JPS6074660A - Three-dimensional logic circuit - Google Patents

Three-dimensional logic circuit

Info

Publication number
JPS6074660A
JPS6074660A JP58183418A JP18341883A JPS6074660A JP S6074660 A JPS6074660 A JP S6074660A JP 58183418 A JP58183418 A JP 58183418A JP 18341883 A JP18341883 A JP 18341883A JP S6074660 A JPS6074660 A JP S6074660A
Authority
JP
Japan
Prior art keywords
gate
channel
positive voltage
turns
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58183418A
Other languages
Japanese (ja)
Inventor
Jun Koike
純 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58183418A priority Critical patent/JPS6074660A/en
Publication of JPS6074660A publication Critical patent/JPS6074660A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to have equal plane areas on a chip, and to remove the phenomenon of latch-up action a structural defect of a CMOS device by a method wherein a logic element is prepared on a wafer in three-dimensions. CONSTITUTION:The gate 1 of an N-MOST is connected to the gate 20 of a P- MOST by means of a poly Si wiring 21 and turns to the input of this CMOS inverter. When a positive voltage is impressed on the wiring serving as the input, with VCC as the positive potential; the gate poly Si 1 of the N-MOS connected to the wiring turns to a positive voltage, and the gate poly Si 20 of the P-MOST to a positive voltage. The turning of the gate poly Si of the N-MOST to a positive voltage induces electrons in the neighborhood of the surface of a P<-> substrate 6 contacting the gate oxide film 2 of a P<-> region sandwiched between P<-> diffused layers 4 and 5 placed between N<+> diffused layers 4 and 5. As a result, the channel activates, and the N-MOST turns ON. At the same time, when the gate poly Si of the P-MOST turns to a positive voltage, the P-channel does not activate and turns OFF.

Description

【発明の詳細な説明】 本発明は、論理回路に関する。[Detailed description of the invention] The present invention relates to logic circuits.

従来の0MO8論理素子においては2次元、つま多平面
的にウェーハ上に論理素子を形成していた。第1図に示
すNチャネル型MO8構造の単チャネル型3人力NOR
回路と第2図に示すCMO8構造の3人力NOR回路と
を比較して分かるように、0MO8)9ンジスタ(以下
C−MO8Tと呼ぶ。)ではNチャネル型MO8)ラン
リスタ(以下N−MO8Tと呼ぶ。)とPチャネル型M
O8)ランリスタ(以下P−MO8Tと呼ぶ。)との相
補動作を基本としている為に、まず第1にN−MO8’
I’、またはP −MOS Tで構成された単チャネル
型MO8集積回路に比べてC−MO8T構成の集積回路
では、同一回路をチップ上に形成する上において、C−
MO8T構成の方が多くのFランジスタ数を有する為に
チップ面積が大きくなるという欠点を有している。
In conventional 0MO8 logic elements, logic elements are formed on a wafer two-dimensionally, or multi-planarly. Single-channel three-man power NOR with N-channel MO8 structure shown in Figure 1
As can be seen by comparing the circuit with the CMO8 structure three-man power NOR circuit shown in Figure 2, the 0MO8)9 register (hereinafter referred to as C-MO8T) is an N-channel type MO8) run lister (hereinafter referred to as N-MO8T). ) and P-channel type M
O8) Since it is based on complementary operation with the run lister (hereinafter referred to as P-MO8T), first of all, N-MO8'
Compared to a single-channel MO8 integrated circuit configured with I' or P-MOS T, an integrated circuit with a C-MO8T configuration requires less C-MOS when forming the same circuit on a chip.
Since the MO8T configuration has a larger number of F transistors, it has the disadvantage that the chip area becomes larger.

第2にCMOSデバイス特有の構造的欠陥が上げられる
。第3図にCMOSデバイスの断面概略図を示す。第3
図において、2.3.6.7.10は、寄生チャネル防
止用のイオン打込みによって生成された蛸またはP+領
域のチャネルストッパである。
Second, there are structural defects specific to CMOS devices. FIG. 3 shows a schematic cross-sectional view of a CMOS device. Third
In the figure, 2.3.6.7.10 is a channel stopper in the octopus or P+ region produced by ion implantation for preventing parasitic channels.

