JPS6085512A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6085512A
JPS6085512A JP58194825A JP19482583A JPS6085512A JP S6085512 A JPS6085512 A JP S6085512A JP 58194825 A JP58194825 A JP 58194825A JP 19482583 A JP19482583 A JP 19482583A JP S6085512 A JPS6085512 A JP S6085512A
Authority
JP
Japan
Prior art keywords
region
channel
substrate
regions
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58194825A
Other languages
Japanese (ja)
Other versions
JPH0582052B2 (en
Inventor
Juri Kato
加藤 樹里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58194825A priority Critical patent/JPS6085512A/en
Publication of JPS6085512A publication Critical patent/JPS6085512A/en
Publication of JPH0582052B2 publication Critical patent/JPH0582052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Abstract

PURPOSE:To make it possible to miniaturize both a P-channel region and an N-channel region by using wafers having a (100) crystal face as an Si substrate in heat treatment for the isothermal second in manufacture of C-MOS.LSI. CONSTITUTION:Using Si wafers having a (100) crystal face as a substrate 1, an N type well region 2 and a P type well region 3 are diffused and formed on the surface layer of the substrate respectively while they are separated by a thick SiO film. Next, an amorphous source drain region 8 consisting of BF2 ion injection layers is formed in the region 2 forming the P-channel and an amorphous source drain region 9 consisting of P ion injection layers is similarly provided in the region 3 forming the N-channel. After this, gate electrodes 5 are provided via gate oxide films 6 between the regions 8 and 9 respectively, and the whole surface of the electrodes is covered by an interlaminar insulating film 7. The regions 8 and 9 are subjected to isothermal annealing using halogen lamps or graphite heaters to activate these regions as well as recrystalize thereof.

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法に関する。特に0MO
8VLSIの製造において有効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device. Especially 0MO
It is effective in manufacturing 8VLSI.

従来、イオン注入層のアニールは、電気炉を用いて行な
われ、分単位(例えば、950℃ 30分)の熱処理の
ため、注入された不純物が再分布し拡散する。このため
MOS−FETのソース・ドレイン高濃度注入層におい
ては、不純物イオンの拡散のため、ゲート長を短かくす
るとパンチスルーが生じゲート長を2μm以下にするこ
とが困難である。特に0MO8LSIではPチャンネル
のソース・ドレイン飴域にBまたはBF、が注入される
ため、高温アニールにおけるPチャンネル・ソース・ド
レインの横波がりが大きく、LSIの微細化、高集積化
を固辞にしている。また、(111)結晶方位面を持つ
S=ウェーハに八8イオンが注入された場合・♂−p−
の接合リーク電流を、約1nA/cdに減少させるため
には、1200℃ 8秒程度の熱処理が必要であるOA
8の場合拡散係数が小さいため、1200℃8秒の熱処
理でもAsイオンの再分布による拡散は小さく、1oo
ooX程度であるが、BまたはBF2は拡散係数が大き
く、1200℃ 8秒のアニールにより2000%以上
の再分布により拡散が生じる。このため、O’MOS 
LSIの製造において、(111)方位面のS<基板を
用いて、Pチャンネル領域にB、Nチャンネル領域にA
sを注入後、高温短時間熱処理によりアニールする従来
の方法は、0MO8LSIの微細化、特にPチャンネル
領域の微細化を困難にしていた0本発明は、かかる従来
の欠点を補ない、Pチャンネル、Nチャンネル領域の両
方の微細化を可能にし、0MO3LSIの高集積化を可
能にする低温秒単位アニール技術による半導体の製造方
法を提供することを目的とする0 本発明は、半導体基板として結晶方位面(100)のシ
リコンを用いること及びPチャンネル領域には13F、
、NチャンネルにはP注入によりアモルファス層を形成
後、低温(800℃以上1100℃以下)秒単位アニー
ルすることを特徴とする。
Conventionally, annealing of the ion-implanted layer is performed using an electric furnace, and the implanted impurities are redistributed and diffused due to the heat treatment lasting for minutes (for example, 950° C. for 30 minutes). For this reason, in the source/drain heavily doped layers of the MOS-FET, due to the diffusion of impurity ions, punch-through occurs when the gate length is shortened, making it difficult to reduce the gate length to 2 μm or less. In particular, in 0MO8LSI, B or BF is implanted into the P-channel source/drain region, which causes large transverse waves in the P-channel, source, and drain during high-temperature annealing, making LSI miniaturization and high integration adamantly discouraged. . In addition, when 88 ions are implanted into an S=wafer with a (111) crystal orientation plane・♂−p−
In order to reduce the junction leakage current of OA to about 1 nA/cd, heat treatment at 1200°C for about 8 seconds is required.
In the case of 8, the diffusion coefficient is small, so even with heat treatment at 1200°C for 8 seconds, diffusion due to redistribution of As ions is small, and 1oo
ooX, but B or BF2 has a large diffusion coefficient, and annealing at 1200° C. for 8 seconds causes diffusion due to redistribution of 2000% or more. For this reason, O'MOS
In manufacturing LSI, using a (111) oriented S<substrate, B is placed in the P channel region and A is placed in the N channel region.
The conventional method of annealing by high-temperature and short-time heat treatment after implanting s made it difficult to miniaturize MO8LSI, especially the P-channel region.The present invention compensates for such drawbacks of the conventional method. An object of the present invention is to provide a method for manufacturing a semiconductor using a low-temperature second-unit annealing technique that enables miniaturization of both N-channel regions and high integration of MO3LSI. Using (100) silicon and 13F in the P channel region,
, the N channel is characterized by forming an amorphous layer by P implantation and then annealing at a low temperature (800° C. or higher and 1100° C. or lower) in seconds.

