JPH04181637A - In-line type electron gun body structure - Google Patents

In-line type electron gun body structure

Info

Publication number
JPH04181637A
JPH04181637A JP30769690A JP30769690A JPH04181637A JP H04181637 A JPH04181637 A JP H04181637A JP 30769690 A JP30769690 A JP 30769690A JP 30769690 A JP30769690 A JP 30769690A JP H04181637 A JPH04181637 A JP H04181637A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
electron beam
annular
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30769690A
Other languages
Japanese (ja)
Inventor
Kazuaki Naiki
内記 一晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30769690A priority Critical patent/JPH04181637A/en
Publication of JPH04181637A publication Critical patent/JPH04181637A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent magnetic field loss due to eddy current generated by a deflection magnetic field with the function of an original magnetic field control element retaining by dividing annular magnetic shielding elements into plural and concentric stage states. CONSTITUTION:Two concentric stage-like parts 24a and 24b are formed in annular magnetic shielding elements 24 composed of a high-permeability magnetic body, and the surface of the element 24 is divided into three stages. In this case, the whole surface area of the element 24 is made same as that of a single element having no different level. The surface of the element 24 is divided into three stages, consequently an eddy current circuit, generated on the surface by a horizontal deflection magnetic field, becomes a condition in which the eddy current circuit is cut compared with the case of a single plane. Therefore an area, interlinking a horizontal deflection magnetic field which is a cause for producing an eddy current, is reduced, and magnetic field loss, due to the eddy current produced by the deflection magnetic field, can be prevented with the original function of a magnetic field control element retaining.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラー陰極線管のコンバージェンス特性を改
善出来る電子銃構体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron gun assembly that can improve the convergence characteristics of a color cathode ray tube.

〔従来の技術〕[Conventional technology]

第5図は一般に広く用いられているセルフ コンバージ
ェンス方式のインライン型電子銃を用いたカラー陰極線
管の縦断面図である。インライン型電子銃1から放射さ
れた同一平面内にある外側及び中央の二電子ビームBs
 、Bc 、Bsは高真空に保たれた硝子外囲器2の漏
斗状部に配設された偏向ヨーク5により水平、垂直に偏
向され、硝子外囲器2の頂面にあり、内面に三色に発光
する複数の蛍光体画素が被着された蛍光面4上に、これ
と対設されたシャドウマスク3を通して走査画面6を形
成する。セルフ コンバージェンスを実現するため偏向
ヨーク5の水平、垂直偏向磁界分布を各々糸巻型、樽型
状としている。更に、電子銃1の電子ビーム出口先端に
取り付けられる部側部12を持った有底円筒状の遮蔽磁
極10の底面13には、第4図に示すように外側電子ビ
ーム開孔11Sの周りに高透磁率磁性体からなる環状磁
気遮蔽素子14を両件側開孔11Sの中心を結ぶ垂直二
等分線上で中央電子ヒーム開孔11Cに関して対称位置
に磁気増強素子15を配設して、三本の電子ビームBs
 、Bc 、Bsを蛍光面4上全域で重ね合わせて走査
画面6を得る様にしている。以下、環状磁気遮蔽素子1
4.磁気増強素子15を磁界制御素子と総称する。
FIG. 5 is a longitudinal sectional view of a color cathode ray tube using a self-convergence type in-line electron gun which is generally widely used. Two outer and central electron beams Bs emitted from the in-line electron gun 1 in the same plane
, Bc, and Bs are deflected horizontally and vertically by a deflection yoke 5 disposed in the funnel-shaped part of the glass envelope 2 maintained in a high vacuum. A scanning screen 6 is formed on a phosphor screen 4 on which a plurality of phosphor pixels that emit light in different colors are deposited, through a shadow mask 3 placed opposite to the phosphor screen 4. In order to realize self-convergence, the horizontal and vertical deflection magnetic field distributions of the deflection yoke 5 are shaped into a pincushion shape and a barrel shape, respectively. Further, on the bottom surface 13 of the bottomed cylindrical shielding magnetic pole 10 having the side portion 12 attached to the electron beam exit tip of the electron gun 1, a hole is formed around the outer electron beam aperture 11S as shown in FIG. An annular magnetic shielding element 14 made of a high magnetic permeability magnetic material is arranged with a magnetic enhancement element 15 arranged at a symmetrical position with respect to the central electron beam aperture 11C on a perpendicular bisector connecting the centers of both side apertures 11S. Book electron beam Bs
, Bc, and Bs are superimposed over the entire area on the phosphor screen 4 to obtain a scanning screen 6. Below, the annular magnetic shielding element 1
4. The magnetic enhancement elements 15 are collectively referred to as magnetic field control elements.