81.82,83.84は本CMOSデバイスに寄生す
るバイボー2トランジスタでアシ、本CMO8デバイス
の断面概略図上に概略的に、どのような構成でを化バイ
ポーラトランジスタが生成されるのかを重ねて図示した
ものである。つまシ第3図において、NPN型トランジ
スタS2は、Pウェル4をベースとし、N型シリコン基
板25をエミッタとし、N+拡散層をコレクタ5として
寄生し、PNPトランジスタS1は、N型基板25をベ
ースとし、P+拡散層1をエミッタとし、Pウェル4を
コレクタとして寄生する。他の83.84も同様に畜生
する。
81.82, 83.84 are bipolar transistors that are parasitic to this CMOS device.The cross-sectional schematic diagram of this CMOS device is overlaid with a schematic diagram to show what kind of configuration bipolar transistors are produced. This is what is illustrated. In FIG. 3, an NPN transistor S2 has a P well 4 as a base, an N type silicon substrate 25 as an emitter, and an N+ diffusion layer as a collector 5. The P+ diffusion layer 1 is used as an emitter, and the P well 4 is used as a collector. The other 83.84 are similarly damned.

更に第4図は、第3図における寄生バイポーラトランジ
スタが主要因と力って2ッチアップ動作現象を引き起こ
すW、理を簡略的に説明する為に第3図の寄生バイポー
ラトランジスタを用いて回路化した回路図である。第4
図においてVCCは正電圧電源とする。今回路の接地電
圧よシも低い負電圧が入力端子1に入力されると、17
.r8→16.r7→5.S2→3. r i→1.入
力端子を通って電流が流れ、前記電流によって5.82
のトランジスタがオンし、2、VCC−+12. r 
4−+13. r 5−+5.82−+3. r i−
+l、入力端子を通って、5.82のコレクタ電流IC
IJが流れ、12、 r 4の端子間に電位差が生じ、
この電位差が6、S3のベース、エミッタ電圧VBEs
を越えると、6.83のトランジスタもオンし、2.V
CC→6.S3→15、 r 6−417. r 8→
3.GNDを通ッテ6.83 ノコレクタ電流ICEj
が流れる。以上のよう力状態下において、1、入力端子
の負電圧入力が切れて本回路の接地電圧となっても、1
748に電圧降下が生じ続けている為に、この17. 
r 8の電圧降下によj9.5.82のトランジスタが
オンし続けることで、5.82 のコレクタ電流ICE
Iが流れ続け、従って6.S3のトランジスタもオンし
続ける為に6.83のコレクタ電流ICEIも流れ続け
、電源を一度オフしない限シ電流が流れ続ける、CMO
Sデバイス特有の構造的欠陥によるラッチアップ動作現
象が生ずる。
Furthermore, Fig. 4 shows that the parasitic bipolar transistor in Fig. 3 is the main factor that causes the two-touch-up operation phenomenon.In order to simply explain the principle, a circuit is created using the parasitic bipolar transistor in Fig. 3. It is a circuit diagram. Fourth
In the figure, VCC is a positive voltage power supply. If a negative voltage that is lower than the ground voltage of the circuit is input to input terminal 1, 17
.. r8→16. r7→5. S2→3. r i→1. A current flows through the input terminal, and the current causes 5.82
2, VCC-+12. r
4-+13. r 5-+5.82-+3. ri-
+l, through the input terminal, the collector current IC of 5.82
IJ flows and a potential difference occurs between terminals 12 and r4,
This potential difference is 6, the base and emitter voltage of S3 VBEs
When 2.83 is exceeded, the transistor 6.83 is also turned on, and 2. V
CC→6. S3→15, r 6-417. r 8→
3. Connect GND 6.83 Collector current ICEj
flows. Under the above power conditions, 1. Even if the negative voltage input to the input terminal is cut off and becomes the ground voltage of this circuit, 1.
Because the voltage drop continues to occur in 748, this 17.
Since the transistor j9.5.82 remains on due to the voltage drop of r8, the collector current ICE of 5.82
I continues to flow, so 6. Since the transistor S3 also remains on, the collector current ICEI of 6.83 also continues to flow, and the current continues to flow unless the power is turned off once.
A latch-up operation phenomenon occurs due to structural defects specific to S devices.