以下、本発明を実施例を用いて説明する。The present invention will be explained below using examples.

第1図は、本発明による0M0S FETの断面図であ
り、基板1には(100)結晶方位面を持つシリコンを
用い、Pチャンネルソース・ドレイン8領域はEF、イ
オン注入層・Nチャンネルソース・ドレイン領域9には
、Pイオン注入層が用いられることを特徴とする。
FIG. 1 is a cross-sectional view of the 0M0S FET according to the present invention. The substrate 1 is made of silicon with a (100) crystal orientation, the P channel source/drain 8 regions are EF, the ion implantation layer, the N channel source, and the The drain region 9 is characterized in that a P ion implantation layer is used.

シリコン(100)基板に、N well 2 ・P 
well6を形成後・LOOO34により能動素子を分
離し、ゲート膜5i026及びゲート電8ii5を形成
後、Pチャンネル・ソース・ドレイン領域8にはB F
N well 2 ・P on a silicon (100) substrate
After forming well 6, separating active elements by LOOO 34, and forming gate film 5i026 and gate electrode 8ii5, B F is applied to P channel source/drain region 8.
.

を注入し浅いアモルファス層を形成、Nチャンネル・ソ
ース・ドレイン領域9にはPを注入し浅し)アモルファ
ス層を形成する。絶縁PSG膜7を蓄積後、ハロジエン
・ランプまたはグラファイト・ヒータによりアイソ・サ
ーマル・アニールにより、イオン注入層の再結晶化、活
性化を行なう。ここで、BF2によるイオン注入アモル
ファス層及びPによるイオン注入アモルファス層は、基
板が5((1oo)の場合低温短時間(例えば800℃
1秒)で再結晶化し、活性化する。
P is implanted into the N channel source/drain region 9 to form a shallow amorphous layer. After accumulating the insulating PSG film 7, the ion implantation layer is recrystallized and activated by iso-thermal annealing using a halogen lamp or a graphite heater. Here, the ion-implanted amorphous layer by BF2 and the ion-implanted amorphous layer by P are formed by heating at a low temperature for a short time (e.g. 800°C) when the substrate is 5 ((1oo)).
Recrystallize and activate in 1 second).