静補正装置7は画面中央に於ける製造誤差等に基ずく二
電子ビーム内集中誤差や色純度を補正する4極、 6&
及び2極に着磁された環状体から成り、陰極線管ネック
部外に装着される補正装置である。
The static correction device 7 is a 4-pole, 6&
This correction device is composed of a bipolar magnetized annular body and is mounted outside the neck of the cathode ray tube.

一般に磁界制御集子がない場合は、蛍光面4上の走査画
面6は水平偏向磁界か糸巻き型、垂直偏向磁界が樽型歪
みの磁界分布であるため創外側電子ビームB5の走査画
面は一致するか、中央電子ビームBcは創外側電子ビー
ムB5より弱い磁界中を通過し、その偏向感度が創外側
電子ビームBSより低くなり、中央電子ビームBCの形
成する走査画面は水平、垂直方向共側外側電子ヒームの
それより小さくなる所謂コマ収差による集中誤差が生じ
る。
Generally, when there is no magnetic field control collector, the scanning screen 6 on the phosphor screen 4 has a horizontal deflection magnetic field or a pincushion type, and the vertical deflection magnetic field has a barrel-shaped distortion magnetic field distribution, so the scanning screen of the electron beam B5 outside the wound will match. Alternatively, the central electron beam Bc passes through a weaker magnetic field than the external electron beam B5, and its deflection sensitivity is lower than that of the external electron beam BS, and the scanning screen formed by the central electron beam BC is horizontally and vertically co-lateral. A concentration error occurs due to so-called coma aberration, which is smaller than that of the electron beam.

この集中誤差を補正するために、第6図に示す様に環状
磁気遮蔽素子14は両外側電子ヒームBsの通路上の水
平、垂直磁界5H,5Vを側路させて弱め、中央電子ビ
ームBcの通路上には垂直磁界5■を集中させて強め、
一方、磁気増強素子15は中央電子ビームB。の通路上
に水平偏向磁界5Vを集中させて増強する作用を行わせ
ている。その結果、三本の電子ビームは蛍光面1上全域
で重ね合わせられて集中誤差のない走査画面6を得るこ
とが出来る。
In order to correct this concentration error, the annular magnetic shielding element 14 bypasses and weakens the horizontal and vertical magnetic fields 5H and 5V on the path of both outer electron beams Bs, as shown in FIG. A vertical magnetic field 5■ is concentrated and strengthened on the passage.
On the other hand, the magnetic enhancement element 15 is the central electron beam B. A horizontal deflection magnetic field of 5 V is concentrated on the path of the magnetic field to perform an intensifying effect. As a result, the three electron beams are superimposed over the entire area on the phosphor screen 1, making it possible to obtain a scanning screen 6 without concentration errors.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

カラー陰極線管はTV用途以外に各種情報表示装置とし
て高解像度特性を持たせてデイスプレィ管として使用さ
れており、特に最近では表示品質をより高品位化し高密
度表示を行うため水平偏向周波数をTV用の15.75
KHzから64KH2、あるいはそれ以上に高周波化さ
せて高速走査が行われるようになっている。この場合、
第8図に示す様にTV用周波数では無視できた中央電子
ビームBcと創外側電子ビームBsの蛍光面4の左右端
における走査画面6の非対称な集中ずれであるミスコン
バージェンスHCR、HC−Lが顕著となってくる。
In addition to TV applications, color cathode ray tubes are used as display tubes for various information display devices with high resolution characteristics.In particular, recently, in order to improve the display quality and achieve high density display, the horizontal deflection frequency has been changed for TV use. 15.75
High-speed scanning is now performed by increasing the frequency from KHz to 64KH2 or higher. in this case,
As shown in FIG. 8, misconvergence HCR, HC-L, which is an asymmetric concentration shift of the scanning screen 6 at the left and right ends of the fluorescent screen 4, of the central electron beam Bc and the external electron beam Bs, which can be ignored at TV frequencies, is caused. It's becoming noticeable.

