JPS6079670A - Negative electrode for lithium battery - Google Patents

Negative electrode for lithium battery

Info

Publication number
JPS6079670A
JPS6079670A JP58188955A JP18895583A JPS6079670A JP S6079670 A JPS6079670 A JP S6079670A JP 58188955 A JP58188955 A JP 58188955A JP 18895583 A JP18895583 A JP 18895583A JP S6079670 A JPS6079670 A JP S6079670A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
alloy
charging
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58188955A
Other languages
Japanese (ja)
Inventor
Shinichi Tobishima
真一 鳶島
Junichi Yamaki
準一 山木
Takeshi Okada
岡田 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58188955A priority Critical patent/JPS6079670A/en
Publication of JPS6079670A publication Critical patent/JPS6079670A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve charge-discharge performance of a lithium battery by using alloy of lithium with at least one of Pt, Ni, Pd in the VIII group of the prriodic tabel as a negative electrode. CONSTITUTION:An alloy of lithium with at least one of Pt, Ni, Pd is used as a negative electrode in lithium primary and secondary battery. Since Pt, Ni, and Pd belong to the VIII group of the periodic table, two electrons whose energy level is lower than that of electron in the outermost S orbit do not exist its structure. By using this lithium alloy, deposition of lithium becomes smooth, and reaction activity with organic solvent is reduced, and charge-discharge efficiency of negative electrode is improved.

Description

【発明の詳細な説明】 本発明はリチウム電池に用いるリチづム負極に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lithium negative electrode for use in lithium batteries.

リチウムを負極活物質として用いる電池は、小型・高エ
ネルギ密度を有する電池として研究されているが、その
二次化が大きな問題点となっている。
Batteries using lithium as a negative electrode active material are being researched as small-sized batteries with high energy density, but secondaryization has become a major problem.

二次化が可能な正極活物質として、多くの化合物が検削
されている。たとえば、チタン、ジルコニウム、ハフニ
ウム、ニオビウム、タンタル、バナジウムの硫化物、セ
レン化物、テルル化物を用いた電池(米国特許第408
9052号明細書参照)等が開示されている。
Many compounds have been investigated as positive electrode active materials that can be secondaryized. For example, batteries using sulfides, selenides, and tellurides of titanium, zirconium, hafnium, niobium, tantalum, and vanadium (U.S. Pat. No. 408
9052) etc. have been disclosed.

しかしながら、このような二次電池用正極活物質の研究
に比してLi極の充放電特性に関する研究は充分とはい
えず、リチウム二次電池実現のためには、充放電効率及
びサイクル寿命等のじゅうふでん特性の良好なリチウム
極の作製が重大な問題になっている。
However, compared to such research on positive electrode active materials for secondary batteries, research on the charging and discharging characteristics of Li electrodes is not sufficient, and in order to realize lithium secondary batteries, charging and discharging efficiency, cycle life, etc. The production of lithium electrodes with good thermal properties has become a serious problem.

lj極の充放電特性を向上させる試みとしては、Liを
o p、 、co2などのガス処理したものを負4糞に
用いる試み(J、EIectrochem、Soc、 
、 Vol、 125第1371〜1377頁〕やLi
と八1の合金を負極として用いる試み(J、EIect
rochem、Soc、 、 Vol、127第210
0−2104頁〕等が行われているが、必ずしも充分と
はいえず、さらに特性の優れたLi負極の作製がめられ
ている。
In an attempt to improve the charging and discharging characteristics of lj electrodes, there have been attempts to use lithium treated with gases such as op, co2, etc. for negative four (J, EIelectrochem, Soc,
, Vol. 125, pp. 1371-1377] and Li
An attempt to use the alloy of 81 and 81 as a negative electrode (J, EIect
rochem, Soc, , Vol. 127 No. 210
[pp. 0-2104] have been carried out, but they are not necessarily sufficient, and efforts are being made to produce Li negative electrodes with even better characteristics.

本発明は、このような現状に鑑のなされたものであり、
その目的は放電及び充電特性の優れたすチウム負極を提
供することを目的とする。
The present invention has been made in consideration of the current situation, and
The purpose is to provide a lithium negative electrode with excellent discharge and charge characteristics.