この時・接合のリーク電流も1nA/cdと小さい。At this time, the junction leakage current is also as small as 1 nA/cd.

第2図は、本発明による低温短時間アニールの温度一時
間の2次元空間図を示し、(A)は、5((100)基
板にBF2またはP注入によるアモルファス層が再結晶
化・活性化し、接合リークが1 nA、/Cd程度の特
性を持つために必要最低限の熱処理条件を示す。(E)
は、BF2またはP注大層の不純物が再分布し拡散が始
まるアニール条件である。従って第2図の斜線部分の温
度・時間空間で熱処理することにより、Pチャンネル及
びNチャンネル領域のソース・ドレインが拡散せず、し
かも良好な接合を形成するため、両チャンネルの微細化
が可能になる。アニール後、コンタクト・ホールを形成
し、AI、10をバターニングすることによりCMOS
−FETが完成する。以上説明したように、本発明によ
る半導体装置の製造方法を用いればPチャンネル領域の
不純物であるボロン及びNチャンネル領域の不純物であ
る0リンの再分布による拡散の生じない低温短時間でア
ニールを行なうため、Pチャンネル及びNチャンネル領
域の微細化が可能になり、高集積化された0MO8LS
Iを提供することをできる。
FIG. 2 shows a two-dimensional space diagram for one hour of low-temperature short-time annealing according to the present invention. , shows the minimum heat treatment conditions necessary to have a junction leakage of about 1 nA, /Cd. (E)
is an annealing condition under which impurities in the BF2 or P injection layer are redistributed and diffusion begins. Therefore, by performing heat treatment at the temperature and time space shown in the shaded area in Figure 2, the sources and drains in the P-channel and N-channel regions do not diffuse, and a good junction is formed, making it possible to miniaturize both channels. Become. After annealing, CMOS is fabricated by forming contact holes and patterning AI, 10.
-FET is completed. As explained above, by using the method for manufacturing a semiconductor device according to the present invention, annealing can be performed at a low temperature and in a short time without causing diffusion due to redistribution of boron, which is an impurity in the P channel region, and phosphorus, which is an impurity in the N channel region. This makes it possible to miniaturize the P-channel and N-channel regions, resulting in highly integrated 0MO8LS.
I can provide I.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・・・・・・本発明による0MO3−FETの断
面図 第2図・・・・・・本発明による低温短時間アニールの
温度一時間の2次元空間図 1・・(100)結晶方位面を持つシリコン基板2 −
 N well 3 − P well4・・・LOO
O85・・ゲート電極 6・・・ゲート酸化膜 7・・層間絶縁膜8・・・BV
2注入層 9・・・P注入層10・・・AL配線 (A)・・・再結晶に必要な最低温度・時間アニール条
(B)・ ソース・ドレイン不純物が拡散しない最高温
度・時間アニール条件 以 上 出願人 株式会社諏訪精工舎 代理人 弁理士 最上 務
Figure 1: Cross-sectional view of 0MO3-FET according to the present invention Figure 2: Two-dimensional space diagram of one hour of low-temperature short-time annealing according to the present invention 1: (100) crystal Silicon substrate 2 with azimuth plane -
N well 3 - P well 4...LOO
O85...Gate electrode 6...Gate oxide film 7...Interlayer insulating film 8...BV
2 Injection layer 9...P injection layer 10...AL wiring (A)...Minimum temperature/time annealing condition necessary for recrystallization (B)/Maximum temperature/time annealing condition where source/drain impurities do not diffuse Applicant Suwa Seikosha Co., Ltd. Patent Attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】 1)LSI製造におけるアイソ・サーマル秒単位熱処理
において、si基板には(100)結晶方位面を持つウ
ェーハを用いることを特徴とする半導体装置の製造方法
。 2)ハロジエン・ランプまたはグラファイト・ヒータに
より短時間熱処理を行なうことを特徴とする特許請求の
範囲第一項記載の半導体装置の製造方法。 3)0MO8・VLSIの製造におけるソース・ドレイ
ン領域の形成において、(100)結晶方位面のS=基
板には、Pチャンネル・トランジ+ スタ領域においてBP、イオンを注入・Nチャン+ ネル・トランジスタ領域においてPイオンを注入するこ
とにより、アモルファス層を形成後、800℃以上11
00℃以下の湿度で秒単位アニールすることを特徴とす
る特許請求の範囲第一項記載の半導体装置の製造方法。
[Claims] 1) A method for manufacturing a semiconductor device, characterized in that a wafer having a (100) crystal orientation plane is used as the Si substrate in iso-thermal second-unit heat treatment in LSI manufacturing. 2) The method for manufacturing a semiconductor device according to claim 1, wherein the short-time heat treatment is performed using a halogen lamp or a graphite heater. 3) In the formation of source/drain regions in the manufacture of 0MO8/VLSI, in the S=substrate of the (100) crystal orientation plane, BP and ions are implanted in the P channel transistor region and the N channel transistor region. After forming an amorphous layer by implanting P ions in
The method for manufacturing a semiconductor device according to claim 1, wherein the annealing is performed in seconds at a humidity of 00° C. or less.
JP58194825A 1983-10-18 1983-10-18 Manufacture of semiconductor device Granted JPS6085512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58194825A JPS6085512A (en) 1983-10-18 1983-10-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194825A JPS6085512A (en) 1983-10-18 1983-10-18 Manufacture of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6198604A Division JP2601209B2 (en) 1994-08-23 1994-08-23 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6085512A true JPS6085512A (en) 1985-05-15
JPH0582052B2 JPH0582052B2 (en) 1993-11-17