本発明は、3次元、つまり立体的にウェーッ・上に論理
素子を作成することにより、従来CMOSデバイスの欠
点とされてきたチップ上の平面的な面積効率を増し、従
って、単チャネル型MOSデバイスに対し、CMOSデ
バイスで同一回路機能を構成する上において、チップ上
で同等の平面的々面積を有することを可能とし、更に、
CMOSデバイスの構造的欠陥であるラッチアップ動作
現象を除去することを可能とする構造を持つCMOSデ
バイスを提供するととにある。
The present invention increases the planar area efficiency on a chip, which has traditionally been considered a drawback of CMOS devices, by creating logic elements three-dimensionally, that is, three-dimensionally, on a wafer. In contrast, when configuring the same circuit function with a CMOS device, it is possible to have the same planar area on the chip, and further,
It is an object of the present invention to provide a CMOS device having a structure that makes it possible to eliminate the latch-up phenomenon, which is a structural defect of CMOS devices.

第5図に、本発明の詳細な説明する為のCMOSデバイ
スの断面概略図を示す。第5図のようにNチャネルMO
8)ランリスタを有し、前記NチャネルMO8)ランリ
スタが形成されている半導体チップの表面に対して垂直
方向に対向し、がっ、絶縁膜によシ、構造的に前記Nチ
ャネルMOSトランジスタと分離されたPチャネルMO
B):Itンジリスを有し、前記NチャネルMOSトラ
ンジスタのゲートと、前記PチャネルMO8)ランリス
タのゲートが共に、前記NチャネルMO8)ランリスタ
が形成されているP型MO8牛導体と、前記Pチャネル
MO8)ランリスタが形成されているN型M08半導体
との間にはさまれて存在することを特徴とする。
FIG. 5 shows a schematic cross-sectional view of a CMOS device for explaining the present invention in detail. As shown in Figure 5, N-channel MO
8) Having a run lister, the N-channel MOS transistor 8) is perpendicularly opposed to the surface of the semiconductor chip on which the run lister is formed, and is structurally separated from the N-channel MOS transistor by an insulating film. P channel MO
B): a P-type MO8 conductor having an It conductor, in which the gate of the N-channel MOS transistor and the gate of the P-channel MO8) run-lister form the N-channel MO8) run-lister; MO8) It is characterized in that it is sandwiched between the N-type M08 semiconductor in which a run lister is formed.

つtb、前述立体構造にすることによ)、同一5− 回路機能をシリコンチップ上に0MO8構成で生成する
上において単チャネルMO8構成とほぼ同等の半導体チ
ップ上の面積を要するにとどめることを可能とする。更
に、前述立体構造にし、かつ前記NチャネルMO8)ラ
ンリスタとPチャネルMO8)ランリスタとの間にはさ
まれた絶縁膜が存在することによシ、前述従来例で説明
したような寄生バイポーラトランジスタが生成せず、従
来のCMOSデバイスの構造的欠陥とされてきたラッチ
アップ現象を除去することを可能とする。
By creating the three-dimensional structure described above), it is possible to generate the same 5-circuit function on a silicon chip with a 0MO8 configuration while occupying approximately the same area on a semiconductor chip as a single channel MO8 configuration. do. Furthermore, due to the three-dimensional structure described above and the presence of the insulating film sandwiched between the N-channel MO8) runlister and the P-channel MO8) runlister, the parasitic bipolar transistor as explained in the conventional example described above is prevented. This makes it possible to eliminate the latch-up phenomenon, which has been regarded as a structural defect of conventional CMOS devices.

次に図面を参照、して本発明の一実施例を説明する。Next, an embodiment of the present invention will be described with reference to the drawings.

第5図は、本発明の詳細な説明するCMOSデバイスの
断面概略図である。
FIG. 5 is a schematic cross-sectional view of a CMOS device explaining the present invention in detail.