この原因は次の様に考えられる。すなわち、電子ビーム
は蛍光面4側から見て、蛍光面左端から右端に水平偏向
され、その水平偏向磁界5Hの方向は蛍光面側から見た
第6図の遮蔽磁極底面内で下から上に向う。そして高速
の水平偏向磁界により環状磁気遮蔽素子14内には渦電
流が発生し、その結果主水平偏向磁界5Hより位相の遅
れた残留磁界が両外側電子ビーム透孔11s部に発生す
る。このため創外側電子ビームBsは中央電子ビームB
cより余分に右側に微偏向される。特に水平偏向磁界の
時間微分値で発生する渦電流による遅相磁界は、偏向の
始端より終端、更にはその中間点、すなわち蛍光面の中
央部を偏向する時の方が大きいため、第7図に示す様に
創外側電子ビームの走査画面が中央電子ビームより全体
に右に片寄った非対称な集中ずれを生じ、且つそのずれ
HCは画面中央で最大となる。この画面中央におけるず
れHCは靜補正装置7で補正できるため、結局蛍光面4
上での走査画面は第8図に示すように、蛍光面4の左右
端で創外側電子ビームB5に対し中央電子ビームBcが
非対称な集中すれ量HCL、、)ICRを持ち、非対称
なコマ収差によるミスコンバージェンスを生じる。実験
によれば、例えば20インチのデイスプレィ管では水平
偏向周波数が64KHzであると、HCL 、HCRは
0.3〜0.7mmにもなり、そのミスコンバージェン
スは無視できなくなり、表示8買を著しく劣化させるこ
とになる。なお、磁気増強素子15は一般に環状磁気遮
蔽素子14より表面積か小さく、磁界変化に対する渦電
流損失の影響は無視できる。
The reason for this is thought to be as follows. That is, the electron beam is horizontally deflected from the left end of the phosphor screen to the right end when viewed from the phosphor screen 4 side, and the direction of the horizontal deflection magnetic field 5H is from bottom to top within the bottom surface of the shielding magnetic pole in FIG. 6 when viewed from the phosphor screen side. Head over. Eddy currents are generated in the annular magnetic shielding element 14 by the high-speed horizontal deflection magnetic field, and as a result, residual magnetic fields whose phase lags behind the main horizontal deflection magnetic field 5H are generated in both outer electron beam holes 11s. Therefore, the electron beam Bs outside the wound is the center electron beam Bs.
It is slightly deflected further to the right than c. In particular, the slow phase magnetic field due to the eddy current generated by the time differential value of the horizontal deflection magnetic field is larger at the end of the deflection than at the beginning of the deflection, and furthermore, when deflecting the middle point, that is, the center of the phosphor screen, as shown in Figure 7. As shown in FIG. 2, the scanning screen of the electron beam outside the wound has an asymmetric concentration shift that is generally shifted to the right from the center electron beam, and the shift HC is maximum at the center of the screen. Since this deviation HC at the center of the screen can be corrected by the silence correction device 7, the phosphor screen 4
As shown in Fig. 8, the above scanning screen has an asymmetrical concentration deviation amount HCL, )ICR of the central electron beam Bc with respect to the external electron beam B5 at the left and right ends of the phosphor screen 4, and asymmetric coma aberration. This causes misconvergence. According to experiments, for example, in a 20-inch display tube, when the horizontal deflection frequency is 64 KHz, HCL and HCR are as high as 0.3 to 0.7 mm, and the misconvergence can no longer be ignored, significantly deteriorating the display quality. I will let you do it. Note that the magnetic enhancement element 15 generally has a smaller surface area than the annular magnetic shielding element 14, and the influence of eddy current loss on magnetic field changes can be ignored.