本発明につき概説すると、負極活物質はリチウムであり
、正極活物質はリチウムイオンと可逆的に電気化学反応
を行う物質であり、電解質物質は正極物質及びリチウム
に対して化学的に安定であり、かつリチウムイオンが正
極活物質と電気化学反応をするための移動を行う物質で
あるリチウム−次および二次電池に用いられる負極とし
て、リチウムとPt、 NiあるいばPdの一種以上と
の合金を用いたことを特徴とするものである。
To summarize the present invention, the negative electrode active material is lithium, the positive electrode active material is a material that undergoes a reversible electrochemical reaction with lithium ions, the electrolyte material is chemically stable with respect to the positive electrode material and lithium, In addition, an alloy of lithium and one or more of Pt, Ni, or Pd is used as a negative electrode used in lithium-primary and secondary batteries, which is a material in which lithium ions move to perform an electrochemical reaction with a positive electrode active material. It is characterized by the fact that it was used.

本発明によれるリチウム電池用負極を用いることにより
、充放電特性の優れたリチウム電池を製造することがで
きるという利点がある。゛本発明を更に詳しく説明する
By using the negative electrode for a lithium battery according to the present invention, there is an advantage that a lithium battery with excellent charge and discharge characteristics can be manufactured.゛The present invention will be explained in more detail.

前述のPt、 Ni、Pdば、■属金属に属し、最外S
軌道以下のエネルギレヘル以下に電子が2IlliI不
足しているものである。
The above-mentioned Pt, Ni, Pd, belong to group metals, and the outermost S
There is a shortage of 2IlliI electrons below the energy level below the orbit.

一般にリチウム負極として、リチウム金属板が多用され
ているが、この場合、放電あるいは充電電流が増大する
と、局部的な反応促進により、リチウム負極に穴があい
たり、充電時にテントライト状のリチウムが析出し、負
極から脱落する等の現象を生じる。また、リチウムは電
子供与性か高く、有機溶媒を還元分解してしまうという
欠点かあった。これらが、リチウム極の充放電効率を低
下させる原因となっている。
Generally, a lithium metal plate is often used as a lithium negative electrode, but in this case, when the discharging or charging current increases, holes are formed in the lithium negative electrode due to local reaction acceleration, and tentrite-shaped lithium is deposited during charging. This causes phenomena such as falling off from the negative electrode. In addition, lithium has a high electron-donating property and has the disadvantage of reductively decomposing organic solvents. These are the causes of lowering the charging and discharging efficiency of the lithium electrode.

そこでリチウムの析出形態を平滑にし、かつ有機溶媒と
の反応活性度を低下させ、リチウム負極の充放電効率を
向上させるものである。
Therefore, the purpose is to smooth the precipitation form of lithium, lower the reaction activity with the organic solvent, and improve the charging/discharging efficiency of the lithium negative electrode.

リチウムを合金化する方法は、本発明において基本的に
限定されるものではない。リチウムとl’L、Niおよ
びPdの一種以上が合金化する方法であれば、いかなる
方法でもよい。たとえば、1)Li”イオンを含む溶液
中で電気化学的にリチウムを■族金属に付着させる方法
、2)溶融塩中でリチウムを電気化学的に■族金属にイ
」着させる方法、3)リチウム金属の溶融液中に■族金
属を浸す方法、4)■族金属にn−ブチルリチウムでリ
チウムを47i出させる方法、5)■族金属上にリチウ
ムを蒸着させる方法などを用いることができる。
The method of alloying lithium is not fundamentally limited in the present invention. Any method may be used as long as lithium is alloyed with one or more of l'L, Ni, and Pd. For example, 1) a method for electrochemically attaching lithium to a group II metal in a solution containing Li'' ions, 2) a method for electrochemically attaching lithium to a group II metal in a molten salt, and 3) a method for electrochemically attaching lithium to a group II metal in a molten salt. Methods such as immersing the group ■ metal in a lithium metal melt, 4) causing 47i of lithium to be released from the group ■ metal with n-butyllithium, and 5) vapor depositing lithium on the group ■ metal can be used. .

以下の実施例では、有機溶媒中で電気化学的にリチウム
をNi、 PtあるいばPdと合金化したものを負極と
して用いているが、かかる実施例による合金化は単なる
一例であって、なんら本発明を限定するものではない。
In the examples below, lithium is electrochemically alloyed with Ni, Pt, or Pd in an organic solvent, and used as the negative electrode. This is not intended to limit the invention.

