逆に両外側電子ビームB2,
B3の走査画面6は縮少され、偏向磁界によるコ
マ収差が除去されて走査画面6,7を完全に一致
させることが可能となる。
Therefore, the scanning screen 7 of the central electron beam B1 is expanded both horizontally and vertically by the magnetic field controllers 15, 16 and 17, 18, and conversely, the scanning screen 7 of the central electron beam B1 is enlarged in both the horizontal and vertical directions.
The scanning screen 6 of B3 is reduced, coma aberration due to the deflection magnetic field is removed, and the scanning screens 6 and 7 can be made to coincide completely.

一方最近では各種の情報を表示するためカラー
陰極線管に高解像度特性を持たせた一所謂デイス
プレイ用カラー陰極線管が用いられており、これ
により英数字、記号、漢字及び図表等が高密度表
示される。
On the other hand, recently, so-called display color cathode ray tubes, which are color cathode ray tubes with high resolution characteristics, have been used to display various types of information.This allows alphanumeric characters, symbols, kanji, charts, etc. to be displayed in high density. Ru.

高密度表示を行うには、カラー陰極線管の解像
度が高く、フオーカス特性が均一であること、表
示画面の水平方向解像度を高めるため映像回路の
周波数帯域が広いこと、表示画面の垂直方向解像
度を高めるためには走査線数が多いことが必要と
なる。
To achieve high-density display, the color cathode ray tube must have high resolution and uniform focus characteristics, the video circuit must have a wide frequency band to increase the horizontal resolution of the display screen, and the vertical resolution of the display screen must be increased. This requires a large number of scanning lines.

通常、高密度表示の一手段として走査線数を増
加させるため、水平偏向周波数hを現行の標準
カラーTV方式の15.734KHz以上に高めることが
行なわれている。この場合、水平偏向周波数h
=15.734KHz程度では全く問題がなかつた水平偏
向磁界による両外側及び中央電子ビームが形成す
る走査画面6′,7′のコマ収差が生じ、第4図に
示す様に中央電子ビームの走査画面7′に対し両
外側電子ビームの走査画面6′が水平方向で若干
拡大され、且つその拡大の割合が蛍光面4の左右
で相違し、左側の拡大寸法d1の方が右側の拡大寸
法d2より大きくなる非対称性が生じる。この走査
画面のズレがコンバージエンス誤差であり、蛍光
面受像画像品位を著しく劣化させる。例えば20イ
ンチ90度偏向カラー陰極線管に於て、水平偏向周
波数h=15.734KHzが2倍となるh=31.5KHzで
は上述のズレd1,d2は有効蛍光面近くでd1=0.7
mm、d2=0.3mmとなる。
Normally, in order to increase the number of scanning lines as a means of high-density display, the horizontal deflection frequency h is increased to more than 15.734 KHz of the current standard color TV system. In this case, the horizontal deflection frequency h
= 15.734 KHz, which had no problem at all, caused coma aberration in the scanning screens 6' and 7' formed by the outer and central electron beams due to the horizontal deflection magnetic field, and as shown in Figure 4, the scanning screen 7 of the central electron beam. ′, the scanning screen 6′ of both outer electron beams is slightly expanded in the horizontal direction, and the rate of expansion is different on the left and right sides of the phosphor screen 4, with the enlarged dimension d 1 on the left side being larger than the enlarged dimension d 2 on the right side. A larger asymmetry results. This shift in the scanning screen is a convergence error, which significantly deteriorates the quality of the image received on the phosphor screen. For example, in a 20-inch 90-degree polarization color cathode ray tube, when the horizontal deflection frequency h = 15.734KHz is doubled (h = 31.5KHz), the above-mentioned deviations d 1 and d 2 become d 1 = 0.7 near the effective phosphor screen.
mm, d 2 =0.3mm.