本実施例のCMOSインバータは、NチャネルMO8)
ランリスタ部分をP型基板に形成し、前記NチャネルM
O8)ランジスタ上にNチャネルMO8)ランジスタ用
の配線を有し、更に前記NチャネルMO8)ランリスタ
上部を被うように、絶縁膜を有し、前記絶縁膜上にエピ
タキシャル成6− 長させたN型シリコン層を有し、本N型シリコン層に形
成されたPチャネルMosト:=ンリスタを有し、前記
N型シリコン層上にPチャネルMOSトランジスタ用の
配線を有する。
The CMOS inverter of this example is N-channel MO8)
A runlister portion is formed on a P-type substrate, and the N-channel M
O8) An N-channel MO8) has wiring for the transistor on the transistor, and further has an insulating film to cover the upper part of the N-channel MO8) transistor, and an N-type transistor that is epitaxially grown on the insulating film. It has a silicon layer, a P-channel MOS transistor formed on the N-type silicon layer, and a wiring for a P-channel MOS transistor on the N-type silicon layer.

第5図において、N−MO8Tのゲート1と、P−MO
8Tのゲート20は、ポリシリ配線21によシ接続され
、本CMOSインバータの入力となる。今、VCCは正
電圧とし、入力となるポリシリ配線21に正電圧が印加
されるとポリシリ配線21に接続されているN−MO8
Tのゲートポリシリコン1が正電圧、P−MO8Tのゲ
ートポリシリコン20が正電圧となる。N−MO8Tの
ゲートポリシリコン1が正電圧になることによシ、N+
拡散層4,5にはさまれたP−拡散層4,5にはさまれ
たP−領域のゲート酸化膜2に接したP−基板6表面近
傍に電子が誘起され、結果としてチャネルが活性化され
、N−MO8Tはオン状態と々る。同時にP−MO8’
117)ゲートポリシリコン20が正電圧となるとPチ
ャネルは不活性化しオフ状態となる。従ってGNDへ接
続されているアルミ配線10が!拡散層4に接続され、
出力となるアルミ配#J12がN十拡散層5に接続され
ている為、GNDレベルが、アルミ配線10→N+拡散
層4→活性化されたチャネル→継拡散層5→アルミ配線
12(除中8.P+拡散層を通る。)、以上の経路を経
て出力にGNDレベルが伝達される。逆にポリシリ配線
21にGNDレベルが印加されるとP −MO8Tがオ
ン状態、N−MO8Tがオフ状態と々j5、VCCへ接
続されているアルミ配線11を通って、アルミ配線11
がP+拡散層7に接続され、出力となるアルミ配線12
がP+拡散層8に接続されている為、出力にvCCの正
レベルが伝達される。以上よ多、本構造により、CMO
Sインバータが構成される。
In FIG. 5, gate 1 of N-MO8T and gate 1 of P-MO8T
The gate 20 of the 8T is connected to a polysilicon wiring 21 and serves as an input to the present CMOS inverter. Now, VCC is a positive voltage, and when a positive voltage is applied to the input polysilicon wiring 21, the N-MO8 connected to the polysilicon wiring 21
The gate polysilicon 1 of T has a positive voltage, and the gate polysilicon 20 of P-MO8T has a positive voltage. Since the gate polysilicon 1 of N-MO8T becomes a positive voltage, N+
Electrons are induced near the surface of the P-substrate 6 in contact with the gate oxide film 2 in the P- region sandwiched between the P-diffusion layers 4 and 5, and as a result, the channel is activated. is turned on, and N-MO8T goes into the on state. At the same time P-MO8'
117) When the gate polysilicon 20 becomes a positive voltage, the P channel is inactivated and turned off. Therefore, the aluminum wiring 10 connected to GND! connected to the diffusion layer 4;
Since the output aluminum wire #J12 is connected to the N+ diffusion layer 5, the GND level changes from aluminum wire 10 → N+ diffusion layer 4 → activated channel → relay diffusion layer 5 → aluminum wire 12 (excluding 8. Passes through the P+ diffusion layer.), and the GND level is transmitted to the output via the above path. Conversely, when the GND level is applied to the polysilicon wiring 21, the P-MO8T is turned on, the N-MO8T is turned off, and so on.
is connected to the P+ diffusion layer 7 and serves as an output aluminum wiring 12
is connected to the P+ diffusion layer 8, so the positive level of vCC is transmitted to the output. Above all, with this structure, CMO
An S inverter is configured.