実施例1 負極としてLi坂(大きさ 1cIi!、厚さ 0.2
5鶴)を、正極としてpt板(大きさ1cJ、厚さ 0
.05m1+)をもちいた電池を組め、I M 1.i
c]0ル〜プロピレンカーボネイト中で、1mへ/ C
+aで80分間放電し、Lj−Pt合金を作製した。こ
の合金中のLiの電気化学量は2.4C/cTaであっ
た。
Example 1 Li slope (size 1 cIi!, thickness 0.2
5 Tsuru) as the positive electrode, and a PT plate (size 1 cJ, thickness 0
.. Assemble a battery using 05m1+), I M 1. i
c]0 to 1m in propylene carbonate/C
+a for 80 minutes to produce an Lj-Pt alloy. The electrochemical amount of Li in this alloy was 2.4 C/cTa.

前述のようにして作製したLi−Pt合金を作用極に、
Liを負極に参照極としてLiを用いた電池を組み、L
 i −P を合金の充放電試験を行った。電解液には
、I M LiCIO4−プロピレンカーボネイトを用
いた。
Using the Li-Pt alloy prepared as described above as a working electrode,
Assemble a battery using Li as the negative electrode and Li as the reference electrode, and
A charging/discharging test was conducted on the i-P alloy. I M LiCIO4-propylene carbonate was used as the electrolyte.

測定はまず、0.5 mA /cJの定電流でL i 
−P L合金の一部(0,6C/cJ)をLビイオンと
して放電し再びさらに0.6 C10ilの容量で放電
するサイクル試験を繰り返上た。1ザイクルあたりの平
均充放電効率E はLi−Pt極の電位変化よりめ、見
IILj上、100%の効率を示すサイクル数をn回繰
り返すと、式f11により、Eはめられる。
First, the measurement was performed using a constant current of 0.5 mA/cJ.
- A cycle test was repeated in which a part of the L alloy (0.6 C/cJ) was discharged as L bioions and then further discharged at a capacity of 0.6 C10il. The average charge/discharge efficiency E per cycle is determined by the change in the potential of the Li--Pt electrode, and when the number of cycles showing an efficiency of 100% is repeated n times, E is fitted by equation f11.

式(1) 結果を下記の第1表に八として示す。なお、第1表中、
Bは本発明の効果を示すための丘較例であり、同様の実
験をpt板の代わりに同じ太きへのCu板を用いて行っ
た結果を示している(Cuは1412の合金ができにく
いことが報告されている(J、F、1ectrocl+
em、soc、+ 118 巻+1547頁、1971
年)〕。
Equation (1) The results are shown as 8 in Table 1 below. In addition, in Table 1,
B is a comparative example to show the effect of the present invention, and shows the results of a similar experiment using a Cu plate of the same thickness instead of a PT plate (Cu has a 1412 alloy. It has been reported that it is difficult to use (J, F, 1ectrocl+
em, soc, + 118 volumes + 1547 pages, 1971
Year)〕.

下記の第1表より、Li−Pt合金を用いることにより
、Liの充放電効率は著しく向上しているのが判る。
From Table 1 below, it can be seen that the use of Li--Pt alloy significantly improves the charging and discharging efficiency of Li.

実施例2 Li合金として、Li−Niを用いた以外は、実施例1
と同様にしてLi−Ni合金の充放電効率を測定した。
Example 2 Example 1 except that Li-Ni was used as the Li alloy.
The charging and discharging efficiency of the Li-Ni alloy was measured in the same manner.

結果を下記の第1表にCとして示す。Cu板を用いた場
合(第1表中のB)に比較して、Li−Ni合金を使用
することにより、充放電効率が著しく向上することがわ
が−た。
The results are shown as C in Table 1 below. It was found that the charge/discharge efficiency was significantly improved by using the Li-Ni alloy compared to the case where a Cu plate was used (B in Table 1).

実施例3 電解液として、1モル/1のLiCIO4をプロピレン
カーボネイトと1,2−ジメトキシェクンの1 :1体
積比混合熔媒にこ溶解させたものをもちいた以外は、実
施例1と同様にして、L i−P L合金の充放電効率
を測定した。
Example 3 Same as Example 1 except that 1 mole/1 LiCIO4 dissolved in a 1:1 volume ratio mixed solvent of propylene carbonate and 1,2-dimethoxychne was used as the electrolyte. The charging and discharging efficiency of the Li-P L alloy was measured.

