JP2004259737A - Superconducting transformer - Google Patents

Superconducting transformer Download PDF

Info

Publication number
JP2004259737A
JP2004259737A JP2003045683A JP2003045683A JP2004259737A JP 2004259737 A JP2004259737 A JP 2004259737A JP 2003045683 A JP2003045683 A JP 2003045683A JP 2003045683 A JP2003045683 A JP 2003045683A JP 2004259737 A JP2004259737 A JP 2004259737A
Authority
JP
Japan
Prior art keywords
superconducting
winding
voltage winding
peripheral surface
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003045683A
Other languages
Japanese (ja)
Inventor
Kazuji Iwadate
和二 岩舘
Takaaki Bono
敬昭 坊野
Akira Tomioka
章 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003045683A priority Critical patent/JP2004259737A/en
Publication of JP2004259737A publication Critical patent/JP2004259737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting transformer that has a low % impedance and, in addition, an entirely simple cooling structure, electromagnetic force supporting structure, and insulating structure, and can prevent the occurrence of dielectric breakdowns by maintaining the insulating characteristics between a high-voltage winding and a low-voltage winding. <P>SOLUTION: The low-voltage winding 2 and high-voltage winding 3 each having one or a plurality of layers of cylindrically wound superconducting coil are provided concentrically around the center axis of an iron core 1. The superconducting coils are constituted by winding superconducting wires around a cylindrical bobbin along spiral grooves formed on the outer peripheral surface of the bobbin and winding electromagnetic force supporting tapes around the superconducting wires in overlapping states and binding the tapes with the wires, and then, installing a plurality of cooling ducts to the outer peripheral surface of the cylindrical bobbin in the direction of its cylindrical axis. In addition, an insulating cylinder 10 made of an electrical insulating material is concentrically provided between the low- and high-voltage windings 2 and 3 at prescribed intervals from the outer peripheral surface of the winding 2 and the inner peripheral surface of the winding 3. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、超電導線材を巻線してなる超電導変圧器に関する。
【0002】
【従来の技術】
超電導コイルは高磁界発生手段として種々の分野で実用されている。一方、変圧器のような交流機器への超電導コイルの適用は、超電導導体が交流によって損失を発生するという現象があることから、その実用化は、あまり進んでいない。
【0003】
しかしながら、近年、超電導導体素線の細線化による交流損失の小さな超電導線が開発されて以来、変圧器などの交流機器への適用研究が進展し、超電導変圧器の構成に関しても、後述するように種々の提案が行われている(例えば、特許文献1〜3参照)。
【0004】
この場合の超電導導体としては、液体ヘリウムの蒸発温度である4Kの極低温で超電導状態を維持する金属超電導体を使用した超電導線が、実用的な超電導材料として、主に使用されるが、最近では、前記特許文献にも記載されたように、酸化物超電導体を適用した超電導コイルの開発も進められている。この酸化物超電導体は高温超電導体とも呼ばれており、この高温超電導体を使用した場合には、金属超電導体を使用した場合に比べて、その冷却温度が高く、例えば液体窒素で冷却すればよいため、運転コストが低い利点がある。
【0005】
図3は、超電導変圧器の模式的部分断面図を示す。図3において、鉄心1、内側コイル2、外側コイル3は、それぞれ鉄心の中心軸を軸心として同心状に配置されており、前記中心軸は図3における鉄心1の左側にある。従って、鉄心1の中心軸部の外径側に内側コイル2、更にその外径側に外側コイル3が配置されている。なお、変圧器の場合、一般的に内側コイルを低圧巻線、外側コイルを高圧巻線としている。
