JPS6077469A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6077469A
JPS6077469A JP18542383A JP18542383A JPS6077469A JP S6077469 A JPS6077469 A JP S6077469A JP 18542383 A JP18542383 A JP 18542383A JP 18542383 A JP18542383 A JP 18542383A JP S6077469 A JPS6077469 A JP S6077469A
Authority
JP
Japan
Prior art keywords
film
gate
source
metal film
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18542383A
Other languages
Japanese (ja)
Inventor
Hideaki Kozu
神津 英明
Kazuyoshi Ueda
植田 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18542383A priority Critical patent/JPS6077469A/en
Publication of JPS6077469A publication Critical patent/JPS6077469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain an FET having high performance by forming an interval between source and gate electrodes to short and an interval between gate and drain electrodes to long when forming source, drain electrodes and a gate electrode disposed between the source and the drain electrodes on a semiconductor substrate formed with source and drain regions. CONSTITUTION:An N type GaAs layer 12 and an Al film 16 to become a Schottky barrier junction are laminated and covered on a semi-insulating GaAs substrate 11 having a source region, a drain region and a channel region disposed therebetween. Then, a resist film 17 is formed corresponding to the channel region, the film 16 is overetched with phosphoric acid solution, and a film 16 which is smaller than the film 16 is allowed to remain under the film 17. Then, the entire surface is covered with AuGa-Ni film 18, the film 17 is removed together with the film 18 formed on the film 17, and protective films 19 are formed on the half of the film 16 exposed from one remaining film 18 and the other film 18. Then, the expose portion of the film 16 is removed by etching, the film 16 disposed in the film 18 is displaced to one side and allowed to remain.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、くわしくは、電界効果
トランジスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a field effect transistor.

シリコン(以下、8iと略す)を用いた乗積回路(以下
、ICと略す)より高速な装置として、ガリウム砒素(
以下、(JBAsと略す)を用いたICが注目され、各
所で開発が進められている。GaAs ICが8iIC
に比べて高速である理由は、GaAs ICが半絶縁性
GaAs ″−基板上に ヤ晟しうるため、紫子分離が容易なため、より高密度に
集積化でき配線答斎が低減されると共に単位長さ当りの
配線容蛍が低減されうろことと、GaAs中の電流のキ
ャリアである電子の移動度が、Siのそれに比べ13〜
5倍大きいため、に畜生抵抗が低減しうろこととによる
。さらにGaAs ICを高速化させるためには、Ga
As ICの基本素子である電界効果トランジスタ(以
下、FETと略す)のカットオフ周波数(以下、fTと
略す)を上げる必要がある。セしてFETのf 、、、
の向上は、寄生ヨ1(抗をより低減することにより相互
コンダクタンス(以下、g□と略す)を高くすることと
ゲート畏ヲ短縮してゲートとノース間容量(以下、(4
,と略す)を低(することが必要である。FEi”の寄
生抵抗すなわち、ソースとゲート間抵抗(以下、Rsと
略す)を低減するためKは、ソースとゲート間に高キャ
リアaWW*導入するか、ソースとゲート間距離を短縮
する必要がある。しかI2、一般にイオン注入法により
形成される高キャリア濃度層の導入においては、注入さ
れた不純物がポストイオン注入アニール時に、横方向に
拡散し、ゲート下のチャネル層中のキャリヤ濃度を高め
るため、初期に設計したFETのスレッショルド電圧(
以下、VT と略す)を変化させると共にゲート電極に
高キャリア濃度層が接触するためゲ−ト1嗣圧が劣化す
る等のいわゆるショートチャネル効果を招来する。一方
ソースとゲート間の距離を短縮することによりRs を
低減する方法は、前記のショートチャネル効果を招くこ
とはないが、Cpsを低減させるためにFffTのゲー
ト長(以下、I9 と略す)を短縮しようとする場合に
は、自己整合法でF E Tを形成する必要が生じる。
Gallium arsenide (hereinafter referred to as 8i) is a faster device than multiplication circuit (hereinafter referred to as IC) using silicon (hereinafter referred to as 8i).
ICs using JBAs (hereinafter abbreviated as JBAs) have attracted attention and are being developed in various places. GaAs IC is 8iIC
The reason why GaAs IC is faster than that is because it can be formed on a semi-insulating GaAs'' substrate, which makes it easier to separate the semiconductors, which allows for higher density integration and reduced wiring costs. The wiring capacity per unit length is reduced, and the mobility of electrons, which are current carriers, in GaAs is 13~13% higher than that of Si.
Because it is 5 times larger, the resistance to the beast is reduced due to the scales. In order to further speed up GaAs IC, GaAs
It is necessary to increase the cutoff frequency (hereinafter abbreviated as fT) of a field effect transistor (hereinafter abbreviated as FET), which is a basic element of As IC. f of the FET,...
The improvement of the parasitic resistance can be achieved by increasing the mutual conductance (hereinafter referred to as g
In order to reduce the parasitic resistance of FEi'', that is, the resistance between the source and gate (hereinafter abbreviated as Rs), K is a high carrier aWW* introduced between the source and gate. However, when introducing a high carrier concentration layer that is generally formed by ion implantation, the implanted impurity diffuses laterally during post-ion implantation annealing. In order to increase the carrier concentration in the channel layer under the gate, the threshold voltage (
In addition to changing the high carrier concentration layer (hereinafter abbreviated as VT), the contact of the high carrier concentration layer with the gate electrode causes a so-called short channel effect such as deterioration of the gate voltage. On the other hand, the method of reducing Rs by shortening the distance between the source and gate does not cause the above-mentioned short channel effect, but the gate length of FffT (hereinafter abbreviated as I9) is shortened in order to reduce Cps. In this case, it becomes necessary to form FET using a self-alignment method.