水平偏向周波数hの増加と共に両外側電子ビ
ームと中央電子ビームが形成する走査画面6′,
7′に水平方向でコマ収差によるズレが生じる原
因は次の通りである。先ず第一に、集中磁極10
の底面11に誘導され、この面を貫通する水平偏
向磁界成分により環状磁気遮蔽素子17,18の
配設された両外側電子ビーム透過開13,14周
囲及び環状磁気遮蔽素子17,18に渦電流が生
じ、これによつて環状磁気遮蔽素子17,18中
の磁束変化を妨げる磁束が発生して、磁束を減殺
させ、ために磁気遮蔽効果を減少させる。この渦
電流による磁束の損失は従来の水平偏向周波数
h=15.73KHz性度では全く無視出来たが、周波
数の増加に従がつて渦電流による磁束の損失は無
視出来なくなり、第4図に示す様に両外側電子ビ
ームの走査画面6′が中央電子ビームの走査画面
7′に対し左右方向で広がることになる。
As the horizontal deflection frequency h increases, the scanning screen 6' formed by both outer electron beams and the central electron beam,
The cause of the horizontal shift caused by coma aberration in 7' is as follows. First of all, the concentrated magnetic pole 10
Eddy currents are generated around the outer electron beam transmission apertures 13 and 14 on both sides of the annular magnetic shielding elements 17 and 18 and around the annular magnetic shielding elements 17 and 18 due to the horizontal deflection magnetic field component that is induced in the bottom surface 11 and passes through this surface. This generates a magnetic flux that obstructs changes in the magnetic flux in the annular magnetic shielding elements 17 and 18, thereby attenuating the magnetic flux and thereby reducing the magnetic shielding effect. The loss of magnetic flux due to this eddy current is due to the conventional horizontal deflection frequency.
At h = 15.73KHz, it was completely negligible, but as the frequency increases, the loss of magnetic flux due to eddy currents becomes impossible to ignore, and as shown in Figure 4, the scanning screen 6' of both outer electron beams becomes The beam spreads in the horizontal direction with respect to the scanning screen 7'.

一方、水平方向の走査を行うために偏向装置5
の水平偏向コイルに流す電流波形は第5図に示す
鋸歯状波であり、図中a点からb点迄の時間t1
水平走査時間であり、b点からc点迄の時間t2
水平帰線時間であり、通常t2はt1の約1/5程度に
設定されている。a点或いはc点が水平走査の左
端に、b点が右端の位置に対応している。即ち水
平走査画面の左端の位置は水平帰線時間t2の終端
に対応し右端は水平走査座時間t1の終端に対応
し、水平帰線期間t2中は水平走査期間t1の約5倍
の速さで変化する電流による磁界が発生し、従が
つてその高調波成分磁界による渦電流損失に基づ
く環状磁気遮蔽素子17,18の磁気遮蔽効果損
失は蛍光面左側の方が右側より大きく、第4図に
示すよに両外側電子ビームの走査画面6′の中央
電子ビームの走査画面7′に対する水平方向での
拡大幅は左側のd1が右側のd2より大きくなり、水
平方向でのコマ収差の非対称性が生じる。従来の
標準カラーTV方式(NTSC方式)で用いられて
いるh=15.734KHzでは約t1=51〜53μsec、t2
10〜12μsecでこれによる渦電流損失は全く無視出
来、従がつて上述のコマ収差及びその非対称は実
質的には見出せなかつそが、hの増加と共にt1
t2の相違、更に有効走査時間t1を大きくするため
帰線時間t2は出来るだけ小さく設定されて、渦電
流損失の非対称性は無視出来ない量となつて上記
の現象が生じてくる。
On the other hand, in order to perform horizontal scanning, the deflection device 5
The current waveform flowing through the horizontal deflection coil is a sawtooth wave shown in Figure 5, where the time t1 from point a to point b in the figure is the horizontal scanning time, and the time t2 from point b to point c is the horizontal scanning time. This is the horizontal retrace time, and t2 is usually set to about 1/5 of t1 . Point a or point c corresponds to the left end of horizontal scanning, and point b corresponds to the right end. That is, the left end position of the horizontal scanning screen corresponds to the end of the horizontal retrace time t2 , the right end corresponds to the end of the horizontal retrace time t1 , and during the horizontal retrace time t2 , approximately 5 of the horizontal retrace time t1 . A magnetic field is generated by the current that changes at twice the speed, and the magnetic shielding effect loss of the annular magnetic shielding elements 17 and 18 based on the eddy current loss due to the harmonic component magnetic field is larger on the left side of the phosphor screen than on the right side. , as shown in FIG. 4, the expansion width in the horizontal direction of the scanning screen 6' of both outer electron beams with respect to the scanning screen 7' of the central electron beam is that d 1 on the left side is larger than d 2 on the right side, and in the horizontal direction Asymmetry of comatic aberration occurs. At h = 15.734KHz used in the conventional standard color TV system (NTSC system), approximately t 1 = 51 to 53 μsec, t 2 =
The eddy current loss caused by this is completely negligible at 10 to 12 μsec, and therefore the above-mentioned coma aberration and its asymmetry are virtually invisible, and as h increases, t 1 and
In order to increase the difference in t 2 and the effective scanning time t 1 , the retrace time t 2 is set as small as possible, and the asymmetry of the eddy current loss becomes a non-negligible amount, causing the above-mentioned phenomenon.

