JPS6074605A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPS6074605A
JPS6074605A JP58182749A JP18274983A JPS6074605A JP S6074605 A JPS6074605 A JP S6074605A JP 58182749 A JP58182749 A JP 58182749A JP 18274983 A JP18274983 A JP 18274983A JP S6074605 A JPS6074605 A JP S6074605A
Authority
JP
Japan
Prior art keywords
spacer
conductor
superconducting
spacers
turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58182749A
Other languages
Japanese (ja)
Other versions
JPH0464165B2 (en
Inventor
Yoshihisa Sato
義久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58182749A priority Critical patent/JPS6074605A/en
Publication of JPS6074605A publication Critical patent/JPS6074605A/en
Publication of JPH0464165B2 publication Critical patent/JPH0464165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To eliminate generation of bending stress or sheering stress of a superconductor due to stress of a spacer between turns by making the length of conductor winding direction of the spacer between turns longer than the interval between the spacers and providing a notch on the part of the spacer to reduce the rate of the spacers. CONSTITUTION:A superconductor 3 is wound concentrically a required number of times and plural number of spacers 21 between turns inserted between the conductors are made the length l of conductor winding directon longer than the interval p of the spacer and a part of the spacer is removed to make a U-shape. The spacer is inserted at the interval p while the conductor is wound and the spacer 21 between turns inserted between the inner conductors 3 and the spacer 21 inserted between the outer conductors 3 overlap at both the ends of conductor winding direction in their relative positions. This eliminates generation bending stress or sheering stress of the inner superconductor 3 when the spacers 21 are inserted between the outer turns of the conductor while the superconductor 3 is wound.

Description

【発明の詳細な説明】 本発明は核融合装置等に使用する超電導磁石に係り、特
に超電導磁石本体を冷却するための流路を形成するスペ
ーサの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting magnet used in a nuclear fusion device or the like, and particularly relates to an improvement in a spacer forming a flow path for cooling a superconducting magnet body.

〔発明の技術的背景〕[Technical background of the invention]

近年、超電導現象を利用した装置は磁石浮上列車、エネ
ルギー貯蔵、回転電機、核融合装置等広い範囲にわたっ
て採用されつつある。特に核融合装置は実用化に向けて
装置の大型化が著しく、これに使用される大型超電導磁
石の開発が必要不可欠となっている。
In recent years, devices that utilize superconductivity have been widely adopted, including magnetic levitation trains, energy storage, rotating electric machines, and nuclear fusion devices. In particular, nuclear fusion devices are becoming significantly larger as they move toward practical use, making it essential to develop large superconducting magnets for use in these devices.

一般に超電導状態を作り出すためには、超電導線材で成
形された磁石本体を液体ヘリウムまだは超臨介ヘリウム
等の冷媒によって極低温に冷却する必要がある。このた
め、超電導磁石本体は通常真空断熱された容器の中に収
納されている。
Generally, in order to create a superconducting state, it is necessary to cool a magnet body made of superconducting wire to an extremely low temperature using a coolant such as liquid helium or superconducting helium. For this reason, the superconducting magnet body is usually housed in a vacuum-insulated container.

ところで従来の超電導磁石としては、超電導導体を所定
回数巻回するとともにその各導体間に複数個のターン間
スペーサを適宜の間隔を存して挿入して単位コイルを成
形し、この単位コイルを複数個軸方向に積層するととも
にその各積層間に複数個の層間スペーサを適宜の間隔を
存して介挿した超電導磁石本体を構成し、この超電導磁
石本体を真空断熱された極低温容器内へ に液体す斗すウム等の冷媒とともに収納するようにした
ものがある。
By the way, conventional superconducting magnets are made by winding a superconducting conductor a predetermined number of times and inserting a plurality of inter-turn spacers at appropriate intervals between each conductor to form a unit coil. A superconducting magnet body is constructed by laminating the individual layers in the axial direction and inserting a plurality of interlayer spacers at appropriate intervals between the laminated layers, and the superconducting magnet body is placed in a vacuum-insulated cryogenic container. Some are designed to be stored together with a refrigerant such as liquid sutosuumu.