本発明は、上述の欠点に鑑みてなされたもので、セルフ
、コンバージェンス方式インライン型電子銃を用いたカ
ラー陰極線管において、水平偏向周波数によらず、画面
左右端における非対称なミスコンバージェンスが生じな
いようにしたインライン型電子銃楕体を提供することを
目的とする。
The present invention has been made in view of the above-mentioned drawbacks, and is designed to prevent asymmetric misconvergence at the left and right ends of the screen, regardless of the horizontal deflection frequency, in a color cathode ray tube using a self-convergence type in-line electron gun. The purpose of the present invention is to provide an in-line type electron gun elliptical body.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、電子ビーム射出側先端に非磁性材から成る有
底円筒状遮蔽磁極を有し、その両外側電子ヒーム通過開
孔の周囲に環状磁気遮蔽素子を取り付けたインライン型
電子銃楕体において、環状磁気遮蔽素子は複数の段状に
分割されているか、複数の同心円状の段状に分割され段
部の一つに径方向の複数のスリットが形成されているか
、複数の環状の薄板を重ね合わせて形成されているか、
複数の同心円状の薄板を重ね合わせて形成されているこ
とを特徴とする。
The present invention relates to an in-line electron gun ellipse having a bottomed cylindrical shielding magnetic pole made of a non-magnetic material at the tip of the electron beam exit side, and annular magnetic shielding elements attached around both outer electron beam passage openings. , the annular magnetic shielding element is divided into a plurality of steps, or is divided into a plurality of concentric steps with a plurality of radial slits formed in one of the steps, or has a plurality of annular thin plates. Are they formed by overlapping each other?
It is characterized by being formed by stacking a plurality of concentric thin plates.

この様に構成することによって、偏向磁界に対して本来
の磁界制御素子の機能を維持したままで、偏向磁界によ
って惹起される渦電流による磁束損失を防止出来て、水
平偏向周波数の高速化にかかわらず中央及び両外側電子
ヒームが形成する走査画面のコマ収差による左右非対称
なミスコンバージェンスを除去でき、インライン型電子
銃を高密度の映像情報表示可能な電子銃構体とすること
ができる。
With this configuration, it is possible to prevent magnetic flux loss due to eddy currents induced by the deflection magnetic field while maintaining the original function of the magnetic field control element with respect to the deflection magnetic field, and even when the horizontal deflection frequency is increased. First, it is possible to eliminate asymmetrical misconvergence due to comatic aberration of the scanning screen formed by the central and both outer electron beams, and the in-line electron gun can be made into an electron gun structure capable of displaying high-density video information.

〔実施例〕〔Example〕

以下、図面を参照して本発明について詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図(a)、(b)はそれぞれ本発明の第1の実施例
に基づく遮蔽磁極10の底面図(蛍光面から見た)と環
状磁気遮蔽素子24の斜視図を示す。以下では説明の簡
略化のため、従来と同一のものには前述と同一の符号を
つけである。
1(a) and 1(b) respectively show a bottom view (viewed from the phosphor screen) of a shielding magnetic pole 10 and a perspective view of an annular magnetic shielding element 24 according to a first embodiment of the present invention. In the following, for the purpose of simplifying the explanation, the same components as those in the prior art are given the same reference numerals as above.

高透磁率磁性体から成る環状磁気遮蔽素子24は同心円
状の二つの段状部24a、24bか形成され、その表面
は三段に分割されている。この場合、環状磁気遮蔽素子
24の全表面積は従来用いられている単一の環状磁気遮
蔽素子14の表面積と同一になるように設定されている
The annular magnetic shielding element 24 made of a high magnetic permeability magnetic material has two concentric stepped portions 24a and 24b, and its surface is divided into three steps. In this case, the total surface area of the annular magnetic shielding element 24 is set to be the same as the surface area of a single annular magnetic shielding element 14 used conventionally.