本発明は上述の欠点を考慮してなされたもので
あり、セルフ・コンバージエンス方式のインライ
ン型電子銃の水平偏向周波数の高周波化に対して
両外側電子ビームと中央電子ビームの形成する走
査画面のコマ収差によるズレが生じないようにし
たものである。
The present invention has been made in consideration of the above-mentioned drawbacks, and it is possible to improve the scanning screen formed by both outer electron beams and the central electron beam in response to an increase in the horizontal deflection frequency of a self-convergence type in-line electron gun. This is to prevent misalignment due to coma aberration.

即ち、インライン型電子銃の電子ビーム射出側
先端に取付けられた非磁性金属材から成る有底円
筒状集中磁極底面にインライン配列されて穿設さ
れた中央及び両外側電子ビーム透過開孔中偏向磁
界が形成する走査画面のコマ収差を補正する磁界
制御素子が配設される開孔周囲に複数の細長い切
込みを形成すると共に、磁界制御素子に前記切込
みに合わせた複数の細長い切込みを形成したもの
である。この様に構成することによつて、電子ビ
ーム透過孔部に配設される磁界制御素子はこれを
貫通する高周波の水平偏向周波数成分による渦電
流の発生が防止可能となり、水平偏向周波数の高
周波化にかかわらず中央及び両外側電子ビームが
形成する走査画面にコマ収差による非対称なズレ
を除去出来て、インライン型電子銃を高密度表示
可能な優れた電子銃とすることが出来る。
That is, the deflection magnetic field is generated in the central and both outer electron beam transmission apertures arranged in-line on the bottom surface of the bottomed cylindrical concentrated magnetic pole made of a non-magnetic metal material and attached to the tip of the electron beam exit side of the in-line electron gun. A plurality of elongated cuts are formed around the aperture in which a magnetic field control element for correcting coma aberration of a scanning screen formed by the magnetic field control element is arranged, and a plurality of elongated cuts corresponding to the cuts are formed in the magnetic field control element. be. With this configuration, the magnetic field control element disposed in the electron beam transmission hole can prevent the generation of eddy current due to the horizontal deflection frequency component of the high frequency that passes through it, thereby increasing the horizontal deflection frequency. Regardless, it is possible to eliminate asymmetric shifts due to coma aberration in the scanning screen formed by the central and both outer electron beams, making the in-line type electron gun an excellent electron gun capable of high-density display.