Family

ID=16330877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194825A Granted JPS6085512A (en) 1983-10-18 1983-10-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6085512A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100412A (en) * 1979-12-17 1981-08-12 Sony Corp Manufacture of semiconductor device
JPS5769733A (en) * 1980-10-16 1982-04-28 Matsushita Electric Ind Co Ltd Heat treatment of semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100412A (en) * 1979-12-17 1981-08-12 Sony Corp Manufacture of semiconductor device
JPS5769733A (en) * 1980-10-16 1982-04-28 Matsushita Electric Ind Co Ltd Heat treatment of semiconductor substrate

Also Published As

Publication number Publication date
JPH0582052B2 (en) 1993-11-17

Similar Documents

Publication Publication Date Title
JP2509690B2 (en) Semiconductor device
US5897364A (en) Method of forming N- and P-channel transistors with shallow junctions
JPS6085512A (en) Manufacture of semiconductor device
JPH0272634A (en) Semiconductor device
JPS62266829A (en) Formation of shallow junction layer
JP2601209B2 (en) Method for manufacturing semiconductor device
JPS601862A (en) Manufacture of semiconductor device
JPH0719759B2 (en) Method for manufacturing semiconductor device
JPH0221148B2 (en)
JPH0575041A (en) Cmos semiconductor device
JPS61230373A (en) Manufacture of semiconductor device
JP2534608B2 (en) Method for manufacturing semiconductor device
JP2570292B2 (en) Method for manufacturing semiconductor device
JPS6245179A (en) Manufacture of semiconductor device
JPH0488666A (en) Semiconductor integrated circuit device and manufacture thereof
JPH04354328A (en) Production of semiconductor device
JPS6084825A (en) Manufacture of semiconductor device
JPS5829625B2 (en) Manufacturing method for MIS integrated circuit device
JPS62179766A (en) Manufacture of mis transistor
JPH03166759A (en) Manufacture of semiconductor device
JPS61278163A (en) Thin film transistor and its manufacture
JPS6077419A (en) Manufacture of semiconductor device
JPH05267622A (en) Manufacture of integrated circuit device
JPS639924A (en) Manufacture of semiconductor device
JPH0346370A (en) Mos type semiconductor device and manufacture thereof