環状磁気遮蔽素子24はその表面が三段に分割されてい
るため、水平偏向磁界5Hによってこの表面上に生じる
渦電流回路が単一平面の場合より切断された状態となる
。このため渦電流発生原因となる水平偏向磁界と鎖交す
る面積が減少し、渦電流発生を防止でき、且つ、水平偏
向磁界5Hに対する磁界制御機能は維持される。
Since the surface of the annular magnetic shielding element 24 is divided into three stages, the eddy current circuit generated on this surface by the horizontal deflection magnetic field 5H is more disconnected than in the case of a single plane. Therefore, the area interlinked with the horizontal deflection magnetic field that causes the generation of eddy current is reduced, the generation of eddy current can be prevented, and the magnetic field control function for the horizontal deflection magnetic field 5H is maintained.

従って、環状磁気遮蔽素子24を同心円状の段付にする
ことによって、第7図に示す様な非対称な集中誤差の発
生を小さくし、第8図の蛍光面左右端における非対称な
ミスコンバージェンス量HCL、HCRは小さくなり、
実用上無視できる集中誤差とすることができる。
Therefore, by making the annular magnetic shielding element 24 concentrically stepped, the occurrence of asymmetric concentration errors as shown in FIG. , HCR becomes smaller,
The concentration error can be practically ignored.

実験によれば、20インチのカラーデイスプレィ管では
水平偏向周波数64KHzに対し、非対称コマ収差量H
CL 、HCRを従来の未対策管での03〜0671程
度から、本発明の実施例によって0.1〜02關程度と
、実用上無視可能なコマ収差量とすることができた。
According to experiments, in a 20-inch color display tube, the amount of asymmetric coma aberration H for a horizontal deflection frequency of 64 KHz
The amount of coma aberration can be reduced from about 03 to 0671 in the conventional untreated tube to about 0.1 to 02 by the embodiment of the present invention, which is practically negligible.

第2図は本発明の第2の実施例を示す環状磁気遮蔽素子
34の斜視図であり、第1図との違いは環状磁気遮蔽素
子34には一つの段状部を設けてその表面を二段に分割
し、その最上段には径線方向に複数のスリット34Sを
入れて構成されている。これにより段部が少くてもスリ
ットによって渦電流発生面が分断されて高速の水平偏向
磁界に対して渦電流が発生しにくくなっている。
FIG. 2 is a perspective view of an annular magnetic shielding element 34 showing a second embodiment of the present invention. The difference from FIG. It is divided into two stages, and the uppermost stage has a plurality of slits 34S in the radial direction. As a result, even if the step portion is small, the eddy current generation surface is divided by the slit, making it difficult for eddy current to be generated in response to a high-speed horizontal deflection magnetic field.

上記同心円状段付環状磁気遮蔽素子の段の数は上記例に
限らず、二つ以上の複数であればよいことは言うまでも
ない。
It goes without saying that the number of stages of the concentrically stepped annular magnetic shielding element is not limited to the above example, and may be two or more.

第3図(a>、(b)はそれぞれ本発明の第3の実施例
に基づく遮蔽磁極10の底面図(蛍光面から見た)と環
状磁気遮蔽素子44の斜視図を示す。以下では説明の簡
略化のため、従来と同一のものには前述と同一の符号を
つけである。高透磁率磁性体から成る環状磁気遮蔽素子
44は高透磁率磁性体から成る同径の環状薄板44a、
44b、44.cを重ね合わせて形成されている。この
場合、環状磁気遮蔽素子44の全表面積は従来用いられ
ている単一の環状磁気遮蔽素子14の表面積と同一にな
るように設定されている。
3(a) and 3(b) respectively show a bottom view (viewed from the phosphor screen) of the shielding magnetic pole 10 and a perspective view of the annular magnetic shielding element 44 according to the third embodiment of the present invention. For simplification, the same components as in the past are given the same reference numerals as above.The annular magnetic shielding element 44 made of a high magnetic permeability magnetic material includes an annular thin plate 44a of the same diameter made of a high magnetic permeability magnetic material,
44b, 44. It is formed by overlapping C. In this case, the total surface area of the annular magnetic shielding element 44 is set to be the same as the surface area of a single annular magnetic shielding element 14 used conventionally.