この自己整合法においては、ソースとゲート量比tA&
Lr5aとゲートとドレイン間距離LGDとが同じ値に
なり、ソースとゲート間距離LSGを短縮してRsを低
減させようとすると、ゲートとドレイン間距離LGDも
小さくなるため、ゲートとドレイン間の逆方向耐圧(以
下、hiVonと配す)が低下し、ゲートとドレイ/間
に掛ゆられる電圧を低(しなければならず。
In this self-alignment method, the source and gate amount ratio tA&
Lr5a and the distance between the gate and drain LGD become the same value, and if you try to reduce Rs by shortening the distance between the source and gate LSG, the distance between the gate and drain LGD will also become smaller. The directional breakdown voltage (hereinafter referred to as hiVon) decreases, and the voltage applied between the gate and the drain must be reduced.

FETの特性を十分に引き出ぜないことKなる。This results in not being able to fully bring out the characteristics of the FET.

自己整合法により形成されたGaAs FETを第1図
に示す。第1図において、lは半絶縁性GaA。
FIG. 1 shows a GaAs FET formed by the self-alignment method. In FIG. 1, l is semi-insulating GaA.

也3はソース、4はゲート、5はドレインである。3 is a source, 4 is a gate, and 5 is a drain.

本発明はかかる欠点を除去し、ソースとゲート量比1m
 Ls G::x tm+桶しでRBを低減するととも
に、ゲートとトンーrン聞距離11+111はソースと
ゲート量比tlLsoよりも大きくしてゲートとドレイ
ン間によ− ・ “り高いぼ 圧が掛けられるようにすることにより、より高い性能を
示すFgTの製造方法を提供しようとするものである。
The present invention eliminates such drawbacks and achieves a source and gate amount ratio of 1m.
Ls G: : The present invention aims to provide a method for manufacturing FgT that exhibits higher performance.

本発明の!′ff畝は、高抵抗基板上に導電層を形成す
る工程と、該導電層−ヒに該導′It層と7コツトキ接
合を形成しうる第1の金属膜を被着する工程と、第1の
金属膜上の少くともゲートが位置し5る領域に第1の金
属膜を保護しうる・物質膜を被着する工程と、前記の物
質膜をマスクとしてマスクされた領域の第1の金属膜を
除去すると共K、さらにマスクとし℃用いた前記の物質
膜の下の一部の第1の金属膜を除去する工程と、前記の
導電層とオーム性接触をしうる第2の金属膜な被着する
工程と、前記の物質膜な除去する工程と、残された第1
の金M4膜のゲートとなる領域のうち少くともソースに
近い領域上には仮着されないように第10金栖膜を保護
しうる物質膜を被着する工程と、前記物質膜をマスクと
して少くとも露出されている第1の金属膜を除去する工
程とを含む半導体装置の製造方法にある。
The invention! The 'ff ridges are formed by forming a conductive layer on a high-resistance substrate, depositing a first metal film capable of forming a 7-point junction with the conductive It layer on the conductive layer, and a step of depositing a material film capable of protecting the first metal film on at least a region where the gate is located on the first metal film; At the same time as removing the metal film, a step of removing a part of the first metal film under the material film used as a mask at °C, and a second metal film capable of making ohmic contact with the conductive layer is performed. A step of depositing a film, a step of removing the above-mentioned material film, and a step of removing the remaining first material film.
A step of depositing a material film capable of protecting the tenth gold M4 film from being temporarily deposited on at least a region close to the source of the region that will become the gate of the gold M4 film, and a step of depositing a material film capable of protecting the tenth gold film from being temporarily deposited, and using the material film as a mask to deposit a material film on at least a region close to the source. The method of manufacturing a semiconductor device includes a step of removing both the exposed first metal film and the exposed first metal film.