以下、図面を参照して、本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第6図、第7図は本発明の一実施例による集中
磁極20、環状磁気遮蔽素子27(28)の斜視
図を夫々示す。電子銃の先端に取付けられる非磁
性材のステンレスで有底円筒状に形成された集中
磁極20の底面21には、中央及び一対の両外側
電子ビーム透過開孔22,23,24が等間隔を
保つて蛍光面4の長軸に対応したX−X軸上に穿
設されている。然るに両外側電子ビーム透過開孔
23,24にはX−X軸方向、及びこれに垂直な
方向に4つの細長い切り込み25が形成されてい
る。又環状磁気遮蔽素子27には図に示す様に、
環状となつた二つの同心円の一つの直線上では、
外側円の縁から始まつて内側円方向に二つの細長
い切込み29Aが、更に前記直径と直交する直径
上では、内側円の縁から始まつて外側円方向に二
つの細長い切り込み29Bが形成され、夫々の切
込みは内側から外側円まで貫通することないよ
う、少くとも素子形成材板厚程度の幅が残されて
いる。この集中磁極20の底面に第8図に示す様
に、磁気増強素子15,16及び前記環状磁気遮
蔽素子27,28を配設する。即ち中央電子ビー
ム透過開孔22を蛍光面4の短軸である垂直軸Y
−Y上で挾む様に対向して一対の円盤状磁気増強
素子15,16と、水平軸X−X上に穿設された
両外側電子ビーム透過開孔23,24を囲む様に
環状磁気遮蔽素子27,28を配設する。この際
集中磁極底面21の両外側電子ビーム透過開孔2
3,24周囲に形成された細長い切り込み25と
環状磁気遮蔽素子27,28の細長い切り込み2
9A,29Bと相に一致するように両者を互に位
置合せして溶接固定する。これらの磁界制御素子
15,16,2728の偏向磁界に対する働きは
前出の従来例と全く同一である。
6 and 7 respectively show perspective views of the concentrated magnetic pole 20 and the annular magnetic shielding element 27 (28) according to an embodiment of the present invention. A central magnetic pole 20 and a pair of outer electron beam transmitting apertures 22, 23, 24 are equally spaced on the bottom surface 21 of a concentrated magnetic pole 20 formed in the shape of a cylinder with a bottom and made of stainless steel, which is a non-magnetic material, and is attached to the tip of the electron gun. The phosphor screen 4 is perforated on the X-X axis corresponding to the long axis of the phosphor screen 4. However, four elongated cuts 25 are formed in both outer electron beam transmission apertures 23 and 24 in the XX axis direction and in a direction perpendicular thereto. Further, as shown in the figure, the annular magnetic shielding element 27 has
On one straight line of two concentric circles that form a ring,
Two elongated cuts 29A are formed starting from the edge of the outer circle in the direction of the inner circle, and further, on a diameter perpendicular to the diameter, two elongated cuts 29B are formed starting from the edge of the inner circle in the direction of the outer circle, Each cut has a width at least equal to the thickness of the element forming material so that it does not penetrate from the inside to the outside circle. On the bottom surface of the concentrated magnetic pole 20, as shown in FIG. 8, the magnetic enhancement elements 15, 16 and the annular magnetic shielding elements 27, 28 are arranged. That is, the central electron beam transmission aperture 22 is aligned with the vertical axis Y, which is the short axis of the phosphor screen 4.
A pair of disc-shaped magnetic enhancement elements 15 and 16 are arranged opposite to each other on the Y axis, and an annular magnetic field is formed so as to surround both outer electron beam transmission apertures 23 and 24 formed on the horizontal axis X-X. Shielding elements 27, 28 are provided. At this time, both outer electron beam transmission apertures 2 of the bottom surface 21 of the concentrated magnetic pole
3, 24 and the elongated cut 25 formed around the annular magnetic shielding elements 27, 28.
9A and 29B are aligned and fixed by welding. The actions of these magnetic field control elements 15, 16, 2728 on the deflection magnetic field are exactly the same as in the prior art example described above.