本実施例において明らか力ように、チップ上に構成され
た本CMOSデバイスは、従来のCMOSデバイスに比
し、チップ上の平面的表面積を小さく抑え、更に、N−
MO8TとP −MO8Tを構造的に分離し、配置する
ことによシ、ラッテアップ動作現象を除去することに成
功している。
As is clear from this example, the present CMOS device configured on a chip has a smaller planar surface area on the chip than conventional CMOS devices, and also has an N-
By structurally separating and arranging the MO8T and the P-MO8T, the ratte-up phenomenon has been successfully eliminated.

本発明は、以上説明したように、CMOSデバイスを立
体構造にすることにより、単チャネル型MOSデバイス
に対し、0MOsデバイスで同一回路機能を構成する上
においてチップ上で同等の平面的な面積を有することを
可能とし、更に、立体構造かつ、N−MO8TとP−M
O8Tを構造的に分離し、配置することによシ、従来の
CMOSデバイスの構造的欠陥に起因していたラッチア
ップ動作現象を除去する効果を持つ。
As explained above, the present invention provides a CMOS device with a three-dimensional structure so that a 0MOS device can have the same planar area on a chip as compared to a single channel MOS device when configuring the same circuit function. Furthermore, the three-dimensional structure and N-MO8T and P-M
The structural isolation and placement of O8T has the effect of eliminating the latch-up behavior phenomenon caused by structural defects in conventional CMOS devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、N−MO8’l’構成の3人力NORゲート
回路を示す図である。 第2図は、C−biO8T構成の3人力NORゲート回
路を示す図である。 第3図は、従来のCMOSデバイスの断面概略図゛を示
したものであfi、1,8.9・・・・・・P 拡散層
、5.12・・・・・・N+拡散層、2,7・・・・・
・N+チャネルストツバ、3,6,10・・・・・・P
+チャネルストッパ、4・・・・・・Pウェル、25・
・・・・・N型シリコ/基板、18・・・・・・シリコ
ン酸化膜、19・・・・・・ゲートシリコン酸化9− 膜、20・・・・・・ゲートポリシリコン、17・・・
・・・アルミ配線、16・・・・・・入力端子。 帛4図は、第3図において示した寄生バイポーラトラン
ジスタが主要因となってランチアップ動作現象を引き起
こす動作原理を説明する為に、第3図の寄生バイポーラ
トランジスタを用いて回路化した回路図である。 第5図は、本発明の詳細な説明する為のCMOSデバイ
スの概略断面図である。 1・・・・・・N−MO8Tのゲートポリシリコン、2
・・・・・・N−MO8Tのゲート酸化膜、20・・・
・・・P−MO8Tのゲートポリシリコン、3・・・・
・・P −MOS Tのゲート酸化膜、4,5・・・・
・・N+拡散層、7,8・・・・・・P+拡散層、6・
・・・・・Piシリコン基板、9・・・・・・Nuエピ
タキシャル成長層、10.14・・・・・・GND(接
地)へ接続されるアルミ配線、11.13・・・・・・
VCC(電源)へ接続されるアルミ配線、12・・・・
・・出力となるアルミ配置、15.16・・・・・・N
+チャネルストッパ、17.18・・・・・・P+チャ
ネルストッパ、19・・・・・・絶縁膜、21・・・・
・・入力となるポリシリコン配線。
FIG. 1 is a diagram showing a three-man power NOR gate circuit having an N-MO8'l' configuration. FIG. 2 is a diagram showing a three-man power NOR gate circuit having a C-biO8T configuration. FIG. 3 shows a schematic cross-sectional view of a conventional CMOS device. fi, 1, 8.9...P diffusion layer, 5.12...N+ diffusion layer, 2,7...
・N+ channel stopper, 3, 6, 10...P
+ Channel stopper, 4...P well, 25.
...N-type silicon/substrate, 18...Silicon oxide film, 19...Gate silicon oxide 9- film, 20...Gate polysilicon, 17...・
...Aluminum wiring, 16...Input terminal. Figure 4 is a circuit diagram using the parasitic bipolar transistor shown in Figure 3 in order to explain the operating principle that causes the launch-up operation phenomenon mainly caused by the parasitic bipolar transistor shown in Figure 3. be. FIG. 5 is a schematic cross-sectional view of a CMOS device for explaining the present invention in detail. 1...N-MO8T gate polysilicon, 2
・・・・・・N-MO8T gate oxide film, 20...
...P-MO8T gate polysilicon, 3...
・・P-MOS T gate oxide film, 4, 5...
...N+ diffusion layer, 7, 8...P+ diffusion layer, 6.
...Pi silicon substrate, 9...Nu epitaxial growth layer, 10.14...Aluminum wiring connected to GND (ground), 11.13...
Aluminum wiring connected to VCC (power supply), 12...
...Aluminum arrangement for output, 15.16...N
+ channel stopper, 17.18...P+ channel stopper, 19...insulating film, 21...
...Polysilicon wiring that serves as input.