次に本発明を実ij*u 51Jな用いて説明する。第
2図は本発明の一実施例を示す。第2図ta+において
、半絶縁性G a A s基板11上KIIFIえばキ
ャリア濃度が1. X 101′yc、qr−”である
n型0aAs IQ 12を例えば0,13μmの厚さ
に形成した後、nMGaAs層とシ曹ットキバリア接曾
を形成するl第1の金属膜16例えばアルミニウム(以
下、AJと略す)を、例えば0.5μmの長さに被着す
る。さらに写X食刻法を用いてAI膜16上に、Al膜
16を保護する物質膜17として、例えばホトレジスト
を例えば長さ3μmnにわたり被着する。次に、第2F
l(b) K示すように保−物質膜17の下のう1↓1
の金箔膜16以外の第1の金属膜16をシ1jえばリン
酸液によりエツチング除去した後、さらに保長物j(膜
17下の第1の金属膜16の一部をオーバーエツチング
することにより保護物質膜17であるホトレジストのオ
ーバーハングを0.5μmだけ形成する。
Next, the present invention will be explained using an actual ij*u 51J. FIG. 2 shows an embodiment of the invention. In FIG. 2 ta+, if KIIFI is on the semi-insulating GaAs substrate 11, the carrier concentration is 1. After forming an n-type 0aAs IQ 12 with a thickness of, for example, 0.13 μm, which is 101'yc,qr-'', a first metal film 16, such as aluminum (hereinafter referred to as . The second F is deposited over a thickness of 3 μm.
l(b) As shown in K, the bottom 1↓1 of the preservation material film 17
After removing the first metal film 16 other than the gold foil film 16 by etching with a phosphoric acid solution, a part of the first metal film 16 under the film 17 is further protected by over-etching. An overhang of photoresist, which is the material film 17, is formed by 0.5 μm.

次に1第2図(C)に示すように、” mGaAs層1
2とオーム性接触をなしうる第2の金!膜1Bとして、
例えば金ゲルマニウム合金次いでニッケル(Au0e 
Niと略す)をnmGaA、12上および保護物質膜1
7であるホトレジスト上に被着する。次に、第2図(d
) K示すよう尾、前記のホトレジス)、41Qをその
溶剤により除去すると同時K、ホトレジス)417f上
に被着された第2の金属膜18を除去する。いわゆるリ
フトオフ法によりソースおよびドレインとなる第2の金
属膜18のみを残す。ここまでの製造工程により、第1
の金属16をゲートとし、第2の金属膜18をソースお
よびドレインとし、LSG=0.5μ飢、LGD = 
0.5μm1およびゲート長(Lyと略す)=2μmの
FETが形成される。ここで、第2図(d)よりわかる
ようK、ゲートとドレイン間の距離LGDがせまいため
に、BVGDは約5VLかなく、一般に、かかるFgT
におい℃は、ドレイン電圧は3■程度しか掛けられない
ため例えばゲート幅300μm程度の素子では、その飽
和出力は10dBm程度である。
Next, as shown in FIG. 2(C), the mGaAs layer 1
The second gold that can make ohmic contact with 2! As membrane 1B,
For example, gold-germanium alloy, followed by nickel (Au0e)
abbreviated as Ni) on nmGaA, 12 and a protective material film 1
7 on the photoresist. Next, Figure 2 (d
) As shown in FIG. 1, the second metal film 18 deposited on the photoresist 417f is removed at the same time as the photoresist 41Q is removed using the solvent. A so-called lift-off method is used to leave only the second metal film 18 that will become the source and drain. Through the manufacturing process up to this point, the first
The second metal film 18 is used as the gate, the second metal film 18 is used as the source and drain, LSG = 0.5μ, LGD =
An FET of 0.5 μm1 and gate length (abbreviated as Ly)=2 μm is formed. Here, as can be seen from FIG. 2(d), since the distance LGD between the gate and the drain is small, BVGD is only about 5VL, and generally such FgT
Since the drain voltage can only be applied at a temperature of about 3.degree. C., a device with a gate width of about 300 .mu.m, for example, has a saturated output of about 10 dBm.