一般に高周波磁界による渦電流損失は、金属板の厚みが
小さい程発生しにくくなる。従って、環状磁気遮蔽素子
44は厚み0.05〜0.1mmの薄板3枚を重ね合せ
ているため、水平偏向磁界5Hによってこの素子表面上
に生じる渦電流は単一板で形成したより渦電流発生が防
止出来て、且つ、水平偏向磁界5Hに対する磁界制御機
能は維持される。
Generally, the smaller the thickness of the metal plate, the less likely eddy current loss caused by a high-frequency magnetic field will occur. Therefore, since the annular magnetic shielding element 44 is made up of three thin plates with a thickness of 0.05 to 0.1 mm, the eddy current generated on the surface of this element by the horizontal deflection magnetic field 5H is smaller than that of a single plate. This can be prevented from occurring, and the magnetic field control function for the horizontal deflection magnetic field 5H is maintained.

実験によれは、20インチのカラーディスブロイ管では
水平偏向周波数64KHzに対し、非対称コマ収差量)
ICL 、HCRを従来の未対策管での03〜071程
度から、この実施例によって01〜0.2mm程度と、
実用上無視可能なコマ収差量とすることか可能であった
According to experiments, a 20-inch color display tube has an asymmetric coma aberration amount for a horizontal deflection frequency of 64 KHz)
The ICL and HCR can be reduced from about 03 to 071 with conventional untreated pipes to about 01 to 0.2 mm with this embodiment.
It was possible to make the amount of coma aberration negligible in practical terms.

第4図は本発明の第4の実施例を示す環状磁気遮蔽素子
54の斜視図であり、第3図との違いは環状磁気遮蔽素
子54は同心円状薄板54a。
FIG. 4 is a perspective view of an annular magnetic shielding element 54 showing a fourth embodiment of the present invention. The difference from FIG. 3 is that the annular magnetic shielding element 54 has a concentric thin plate 54a.