Claims (1)

【特許請求の範囲】[Claims] 絶縁膜で構造的に分離されたNチャネルMOSトランジ
スタと、PチャネルMO8)9ンジスタを有し、前記N
チャネルMOSトランジスタのゲートと、前記Pチャネ
ルMO8)ランリスタのゲートが共に、前記Nチャネル
MO8)?ンリスタが形成されているP型半導体領域と
、前記PチャネルMO8)ランリスタが形成されている
N型半導体領域との間にはさまれて存在することを特徴
とする3次元論理回路。
It has an N-channel MOS transistor and a P-channel MOS transistor that are structurally separated by an insulating film, and the N
Both the gate of the channel MOS transistor and the gate of the P-channel MO8) run lister are connected to the N-channel MO8)? A three-dimensional logic circuit, characterized in that it is sandwiched between a P-type semiconductor region in which a run lister is formed and an N-type semiconductor region in which a P-channel MO8) run lister is formed.
JP58183418A 1983-09-30 1983-09-30 Three-dimensional logic circuit Pending JPS6074660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58183418A JPS6074660A (en) 1983-09-30 1983-09-30 Three-dimensional logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58183418A JPS6074660A (en) 1983-09-30 1983-09-30 Three-dimensional logic circuit

Publications (1)

Publication Number Publication Date
JPS6074660A true JPS6074660A (en) 1985-04-26

Family

ID=16135427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58183418A Pending JPS6074660A (en) 1983-09-30 1983-09-30 Three-dimensional logic circuit

Country Status (1)

Country Link
JP (1) JPS6074660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982266A (en) * 1987-12-23 1991-01-01 Texas Instruments Incorporated Integrated circuit with metal interconnecting layers above and below active circuitry
EP0578926A1 (en) * 1992-06-22 1994-01-19 Motorola, Inc. A semiconductor device with sidewall channel and method of formation
WO2010116429A1 (en) * 2009-04-06 2010-10-14 パナソニック株式会社 Cmos circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982266A (en) * 1987-12-23 1991-01-01 Texas Instruments Incorporated Integrated circuit with metal interconnecting layers above and below active circuitry
EP0578926A1 (en) * 1992-06-22 1994-01-19 Motorola, Inc. A semiconductor device with sidewall channel and method of formation
WO2010116429A1 (en) * 2009-04-06 2010-10-14 パナソニック株式会社 Cmos circuit

Similar Documents

Publication Publication Date Title
US4825275A (en) Integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias
US5994740A (en) Semiconductor device
EP0178991B1 (en) A complementary semiconductor device having high switching speed and latchup-free capability
KR100211539B1 (en) Electrostatic discharge protection device of semiconductor device and manufacture thereof
JPS6074660A (en) Three-dimensional logic circuit
JP3188779B2 (en) Semiconductor device
US4622571A (en) CMOS integrated circuit device
JPS62174965A (en) Integrated circuit
JP2730450B2 (en) Semiconductor device
JPS5944782B2 (en) semiconductor integrated circuit
JP2530033B2 (en) Insulated gate type integrated circuit
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof
JPH02105566A (en) Complementary semiconductor device
JP3350523B2 (en) Semiconductor device
JP3057698B2 (en) Semiconductor device
JPH11214531A (en) High breakdown voltage semiconductor device and manufacture thereof
JP2001156181A (en) Semiconductor device
JPS62285463A (en) Complementary mos integrated circuit device
JPH0697374A (en) Semiconductor integrated circuit
JPS61208863A (en) Cmos semiconductor device
KR100262526B1 (en) Data output buffer having a electrostatic discharge structure
JPS60119774A (en) Semiconductor device and manufacture thereof
JPH09306999A (en) Semiconductor device
JPH04207068A (en) Composite type semiconductor device
JPS59193065A (en) Transistor device