然しながら、水平偏向磁界FHが集中磁極20
の底面21に誘導されてこの面を貫通する成分が
あつても、両外側電子ビーム透過開孔23,2
4、及び環状磁気遮蔽素子27,28の周囲には
複数の細長い切り込み25,29A,29Bが形
成されているため、この孔部より環状磁気遮蔽素
子27,28上での渦電流発生が阻止される。
However, the horizontal deflection magnetic field F H is caused by the concentrated magnetic pole 20
Even if there is a component guided to the bottom surface 21 of the
4 and around the annular magnetic shielding elements 27, 28, a plurality of elongated cuts 25, 29A, 29B are formed, so that the generation of eddy currents on the annular magnetic shielding elements 27, 28 is prevented from occurring through these holes. Ru.

従がつてこの渦電流によつて環状磁気遮蔽素子
27,28中で磁束変化を妨げる磁束の発生は極
めて小さくなり、その磁気遮蔽効果は特に水平偏
向周波数が現行標準カラーTV方式で用いられて
いるfH=15.73KHzより高くなつても、その周波数
にかかわらず減少することはなくなる。この結
果、従来の様に水平偏向周波数hが高くなつて
も両外側電子ビームの走査画面が中央電子ビーム
の走査画面に対し拡大されたり、或いはその拡大
率が水平走査時間と水平帰線時間の割合の相違に
よつて非対称となることがなくなる。
Therefore, due to this eddy current, the generation of magnetic flux that obstructs magnetic flux changes in the annular magnetic shielding elements 27 and 28 becomes extremely small, and the magnetic shielding effect is particularly high when the horizontal deflection frequency is used in the current standard color TV system. Even if f H becomes higher than 15.73KHz, it will no longer decrease regardless of the frequency. As a result, even if the horizontal deflection frequency h increases as in the conventional case, the scanning screen of both outer electron beams is enlarged relative to the scanning screen of the central electron beam, or the enlargement ratio is different from the horizontal scanning time and the horizontal retrace time. Asymmetry is no longer caused by differences in proportions.

以上の説明で中央と両外側電子ビームの走査画
面が第2図に示す関係にある走査画面のコマ収差
を補正する各一対の磁気増強素子と環状磁気遮蔽
素子の組合わせからなる磁界制御素子を用いる場
合について述べたが、本発明はこれに限定される
ことなく種々のパターンを持つたコマ収差を補正
する場合や、他の形状を持つた磁界制御素子にも
適用可能である。
In the above explanation, the scanning screen of the center and both outer electron beams has a magnetic field control element consisting of a combination of a pair of magnetic enhancement elements and an annular magnetic shielding element for correcting the comatic aberration of the scanning screen in the relationship shown in FIG. Although the case of use has been described, the present invention is not limited to this, and can also be applied to cases of correcting coma aberration having various patterns, or to magnetic field control elements having other shapes.

例えば第9図に示す磁界制御素子37,38に
はこれが配設される集中磁極20の底面開孔部に
形成された細長い切り込み25に合わせて切込み
39A,39Bが穿設されている。この素子の働
きは第2図に示すコマ収差補正に有効となる。即
ち磁界制御素子37,38の環状部39Cの大き
さ調整によつて両外側電子ビームの水平方向走査
画面を縮少して、両外側電子ビームのそれと一致
させ、X−X軸上中央電子ビーム透過開孔22側
に向いた突出部39Dにより垂直偏向磁界に対す
る中央電子ビームの感度を増加させて垂直方向走
査画面を拡大させ両外側電子ビームのそれと一致
させる働きをする。この場合も集中磁極底面と磁
界制御素子に穿設された切込みによつて渦電流の
発生は防止され、水平偏向周波数に対する磁界制
御素子の動作の依存性はなくなる。
For example, in the magnetic field control elements 37 and 38 shown in FIG. 9, cuts 39A and 39B are formed to match the long and narrow cuts 25 formed in the bottom opening of the concentrated magnetic pole 20 in which the magnetic field control elements 37 and 38 are arranged. The function of this element is effective in correcting the coma aberration shown in FIG. That is, by adjusting the size of the annular portions 39C of the magnetic field control elements 37 and 38, the horizontal scanning screen of both outer electron beams is reduced to match that of both outer electron beams, and the center electron beam transmits on the X-X axis. The protrusion 39D facing toward the aperture 22 serves to increase the sensitivity of the center electron beam to the vertical deflection magnetic field, thereby enlarging the vertical scanning field to match that of both outer electron beams. In this case as well, the generation of eddy currents is prevented by the bottom surface of the concentrated magnetic pole and the notches made in the magnetic field control element, and the dependence of the operation of the magnetic field control element on the horizontal deflection frequency is eliminated.