結果を下記の第1表のDとして示す。参考として、同条
件下でCu板を用いた場合のものを、Eとして示した。
The results are shown as D in Table 1 below. For reference, the case where a Cu plate was used under the same conditions is shown as E.

この第1表より明らかなように、L i −P を合金
を使用することにより、著しく充放電効率が上昇するこ
とがわかる。
As is clear from Table 1, by using an alloy for Li-P, the charge/discharge efficiency is significantly increased.

実施例4 Li合金として、Li−Pdを用いた以外は、実施例3
と同様にしてLi−Pd合金の充放電効率を測定した。
Example 4 Example 3 except that Li-Pd was used as the Li alloy.
The charging and discharging efficiency of the Li-Pd alloy was measured in the same manner.

結果を下記の第1表にFとして示す。The results are shown as F in Table 1 below.

Cu板を用いた場合(第1表中のE)に比較してLi−
Pd合金を使用することにより、著しく充放電効率は向
上している。
Li-
By using a Pd alloy, the charging and discharging efficiency is significantly improved.

第1表 以上の説明より明らかなように、本発明によれば、リチ
ウムとN1、ptあるいはPdとの合金を用いることに
より、充放電特性の優れたリチウム二次電池を実現でき
るという利点がある。
As is clear from the explanations in Table 1 and above, the present invention has the advantage that by using an alloy of lithium and N1, PT, or Pd, a lithium secondary battery with excellent charge and discharge characteristics can be realized. .

出願人代理人 雨 宮 正 季Applicant's representative: Masaki Ame Miya

Claims (1)

【特許請求の範囲】[Claims] ■屈金属の中で、最外S軌道以下のエネルギレベル以下
の電子が2個不足している金属であるNi、Pdおよび
ptの一種以上とリチウムとの合金を含むことを特徴と
するリチウム電池用負極。
■ A lithium battery characterized by containing an alloy of lithium and one or more of Ni, Pd, and PT, which are metals lacking two electrons below the energy level of the outermost S orbit among flexible metals. negative electrode.
JP58188955A 1983-10-07 1983-10-07 Negative electrode for lithium battery Pending JPS6079670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58188955A JPS6079670A (en) 1983-10-07 1983-10-07 Negative electrode for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58188955A JPS6079670A (en) 1983-10-07 1983-10-07 Negative electrode for lithium battery

Publications (1)

Publication Number Publication Date
JPS6079670A true JPS6079670A (en) 1985-05-07

Family

ID=16232841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58188955A Pending JPS6079670A (en) 1983-10-07 1983-10-07 Negative electrode for lithium battery

Country Status (1)

Country Link
JP (1) JPS6079670A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141870A (en) * 1981-02-26 1982-09-02 Yuasa Battery Co Ltd Nonaqueous electrolyte secondary cell
JPS5887778A (en) * 1981-11-20 1983-05-25 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic solution for lithium secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141870A (en) * 1981-02-26 1982-09-02 Yuasa Battery Co Ltd Nonaqueous electrolyte secondary cell
JPS5887778A (en) * 1981-11-20 1983-05-25 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolytic solution for lithium secondary battery

Similar Documents

Publication Publication Date Title
US4464447A (en) Rechargeable lithium batteries with non-metal electrodes
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JPH10507587A (en) Nickel alloy electrodes for electrochemical devices
JPS5840311B2 (en) dench
WO2019230322A1 (en) Negative electrode for lithium ion secondary battery
JPS59134568A (en) Electrolyte for lithium battery
KR20180102177A (en) Cathode material for power storage device
US5939224A (en) Nonaqueous electrolyte secondary battery
JPS6313267A (en) Lithium secondary battery
JP2003142085A (en) Lead-acid battery
JPS6174264A (en) Lithium cell
US4086392A (en) Method for reducing the float current of maintenance-free battery
JPS6079670A (en) Negative electrode for lithium battery
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JPS63308868A (en) Secondary cell
JPS6342819B2 (en)
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2511667B2 (en) Lithium secondary battery
JP3550230B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JPS60230356A (en) Negative electrode for lithium battery
JPH0554887A (en) Nonaqueous electrolyte secondary battery
JPS6132953A (en) Negative electrode for lithium battery
JPH04187733A (en) Hydrogen storage alloy electrode
Hauke et al. Investigations on rechargeable lithium alloys on the basis of Al Ni and Al Mn alloys
JPS6342818B2 (en)