54b、54cを積み重ねて、貼合せて表面が段状に構
成されている。これによってその表面が段状に分断され
ているため、第3の実施例より高速の水平偏向磁界に対
して渦電流が発生しにくくなる。上記同心円状環状磁気
遮蔽素子の薄板数は上記例に限らす、二つ以上の複数で
あればよいことは言うまでもない。更に、本発明は環状
磁気遮蔽素子に限らず他の形状を呈した磁界制御素子に
も適用可能であるとも言うまでもない。
54b and 54c are stacked and bonded to form a stepped surface. Since the surface is thus divided into steps, eddy currents are less likely to be generated in response to a high-speed horizontal deflection magnetic field than in the third embodiment. It goes without saying that the number of thin plates in the concentric annular magnetic shielding element is not limited to the above example, but may be two or more. Furthermore, it goes without saying that the present invention is applicable not only to annular magnetic shielding elements but also to magnetic field control elements having other shapes.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によれば、偏向磁界に対して本来
の磁界制御素子の機能を維持し、簡羊な構成で、渦を流
による磁界損失を防止でき、水平偏向周波数の高速度化
にかかわらず中央及び両外側電子ビームが形成する走査
画面のコマ収差による左右非対称なミスコンバージェン
スを除去したインライン型電子銃楕体を得ることができ
る。
As described above, according to the present invention, it is possible to maintain the original function of the magnetic field control element with respect to the deflection magnetic field, to prevent magnetic field loss due to vortices with a simple configuration, and to increase the horizontal deflection frequency. Regardless, it is possible to obtain an in-line electron gun ellipse in which left-right asymmetrical misconvergence due to coma aberration of the scanning screen formed by the central and both outer electron beams is eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明の第コの実施例の遮蔽磁
極の底面図および環状磁気遮蔽素子の斜視図、第2図は
本発明の第2の実施例の環状磁気遮蔽素子の斜視図、第
3図(a>、(b)は本発明の第3の実施例の遮蔽磁極
の底面図および環状磁気遮蔽素子の斜視図、第4図は本
発明の第4の実施例の環状磁気遮蔽素子の斜視図、第5
図は従来のインライン型電子銃を用いたカラー陰極線管
の縦断面図、第6図は蛍光面から見た遮蔽磁極の底面図
、第7図は静集中補正が行われていない時の蛍光面上の
走査画面を示す図、第8図は静集中補正後の蛍光面上の
走査画面を示す図である。 1・・・インライン型電子銃、2・・・硝子外囲器、3
・シャドウマスク、4・・蛍光面、5・・偏向ヨーク、
6・・・走査画面、7・・・靜補正装置、1o・・・遮
蔽磁極、IIC,11S・・・中央及び外側電子ビーム
開孔、13・・・遮蔽磁極底面、14..24.44゜
54・・環状磁気遮蔽素子、15・・・磁気増強素子、
24a、24b、34a・−段状部、34 S−スリッ
ト、44a、44b、44cm・環状薄板、54a、5
4b、54c・・・同心円状薄板。
FIGS. 1(a) and 1(b) are a bottom view of a shielding magnetic pole and a perspective view of an annular magnetic shielding element according to a second embodiment of the present invention, and FIG. 2 is an annular magnetic shielding according to a second embodiment of the present invention. A perspective view of the element; FIGS. 3A and 3B are a bottom view of a shielding magnetic pole and a perspective view of an annular magnetic shielding element according to a third embodiment of the present invention; FIG. 4 is a perspective view of a fourth embodiment of the present invention. Perspective view of example annular magnetic shielding element, No. 5
The figure is a vertical cross-sectional view of a color cathode ray tube using a conventional in-line electron gun, Figure 6 is a bottom view of the shielding magnetic pole seen from the phosphor screen, and Figure 7 is the phosphor screen when static concentration correction is not performed. The above figure shows the scanning screen, and FIG. 8 shows the scanning screen on the phosphor screen after static concentration correction. 1... In-line electron gun, 2... Glass envelope, 3
・Shadow mask, 4. Fluorescent screen, 5. Deflection yoke,
6... Scanning screen, 7... Silence correction device, 1o... Shielding magnetic pole, IIC, 11S... Center and outer electron beam aperture, 13... Bottom surface of shielding magnetic pole, 14. .. 24.44°54... Annular magnetic shielding element, 15... Magnetic enhancement element,
24a, 24b, 34a - Stepped part, 34 S-slit, 44a, 44b, 44cm - Annular thin plate, 54a, 5
4b, 54c... Concentric thin plates.

Claims (1)