第1図乃至第3図はかかる超電導磁石において、その基
本構成要素となる単位コイルの成形過程の状態をそれぞ
れ示すものである。すなわち、第1図乃至第3図に示す
ように巻枠1の外周面に複数個のターン間スペーサ2を
適宜の間隔を存して配設し、その上に帯状の超電導導体
3を巻枠1を図示矢印方向に回転させて1ターン巻き付
け、次いで超電導導体3を引張った状態で前述と同様の
ターン間スペーサ2を順次挿入しなから巻枠1を回転さ
せることにより各導体間にターン間スペーサを挿入した
単位コイル4を成形している。
FIGS. 1 to 3 each show the state of the forming process of a unit coil, which is a basic component of such a superconducting magnet. That is, as shown in FIGS. 1 to 3, a plurality of inter-turn spacers 2 are arranged at appropriate intervals on the outer peripheral surface of a winding frame 1, and a strip-shaped superconducting conductor 3 is placed on the outer peripheral surface of the winding frame 1. 1 is wound in the direction of the arrow shown in the figure, and then, with the superconducting conductor 3 in tension, inter-turn spacers 2 similar to those described above are sequentially inserted, and the winding frame 1 is rotated to create a space between turns between each conductor. A unit coil 4 with a spacer inserted therein is molded.

この単位コイル4の各導体間に介在するターン間スペー
サ2は各導体間の電気絶縁、電磁力に対する支持および
超電導導体3を冷却する液体ヘリウム等の冷媒流路を形
成するだめのものである。
The inter-turn spacer 2 interposed between each conductor of the unit coil 4 serves to provide electrical insulation between each conductor, support against electromagnetic force, and form a coolant flow path for liquid helium or the like to cool the superconducting conductor 3.

したがって、電磁力に対する支持特性を向上させるには
スペーサ率(超電導導体3のターン方向表面積に対する
ターン間スペーサ2のターン方向表面積の割合)を上げ
ればよいが、超電導磁石を安定1運転するためには前記
スペーサ率を下げ冷却流路を充分にとる必要がある。そ
こで、通常はこのスペーサ率を50チ以下になるように
している。
Therefore, in order to improve the supporting characteristics against electromagnetic force, it is sufficient to increase the spacer ratio (the ratio of the surface area in the turn direction of the inter-turn spacer 2 to the surface area in the turn direction of the superconducting conductor 3), but in order to operate the superconducting magnet stably, It is necessary to reduce the spacer ratio and provide sufficient cooling channels. Therefore, the spacer ratio is usually set to 50 inches or less.

〔背景技術の問題点〕[Problems with background technology]

しかしこのように単位コイル4の各超電導導体3間にス
ペーサ率が50チ以下になるようにターン間スペーサ2
を介在させる場合、第2図からも明らかなようにターン
間スペーサ2の導体巻回方向の長さに対してスペーサ間
隔が大きく、シかも各ターン間におけるスペーサの配置
位置が径方に同一線上に並ばないため、超電導導体3の
巻き付は時にそのターン間に挿入されたターン間スペー
サ2が強く押圧されるとその内側の超電導導体3に対し
て曲げ応力、剪断応力を与える結果となる。このため、
超電導導体3の絶縁特性が劣化するばかりでなく、極端
な場合には第3図に点線にて示すように内側の超電導導
体3がスペーサ間に落ち込み、ターン間絶縁不良を生ず
る等の欠点があった。
However, in this way, spacers 2 between turns are placed between each superconducting conductor 3 of a unit coil 4 so that the spacer ratio is 50 inches or less.
As is clear from Fig. 2, the spacer spacing is large relative to the length of the inter-turn spacer 2 in the conductor winding direction, and the spacer placement position between each turn may be on the same line in the radial direction. Because the superconducting conductor 3 is not aligned, the winding of the superconducting conductor 3 sometimes results in applying bending stress and shearing stress to the superconducting conductor 3 inside when the inter-turn spacer 2 inserted between the turns is strongly pressed. For this reason,
Not only does the insulation property of the superconducting conductor 3 deteriorate, but in extreme cases, the inner superconducting conductor 3 falls between the spacers as shown by the dotted line in FIG. 3, resulting in defects such as poor insulation between turns. Ta.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような欠点を除去すべくなされたもので
、その目的は単位コイルのスペーサ率を下げても超電導
導体間に挿入されるターン間スペーサの押圧力による超
電導導体の曲げ応力、剪断応力の発生をなくすことがで
きる堅牢かつ特性に優れた超電導磁石を提供するにある
The present invention has been made to eliminate the above-mentioned drawbacks, and its purpose is to reduce the bending stress and shear of the superconducting conductor due to the pressing force of the inter-turn spacer inserted between the superconducting conductors even if the spacer ratio of the unit coil is reduced. It is an object of the present invention to provide a superconducting magnet that is robust and has excellent characteristics and can eliminate the generation of stress.