更に上述した線順次で有効走査期間中の走査速
度が一定であるラスタ走査方式でなく、走査速度
が不定のランダム走査方式に対して本発明を適用
すれば、この場合もコマ収差は生じることなく、
その有効性が一層顕著となる。
Furthermore, if the present invention is applied not to the above-mentioned raster scanning method in which the scanning speed is constant during the effective scanning period in line sequential order, but to a random scanning method in which the scanning speed is indeterminate, coma aberration will not occur in this case as well. ,
Its effectiveness becomes even more obvious.

或いは本発明によれば、使用される水平偏向周
波数毎に集中磁極底面に配設される磁界制御素子
を最適化した専用のものとする必要がなく、全て
の周波数に対し同一の磁界制御素子を共用可能と
なる。
Alternatively, according to the present invention, there is no need to optimize the magnetic field control element disposed on the bottom surface of the concentrated magnetic pole for each horizontal deflection frequency used, and it is possible to use the same magnetic field control element for all frequencies. Can be shared.

上述の様に本発明によれば、セルフ・コンバー
ジエンス方式のインライン型電子銃の先端に取付
けられた集中磁極底面にインライン配列されて穿
設された中央及び両外側電子ビーム透過開孔のう
ち、偏向磁界によつて形成される走査画面のコマ
収差を補正する磁界制御素子が配設される開孔周
囲に複数の細長い切込みを形成するとともに、前
記磁界制御素子に上記切込みに合せた複数の細長
い切込みを形成したことにより、ここに配設され
る磁界制御素子の水平偏向周波数に対する作用の
依存性及び水平走査時間と水平帰線時間の相違に
よる作用の差をなくすことが出来る。この結果水
平偏向周波数の増加にかかわらず、中央及び両外
側電子ビームが形成する走査画面のコマ収差に基
づいた非対称なズレを除去可能となり、インライ
ン型電子銃を高密度表示可能な極めて特性の優れ
た電子銃とすることが出来て、その実用的価値は
非常に高い。
As described above, according to the present invention, among the central and both outer electron beam transmission apertures arranged in-line and drilled on the bottom surface of the concentrated magnetic pole attached to the tip of the self-convergence type in-line electron gun, A plurality of elongated cuts are formed around the opening in which a magnetic field control element for correcting coma aberration of a scanning screen formed by a deflection magnetic field is disposed, and a plurality of elongated cuts are formed in the magnetic field control element to match the cuts. By forming the cut, it is possible to eliminate the dependence of the effect of the magnetic field control element disposed here on the horizontal deflection frequency and the difference in the effect due to the difference between the horizontal scanning time and the horizontal retrace time. As a result, regardless of the increase in the horizontal deflection frequency, it is possible to eliminate asymmetric shifts based on coma in the scanning screen formed by the central and both outer electron beams, and the in-line electron gun has extremely excellent characteristics that enable high-density display. It can be used as an electron gun, and its practical value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来用いられているセルフ・コンバー
ジエンス方式のインライン型電子銃を用いたカラ
ー陰極線管の縦断面図、第2図はこのカラー陰極
線管の蛍光面上に中央及び両外側電子銃の電子ビ