【特許請求の範囲】 1、電子ビーム射出側先端に非磁性材から成る有底円筒
状遮蔽磁極を有し、その両外側電子ビーム開孔の周囲に
環状磁気遮蔽素子を取り付けたインライン型電子銃構体
において、前記環状磁気遮蔽素子は複数の段状に分割さ
れていることを特徴とするインライン型電子銃構体。 2、電子ビーム射出側先端に非磁性材から成る有底円筒
状遮蔽磁極を有し、その両外側電子ビーム開孔の周囲に
環状磁気遮蔽素子を取り付けたインライン型電子銃構体
において、前記環状磁気遮蔽素子は、複数の同心円状の
段状に分割されると共に、段部の少くとも一つには径方
向に複数のスリットが形成されていることを特徴とする
インライン型電子銃構体。 3、電子ビーム射出側先端に非磁性材から成る有底円筒
状遮蔽磁極を有し、その両外側電子ビーム開孔の周囲に
環状磁気遮蔽素子を取り付けたインライン型電子銃構体
において、前記環状磁気遮蔽素子は、環状の薄板を複数
個重ね合わせて形成したことを特徴とするインライン型
電子銃構体。 4、電子ビーム射出側先端に非磁性材から成る有底円筒
状遮蔽磁極を有し、その両外側電子ビーム開孔の周囲に
環状磁気遮蔽素子を取り付けたインライン型電子銃構体
において、前記環状磁気遮蔽素子は、複数の同心円状の
薄板を重ね合わせて構成されていることを特徴とするイ
ンライン型電子銃構体。
[Claims] 1. An in-line electron gun having a bottomed cylindrical shielding magnetic pole made of a non-magnetic material at the tip of the electron beam exit side, and annular magnetic shielding elements attached around both outer electron beam apertures. An in-line electron gun structure, wherein the annular magnetic shielding element is divided into a plurality of steps. 2. In an in-line electron gun structure having a bottomed cylindrical shielding magnetic pole made of a non-magnetic material at the tip of the electron beam exit side, and annular magnetic shielding elements attached around both outer electron beam apertures, the annular magnetic An in-line electron gun assembly characterized in that the shielding element is divided into a plurality of concentric steps, and at least one of the steps has a plurality of slits formed in the radial direction. 3. In an in-line electron gun structure having a bottomed cylindrical shielding magnetic pole made of a non-magnetic material at the tip on the electron beam exit side, and annular magnetic shielding elements attached around both outer electron beam apertures, the annular magnetic This is an in-line electron gun structure in which the shielding element is formed by stacking a plurality of annular thin plates. 4. In an in-line electron gun structure having a bottomed cylindrical shielding magnetic pole made of a non-magnetic material at the tip of the electron beam exit side, and annular magnetic shielding elements attached around both outer electron beam apertures, the annular magnetic An in-line electron gun structure characterized in that the shielding element is constructed by stacking a plurality of concentric thin plates.
JP30769690A 1990-11-14 1990-11-14 In-line type electron gun body structure Pending JPH04181637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30769690A JPH04181637A (en) 1990-11-14 1990-11-14 In-line type electron gun body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30769690A JPH04181637A (en) 1990-11-14 1990-11-14 In-line type electron gun body structure

Publications (1)

Publication Number Publication Date
JPH04181637A true JPH04181637A (en) 1992-06-29

Family

ID=17972128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30769690A Pending JPH04181637A (en) 1990-11-14 1990-11-14 In-line type electron gun body structure

Country Status (1)

Country Link
JP (1) JPH04181637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262526B1 (en) 1995-09-21 2001-07-17 Hitachi, Ltd Color Braun tube
KR20020030882A (en) * 2000-10-18 2002-04-26 이형도 Deflection yoke

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262526B1 (en) 1995-09-21 2001-07-17 Hitachi, Ltd Color Braun tube
KR20020030882A (en) * 2000-10-18 2002-04-26 이형도 Deflection yoke

Similar Documents

Publication Publication Date Title
JPH0427656B2 (en)
CA1213304A (en) Color image display systems
US4386331A (en) Deflection yoke
GB2071406A (en) Deflection unit for colour television display tubes
JPH0245298B2 (en)
KR100432059B1 (en) Color cathode-ray tube device
US5177399A (en) Color cathode ray tube apparatus
JPH04181637A (en) In-line type electron gun body structure
JP3034906B2 (en) Color picture tube and deflection device
US4801843A (en) Display tube with magnetic correction elements
EP0348912B1 (en) Color cathode ray tube apparatus
EP0438584A1 (en) Vertical coma correction arrangement.
JP2671608B2 (en) In-line type electron gun structure
JPH0367298B2 (en)
JPH0359931A (en) Deflection yoke for color television picture tube
JPH077643B2 (en) Color television picture tube having aberration correction element and aberration correction method
JPS63207035A (en) Color picture tube
US6608436B1 (en) Color display device having quadrupole convergence coils
JPH01286237A (en) Electron gun body structure
KR100208902B1 (en) Half-end turn coil
JPS6129047A (en) Inline electron gun structure
JP3097344B2 (en) CRT
JPH0433238A (en) Color picture tube device
KR950003276Y1 (en) Focus magnet for projection television
JP2862575B2 (en) Color picture tube