従ってさらに出力を増すためには、BvGDを高くし、
ドレイン電圧を3v以上にする必要がある。
Therefore, in order to further increase the output, increase BvGD,
It is necessary to set the drain voltage to 3V or higher.

本発明はゲート・ドレイン間距離LGI)をより広くす
ると共K、ゲート長をさらに短縮し、FBTの性能を向
上するものである。次に12図fe)に示すように、写
真食刻法を用いて、少くともゲートとなる第1の金属層
16のソースに近い領域を覆い、ドレインに近い領域を
露出させた状態に、第1の金属膜を保護する物質膜19
、例えば前記のホトレジストと同種のものか否かは問わ
ず、ホトレジストを被着する。次に、第2図(f)に示
すように、第1の金属膜を例えばリン酸液を用いて保護
物質膜19の下の第1の金属膜であるA[が残るように
第1の金属膜、例えばAlをエツチング除去し、その後
、保護物質膜19を溶剤で除去する。ここでLso=0
.5μm、 Ly=1.0μm1LGD=1.5μmの
FETが形成される。かかる)’ 13 Tではソース
とゲート間の距1mtLsoが小さいためnsが低減さ
れていると共に1ゲートとドレイン間の距離Lopが長
いため、BVGDが高くなり、ドレイン電圧がより高く
かけられるため、従来法のものに比べてより尚利得・高
出力を得ることができる。また、本方法は本負的にセル
フアライメントであるため、特性の均一性も従来法に比
べて劣ることはない。
The present invention further widens the gate-drain distance (LGI), further shortens the gate length, and improves the performance of the FBT. Next, as shown in Fig. 12 (fe), a photolithographic method is used to cover at least the region of the first metal layer 16 that will become the gate near the source, and expose the region near the drain. Material film 19 that protects the metal film 1
, for example, depositing a photoresist, whether or not of the same type as the photoresist described above. Next, as shown in FIG. 2(f), the first metal film is coated using, for example, a phosphoric acid solution, so that the first metal film A[] remains under the protective material film 19. The metal film, for example Al, is removed by etching, and then the protective material film 19 is removed using a solvent. Here Lso=0
.. A FET of 5 μm, Ly=1.0 μm, 1LGD=1.5 μm is formed. )'13 T, the distance 1mtLso between the source and the gate is small, so ns is reduced, and the distance Lop between the 1 gate and the drain is long, so the BVGD becomes high and the drain voltage is applied higher. Even more gain and higher output can be obtained compared to the conventional method. Furthermore, since this method is essentially self-alignment, the uniformity of characteristics is not inferior to conventional methods.

本実楕例では、第1の金属膜の除去にリン酸液で除去す
るいわゆるウェットエツチングを用いたが、AJKかわ
る他の金属、たとえばモリブデンやタングステンを使え
ばドライエツチングによりゲート形成することも可能で
ある。
In this example, we used so-called wet etching to remove the first metal film using a phosphoric acid solution, but if you use other metals instead of AJK, such as molybdenum or tungsten, it is also possible to form the gate by dry etching. It is.

また、GaAsのかわりK、他の化合物半導体例えばI
?LPや、例えば、サファイヤや2醗化シリコン上に半
導体膜を形成するいわゆる805r4成の基板にも本発
明は適用しうる。
Also, instead of GaAs, K, other compound semiconductors such as I
? The present invention can also be applied to a so-called 805r4 substrate in which a semiconductor film is formed on LP or, for example, sapphire or silicon difluoride.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法によるF’ E ′rの構造を示す断面
図、第2図(a)〜(f)は本発明の一実施例による製
造方法を工程順に示す断面図である。 1・・・・・・尚抵抗G、AS基板、2・・・・・・n
型GaAs層、3・・・・・・ソース、4・・・・・・
ゲート、5・・・・・・ドレイン、11・・・・・・半
絶縁性GaAs基板、12・・・・・・n型GaAs層
、16・・・・・・第1の金属膜、17.19・・・・
・・第1の金属膜を保護する物質膜、18・・・・・・
第2の金&4膜。 8z図
FIG. 1 is a cross-sectional view showing the structure of F'E'r according to a conventional method, and FIGS. 2(a) to (f) are cross-sectional views showing the manufacturing method according to an embodiment of the present invention in the order of steps. 1...Resistance G, AS board, 2...n
Type GaAs layer, 3... Source, 4...
Gate, 5...Drain, 11...Semi-insulating GaAs substrate, 12...N-type GaAs layer, 16...First metal film, 17 .19...
...Material film that protects the first metal film, 18...
2nd gold & 4 membranes. 8z diagram