ームが形成する走査画面を示す図、第3図は前記
走査画面のコマ収差を補正する磁界制御素子と、
その水平、垂直偏向磁界に対する作用を示す図、
第4図は水平偏向周波数が大きくなつた時蛍光面
上に表われる中央及び両外側電子銃の電子ビーム
が形成する走査画面のずれを説明する図、第5図
は水平偏向コイルに流れる電流波形、第6図乃至
第8図は本発明の一実施例による集中磁極、環状
磁気遮蔽素子の斜視図及び集中磁極底面に磁界制
御素子を配設した状態を示す平面図、第9図は本
発明の他の実施例による集中磁極底面に一対の磁
界制御素子を配設した平面図を夫々示す。 1……インライン型電子銃、2……硝子外囲
器、4……蛍光面、5……偏向装置、6,6′…
…両外側電子ビームが形成する走査画面、7,
7′……中央電子ビームが形成する走査画面、1
0,20……集中磁極、12,22……集中磁極
底面の中央電子ビーム透過開孔、13,14,2
3,24……集中磁極底面の両外側電子ビーム透
過開孔、15,16……磁気増強素子、17,1
8,27,28……環状磁気遮蔽素子、37,3
8……磁界制御素子、25,29A,29B,3
9A,39B……細長い切り込み、t1:水平走行
時間、t2:水平帰線時間。
Figure 1 is a vertical cross-sectional view of a color cathode ray tube using a conventional self-convergence type in-line electron gun, and Figure 2 shows the central and outer electron guns on the phosphor screen of this color cathode ray tube. A diagram showing a scanning screen formed by an electron beam, FIG. 3 shows a magnetic field control element for correcting coma aberration of the scanning screen,
A diagram showing its effect on horizontal and vertical deflection magnetic fields,
Figure 4 is a diagram explaining the shift in the scanning screen formed by the electron beams from the central and both outer electron guns that appear on the phosphor screen when the horizontal deflection frequency increases, and Figure 5 is the waveform of the current flowing through the horizontal deflection coil. , FIGS. 6 to 8 are perspective views of a concentrated magnetic pole and annular magnetic shielding element according to an embodiment of the present invention, and a plan view showing a state in which a magnetic field control element is arranged on the bottom surface of the concentrated magnetic pole, and FIG. 9 is a perspective view of a concentrated magnetic pole according to an embodiment of the present invention. FIG. 6 is a plan view showing a pair of magnetic field control elements disposed on the bottom surface of a concentrated magnetic pole according to another embodiment of the present invention. 1... In-line electron gun, 2... Glass envelope, 4... Fluorescent screen, 5... Deflection device, 6, 6'...
...Scanning screen formed by both outer electron beams, 7,
7'... Scanning screen formed by the central electron beam, 1
0,20...Concentrated magnetic pole, 12,22...Central electron beam transmission aperture on the bottom of the concentrated magnetic pole, 13,14,2
3, 24...Both outer electron beam transmission apertures on the bottom surface of the concentrated magnetic pole, 15, 16...Magnetic enhancement element, 17, 1
8, 27, 28...Annular magnetic shielding element, 37, 3
8...Magnetic field control element, 25, 29A, 29B, 3
9A, 39B...Elongated cut, t1 : Horizontal travel time, t2 : Horizontal retrace time.