〔発明の概要〕[Summary of the invention]

本発明はかかる目的を達成するため、超電導導体を同心
円状に所定回数巻回し且つ各導体間に複数個のターン間
スペーサを適宜の間隔を存して挿入してなる単位コイル
を基本構成要素とする超電導磁石本体を真空断熱された
容器内にへ 液体=M IJウム等の冷媒とともに収納した超電導磁
石において、前記単位コイルを構成する各超電導導体間
に挿入されるターン間スペーサの導体巻回方向長さをス
ペーサ間隔より長くし且つそのスペーサの一部に切り欠
き部を設けてスペーサ率を小さくしたことを特徴として
いる。
In order to achieve this object, the present invention uses a unit coil as a basic component, which is formed by winding a superconducting conductor concentrically a predetermined number of times and inserting a plurality of inter-turn spacers at appropriate intervals between each conductor. In a superconducting magnet whose main body is housed in a vacuum-insulated container together with a refrigerant such as a liquid (MIJ), the conductor winding direction of the inter-turn spacer inserted between each superconducting conductor constituting the unit coil is It is characterized in that the length is longer than the spacer interval and a notch is provided in a part of the spacer to reduce the spacer ratio.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第4図は本発明による超電導磁石の基本構成要素となる
単位コイルの部分的な構成例を示すもので、その成形手
段は第1図の場合と同様なのでその説明を省略し、ここ
では異なる点について述べる。すなわち、本実施例では
第4図(a)。
FIG. 4 shows an example of a partial configuration of a unit coil which is a basic component of the superconducting magnet according to the present invention.The forming means thereof are the same as in the case of FIG. Let's talk about. That is, in this example, FIG. 4(a).

(b)に示すように超電導導体3が同心円状に所定回数
巻回され且つその各導体間に挿入される複数個のターン
間スペーサ21として、導体巻回方向のスペーサ長さl
がスペーサ間隔pより大きく(l!〉p)シ、且つその
一部を切り欠いてコの字形状のスペーサとしたものであ
る。
As shown in (b), a superconducting conductor 3 is wound concentrically a predetermined number of times, and a plurality of inter-turn spacers 21 are inserted between each conductor, the spacer length l in the conductor winding direction.
is larger than the spacer interval p (l!>p), and a part thereof is cut out to form a U-shaped spacer.

したがって、このようなス(−サ長さを有するコの字形
状のターン間スペーサ21を図示す6− る如く超電導導体3を巻回しながらスペーサ間隔pを存
して挿入していくことにより、内側の超電導導体3間に
挿入されたターン間スペーサ21と外側の超電導導体3
間に挿入されたターン間21とはその導体巻回方向両端
部がラップするような位置関係となる。このため、超電
導導体30巻き付は時に外側のターン間スペーサ21が
押圧されてもその内側の超電導導体3に曲げ応力や剪断
応力を生じるようなことがなく、この超電導導体3がそ
の下側のスペーサ間に落ち込むこともないので、ターン
間の絶縁特性が損なわれることがない。また、単にスペ
ーサ長さlをスペーサ間隔pよりも太きく(/>p)し
たのではスペーサ率が50%以上となり、冷却効率の悪
いものになってしまうが、本実施例では矩形状のスペー
サの一部を切り欠いてコの字形としスペーサ率が50係
以下になるようにしているので、冷却流路を充分確保す
ることができ、冷却効率を向上させることができる。
Therefore, by winding the superconducting conductor 3 and inserting the U-shaped inter-turn spacer 21 having the spacer length as shown in FIG. The inter-turn spacer 21 inserted between the inner superconducting conductor 3 and the outer superconducting conductor 3
The inter-turns 21 inserted therebetween are in a positional relationship such that both ends in the conductor winding direction overlap. Therefore, when the superconducting conductor 30 is wound, even if the outer inter-turn spacer 21 is pressed, bending stress or shearing stress is not generated in the inner superconducting conductor 3, and this superconducting conductor 3 is Since it does not fall between the spacers, the insulation properties between the turns are not impaired. In addition, if the spacer length l is simply made thicker than the spacer interval p (/>p), the spacer ratio will be 50% or more, resulting in poor cooling efficiency, but in this example, the rectangular spacer Since a portion of the spacer is cut out to form a U-shape so that the spacer ratio is 50 or less, a sufficient cooling flow path can be secured and cooling efficiency can be improved.