Claims (1)

【特許請求の範囲】 1、高抵抗基板上&ε導電層を形成する工程と、該導電
層上に該導電層とショットキ接合を形成しうる第10金
絹膜を被着する工程と、該第1の金属膜上の少くともゲ
ートが位置しうる領域に第1の金属膜を保護しうる物質
膜を被着する工程と、前記の物質膜をマスクとして、マ
スクされた領域の第1の金属膜を除去すると共忙、さら
忙マスクとして用いた前記の物質膜の下の一部の第1の
金属膜を除去する工程と、前記の導電層とオーム性接触
をしうる第2の金属膜を被着する工程と、前記の物質膜
を除去する工程と、残された第1の金属膜のゲートとな
る領域のうち少くともソースに近い領域を覆い、ドレイ
ンに近い領域上には被着されないように第10金属膜を
保護しうる物質膜を被着する工程と、前記物質膜をマス
クとして、少くとも露出されていま第1の金、?A 膜
を除去する工程とを含むことを/l?徴とする半導体装
置の、4造方法。 2、前記導電層は4電性半導体層であることを特徴とす
る特許請求の範囲外1項記載の半導体装置の製造方法。
[Claims] 1. A step of forming an ε conductive layer on a high-resistance substrate, a step of depositing a No. 10 gold silk film capable of forming a Schottky junction with the conductive layer on the conductive layer, and a step of depositing a material film capable of protecting the first metal film on at least a region where a gate can be located on the first metal film; removing a portion of the first metal film under the material film used as a mask; and a second metal film capable of making ohmic contact with the conductive layer. a step of depositing the material film, a step of removing the above-mentioned material film, and a step of depositing the remaining first metal film to cover at least the region that will become the gate, covering at least the region close to the source, and depositing the material film on the region close to the drain. a step of depositing a material film capable of protecting the tenth metal film from being damaged; and using the material film as a mask, at least the first metal film is exposed. A /l? Four manufacturing methods for semiconductor devices. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the conductive layer is a tetraconductive semiconductor layer.
JP18542383A 1983-10-04 1983-10-04 Manufacture of semiconductor device Pending JPS6077469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18542383A JPS6077469A (en) 1983-10-04 1983-10-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18542383A JPS6077469A (en) 1983-10-04 1983-10-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6077469A true JPS6077469A (en) 1985-05-02

Family

ID=16170526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18542383A Pending JPS6077469A (en) 1983-10-04 1983-10-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6077469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275438A (en) * 1991-03-04 1992-10-01 Nec Corp Field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275438A (en) * 1991-03-04 1992-10-01 Nec Corp Field effect transistor

Similar Documents

Publication Publication Date Title
JP3101457B2 (en) Semiconductor device
JPH0354464B2 (en)
JP3233207B2 (en) Method for manufacturing field effect transistor
JPS6077469A (en) Manufacture of semiconductor device
JPH0249012B2 (en) HANDOTAISOCHINOSEIZOHOHO
US6410946B1 (en) Semiconductor device with source and drain electrodes in ohmic contact with a semiconductor layer
JPH04343440A (en) Semiconductor device
JPH0969611A (en) Semiconductor device and its manufacturing method
US5177026A (en) Method for producing a compound semiconductor MIS FET
JPS6057980A (en) Manufacture of semiconductor device
JPS6173381A (en) Manufacture of semiconductor integrated circuit device
JPH02135743A (en) Manufacture of field effect transistor
JPS6392062A (en) Manufacture of field effect transistor
JPS6038883A (en) Manufacture of schottky gate type field effect transistor
JPS59126676A (en) Field effect type transistor
JPS59195874A (en) Manufacture of field-effect transistor
JPH0831481B2 (en) Field effect transistor
JPS58145161A (en) Manufacture of semiconductor device
JPH07114212B2 (en) Method for manufacturing semiconductor device
JPS5877261A (en) Semiconductor device
JPS59181067A (en) Manufacture of field effect transistor
JPH04211136A (en) Manufacture of field effect transistor
JPH04364047A (en) Monolithic microwave integrated circuit
JPS61236166A (en) Manufacture of semiconductor device
JPS58201373A (en) Manufacture of semiconductor device