Claims (1)

【特許請求の範囲】[Claims] 1 カラー陰極線管用インライン型電子銃の電子
ビーム射出側先端に取付けられた非磁性金属材か
ら成る有底円筒状集中磁極底面にインライン配列
されて穿設された中央及び両外側電子ビーム透過
開孔のうち、偏向磁界によつて形成される走査画
面のコマ収差を補正する磁界制御素子が配設され
る開孔周囲に複数の細長い切込みを形成するとと
もに、前記磁界制御素子に上記切込みに合せた複
数の細長い切込みを形成したことを特徴とするイ
ンライン型電子銃。
1. Center and both outer electron beam transmission apertures arranged in-line on the bottom surface of a bottomed cylindrical concentrated magnetic pole made of a non-magnetic metal material attached to the tip of the electron beam exit side of an in-line electron gun for color cathode ray tubes. A plurality of elongated cuts are formed around the aperture in which a magnetic field control element for correcting coma aberration of a scanning screen formed by a deflection magnetic field is disposed, and a plurality of elongated cuts are formed in the magnetic field control element in accordance with the above-mentioned cuts. An in-line electron gun characterized by having a long and narrow notch formed therein.
JP2011183A 1983-02-09 1983-02-09 Inline type electron gun Granted JPS59146131A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011183A JPS59146131A (en) 1983-02-09 1983-02-09 Inline type electron gun
DE8484300804T DE3462200D1 (en) 1983-02-09 1984-02-08 Colour cathode ray tube
EP84300804A EP0116465B1 (en) 1983-02-09 1984-02-08 Colour cathode ray tube
US06/578,673 US4593226A (en) 1983-02-09 1984-02-09 Color cathode ray tube having electron gun with reduced eddy current loss at shield cup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183A JPS59146131A (en) 1983-02-09 1983-02-09 Inline type electron gun

Publications (2)

Publication Number Publication Date
JPS59146131A JPS59146131A (en) 1984-08-21
JPH0367296B2 true JPH0367296B2 (en) 1991-10-22

Family

ID=12018002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183A Granted JPS59146131A (en) 1983-02-09 1983-02-09 Inline type electron gun

Country Status (1)

Country Link
JP (1) JPS59146131A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766752B2 (en) * 1986-03-07 1995-07-19 株式会社日立製作所 Color cathode ray tube
JPH02186538A (en) * 1989-01-13 1990-07-20 Mitsubishi Electric Corp Color television picture tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111244A (en) * 1981-12-25 1983-07-02 Toshiba Corp Color picture tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111244A (en) * 1981-12-25 1983-07-02 Toshiba Corp Color picture tube

Also Published As

Publication number Publication date
JPS59146131A (en) 1984-08-21

Similar Documents

Publication Publication Date Title
US3731129A (en) Rectangular color tube with funnel section changing from rectangular to circular
JPH0427656B2 (en)
US4443736A (en) Electron gun for dynamic beam shape modulation
US4528476A (en) Cathode-ray tube having electron gun with three focus lenses
US4523123A (en) Cathode-ray tube having asymmetric slots formed in a screen grid electrode of an inline electron gun
US4736133A (en) Inline electron gun for high resolution display tube having improved screen grid plate portion
EP0178857B1 (en) Electron gun
JPH0367296B2 (en)
US4593226A (en) Color cathode ray tube having electron gun with reduced eddy current loss at shield cup
JPH0367298B2 (en)
KR890004872B1 (en) Color cathode ray tube
JPH0367297B2 (en)
JPS6129047A (en) Inline electron gun structure
JPH0618111B2 (en) Inline electron gun
US4449069A (en) Color picture tube with focusing electrode having electrostatic field distortion aperture therein
JPS6129046A (en) Inline electron gun structure
JPH0367299B2 (en)
JPH077643B2 (en) Color television picture tube having aberration correction element and aberration correction method
JPH07118280B2 (en) Cathode ray tube
JPS63207035A (en) Color picture tube
KR100233189B1 (en) Shadow mask type color cathode-ray tube and cathode-ray tube
JP3082601B2 (en) Shadow mask type color cathode ray tube
JPS587017B2 (en) Color cathode ray tube equipment
JP2886614B2 (en) Color cathode ray tube
JPH0822779A (en) Electron gun for color cathode-ray tube