上記実施例ではターン間スペーサ2ノとじてコの字形の
ものを用いる場合について述べたが、第5図(a)〜(
h)に示すように矩形状のスペーサの一部を切り欠いて
図示形状のターン間スペーサとしてもよいことは勿論で
ある。要するにスペーサの導体巻回方向の長さlがスペ
ーサ間隔pの長さよりも大きく、シかもその一部を切り
欠いてスペーサ率が50チ以下にできればその形状は如
何なるものであってもよい。
In the above embodiment, a case was described in which a U-shaped spacer was used as the inter-turn spacer 2.
Of course, as shown in h), a part of the rectangular spacer may be cut out to form an inter-turn spacer having the shape shown in the figure. In short, any shape may be used as long as the length l of the spacer in the conductor winding direction is greater than the length of the spacer interval p, and the spacer ratio can be reduced to 50 inches or less by cutting out a part of the spacer.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、単位コイルのスペー
サ率を下げても超電導導体間に挿入されるターン間スペ
ーサの押圧力による超電導導体の曲げ応力、剪断応力の
発生をなくすことができる堅牢かつ特性に優れた超電導
磁石が提供できる。
As described above, according to the present invention, even if the spacer ratio of the unit coil is lowered, the bending stress and shear stress of the superconducting conductor due to the pressing force of the inter-turn spacer inserted between the superconducting conductors can be eliminated. Moreover, a superconducting magnet with excellent characteristics can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来の超電導磁石の基本構成要素と
なる単位コイルの構成およびその成形過程の説明図、第
4図(a) I (b)は本発明の一実施例における単
位コイルの一部を示す構成説明図、第5図(、)〜(h
)は本発明で用いられるターン間スペーサのそれぞれ異
なる形状例を示す平面図である。 1・・・巻枠、21・・・ターン間スペーサ、3・・・
超電導導体、4・・・単位コイル。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第4図 (α) 第5図 層1扉彊同−フ
1 to 3 are explanatory diagrams of the structure of a unit coil, which is a basic component of a conventional superconducting magnet, and its forming process, and FIGS. 4(a) and 4(b) are unit coils in an embodiment of the present invention. A configuration explanatory diagram showing a part of the
) are plan views showing examples of different shapes of inter-turn spacers used in the present invention. 1... Winding frame, 21... Spacer between turns, 3...
Superconducting conductor, 4... unit coil. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 4 (α) Figure 5 Layer 1 door/f

Claims (1)

【特許請求の範囲】[Claims] 超電導体を同心円状に所定回数巻回し且つ各導体間に複
数個のターン間スペーサを適宜の間隔を存して挿入して
なる単位コイルを基本構成要素として超電導磁石本体を
構成し、この超電導磁石本体を真空断熱された容器内に
液体ヘリウム等の冷媒とともに収納した超電導磁石にお
いて、前記単位コイルを構成する超電導導体に挿入され
るターン間スペーサの導体巻回方向長さをスペーサ間隔
より長くし且つそのスペーサの一部に切り欠き部を設け
てスペーサ率を小さくしたことを特徴とする超電導磁石
A superconducting magnet main body is constructed using a unit coil as a basic component, which is formed by winding a superconductor concentrically a predetermined number of times and inserting a plurality of inter-turn spacers at appropriate intervals between each conductor, and this superconducting magnet In a superconducting magnet whose main body is housed together with a coolant such as liquid helium in a vacuum-insulated container, the length of the inter-turn spacer inserted into the superconducting conductor constituting the unit coil in the conductor winding direction is longer than the spacer interval, and A superconducting magnet characterized in that a notch is provided in a part of the spacer to reduce the spacer ratio.
JP58182749A 1983-09-30 1983-09-30 Superconducting magnet Granted JPS6074605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182749A JPS6074605A (en) 1983-09-30 1983-09-30 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182749A JPS6074605A (en) 1983-09-30 1983-09-30 Superconducting magnet

Publications (2)

Publication Number Publication Date
JPS6074605A true JPS6074605A (en) 1985-04-26
JPH0464165B2 JPH0464165B2 (en) 1992-10-14

Family

ID=16123760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182749A Granted JPS6074605A (en) 1983-09-30 1983-09-30 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS6074605A (en)

Also Published As

Publication number Publication date
JPH0464165B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
KR100635170B1 (en) Superconducting magnetic coil
JP2001244109A (en) High-temperature superconducting coil device
US3766502A (en) Cooling device for superconducting coils
JPH10214713A (en) Superconducting coil
JPS6074605A (en) Superconducting magnet
JPS61229306A (en) Superconducting coil
JPH06260335A (en) High temperature superconducting magnet
JPS6074604A (en) Superconducting magnet
JPH07504068A (en) Stable flux jump resistant superconducting tape and superconducting magnet
JP2004259737A (en) Superconducting transformer
Rodenbush et al. Performance of high temperature superconducting coils for implementation into megawatt class generators
JPS638602B2 (en)
JPS5965410A (en) Manufacture of superconductive coil
JPS6242514Y2 (en)
JPS5810157Y2 (en) Coil for nuclear fusion device
JPS6119087B2 (en)
JPS59151404A (en) Superconductive coil
JPH08162316A (en) Superconducting magnet apparatus
JPH02232903A (en) Superconducting coil device
JPS61265881A (en) Thermal type superconductive switch
JPS602070A (en) Manufacture of superconductive rotary electric machine
JPS629606A (en) Superconductive coil
JPH0482205A (en) Superconducting coil apparatus
JP2004055913A (en) Noninductive winding, its forming method and persistent current switch
JPS57118608A (en) Super-conductive coil