【0006】
また、高温超電導体を使用した場合、内側コイル2および外側コイル3は、図示しない冷却容器内に収納支持され、液体窒素に浸漬冷却されている。さらに、巻線の同心状に配置される各コイルの位置合わせを行なって、各コイルを支持するために、巻線の軸方向両端部には、円板に円環状の溝加工を施した巻線支持部材9が設けられ、これにより各コイルを挟み込んで支持し、図示しない貫通ボルトにより固定する構成としている。
【0007】
上記変圧器の場合、前記低圧巻線と高圧巻線との巻回数の比は、ほぼ変圧比に比例する。例えば、変圧比2の変圧器の場合、高圧巻線の巻回数は、低圧巻線の巻回数のほぼ2倍となる。この場合、低圧巻線が1層の場合には、高圧巻線を2層構造として構成するのが一般的である。図3は、変圧比2の場合であって、内側コイル(低圧巻線)を2層、外側コイル(高圧巻線)を4層とした場合の模式的構造図を示す。
【0008】
ところで、超電導変圧器においては、超電導線材の冷却や超電導コイルに発生する電磁力の支持等の観点から、変圧器巻線としての超電導コイルの構成が重要となる。
【0009】
特許文献1には、電気絶縁性材料からなる円筒状巻枠の外周面側に螺旋状の溝を形成し、この溝に沿って超電導線材を巻回して超電導コイルを形成する超電導変圧器の基本的構成が開示されている。
【0010】
また、特許文献2は、本発明と同一出願人により先に出願されたもので、前記超電導線材の冷却や超電導コイルに発生する電磁力の支持に関して好ましい構造を備えた超電導コイルを開示している。特に、特許文献2の図6および図7に記載された構成は、上記観点から特に好ましく、その構成の骨子は、「巻枠の外周側に巻回したテープ状の超電導線材に対して、その外周側に半硬化状樹脂を含浸させたガラス,ポリエステル繊維などのバインドテープを巻き付けた上で、樹脂を硬化処理して超電導線材を外側から緊縛するようにし、さらに、巻枠の外周側軸方向に液体窒素が通流する複数個の冷却ダクトを構成した」点にある。
【0011】
さらに、特許文献3は、上記特許文献2に記載の超電導コイルをさらに改良したものを開示し、短絡事故などの際に加わる過大な電磁力で超電導線材が破損するのを防護し、併せて短絡電流による超電導線材の常電導化転移に伴う過大な発熱を巧みに防ぐようにした機械的,熱的に信頼性の高い誘導機器の超電導コイルを提供することを目的としている。
【0012】
図2は、特許文献3の図1に開示された超電導コイルの構造を示し、図2(a)は超電導コイルの縦断側面図、図2(b)は図2(a)の横断平面図を示す。図2の構成においては、巻枠4の外周面側に巻回したテープ状の超電導線材5に沿って、その外周側に常電導体の金属テープ6が巻き付けてある。この金属テープ6には、極低温での使用が可能な銅または銅合金,チタン,ステンレス鋼などのテープを採用し、超電導線材5に重ね合わせて巻枠4の周面に形成した凹溝内に敷設し、さらにその周域にエポキシ樹脂などの接着剤を塗布して硬化処理し、強固にバインドするようにしている。この構成により、外側コイル(高圧巻線)3に加わる半径方向に外向きの力を支持できる。
【0013】
また、金属テープ6が伝熱材として超電導線材5に発生したジュール熱を周囲に流れる冷媒(液体窒素など)に放熱させるように機能し、その結果として、短絡電流による超電導線材5のジュール発熱に起因する急激な温度上昇を抑制できる。
【0014】
【特許文献1】
特開平1−286304号公報(第1−2頁、図1−3)
【特許文献2】
特開2000−133515号公報(第5−6頁、図6,7)
【特許文献3】
特開2001−244108号公報(第3−4頁、図1)
【0015】
【発明が解決しようとする課題】
ところで、変圧器の場合、高電圧で使用されるため、超電導巻線間(ターン間)、コイルの層間、高圧巻線−低圧巻線間において、それぞれ所定の絶縁性能が必要となる。このうち、ターン間および層間は、絶縁距離を適度に設定することにより所定の絶縁性能を有する構成とすることが容易に可能である。
【0016】
しかしながら、高圧巻線−低圧巻線間の距離(図3におけるα)は、変圧器の%インピーダンス値と相関関係があるため、任意に設定することができない。図3に示すような従来の変圧器の場合、高圧巻線の内周面と低圧巻線の外周面との間隔αは、変圧器の仕様である%インピーダンスに基づき所定の値に決定される。一方、高圧巻線−低圧巻線間の絶縁破壊電圧は、液体窒素の絶縁特性により決まるため、%インピーダンスが小さく選定されてαが小さくなった場合、高圧巻線−低圧巻線間で絶縁破壊する可能性がある。即ち、%インピーダンスの小さな変圧器を設計する場合、高圧巻線−低圧巻線間の距離αを小さくせざるを得ないため、必要な絶縁距離を保持できなくなる問題がある。
【0017】
この発明は、上記のような問題点を解消するためになされたもので、本発明の課題は、前記%インピーダンスの小さな変圧器の場合においても、高圧巻線−低圧巻線間の絶縁性能を保持し絶縁破壊を防止可能とすると共に、冷却構造や電磁力支持構造ならびに絶縁構造が全体的にシンプルな超電導変圧器を提供することにある。
【0018】
【課題を解決するための手段】
前述の課題を解決するため、この発明は、鉄心の中心軸を軸心とする同心円筒状に、円筒層状の超電導コイルを1層もしくは複数層有する低圧巻線と高圧巻線とを配設し、冷却容器内に収納支持してなる超電導変圧器において、前記超電導コイルは、電気絶縁性材料からなる円筒状巻枠の外周面側に螺旋状の溝を形成し、この溝に沿って超電導線材を巻回し、この超電導線材に重ねてその外周側に電磁力支持用のテープを巻回してバインドし、かつ前記円筒状巻枠の外周面側の円筒軸方向に、複数個の冷却ダクトを有してなるものとし、さらに、前記低圧巻線と高圧巻線との間に、電気絶縁性材料からなる絶縁円筒を、低圧巻線の外周面および高圧巻線の内周面とそれぞれ所定の間隙をもって前記同心円筒状に配設したものとする(請求項1の発明)。
【0019】
上記発明によれば、高圧巻線と低圧巻線間に絶縁円筒を挿入することにより高圧巻線−低圧巻線間の絶縁耐力を向上でき、絶縁破壊を防止することができる。また、巻線の単位となる円筒層状の超電導コイルは、前記構成により、それ自体で独立的に電磁力支持および冷却が可能に構成されているので、絶縁円筒は、電磁力支持構成および冷却構成とは無関係に組み立てが可能となり、全体的な構造がシンプルとなる。
【0020】
前記請求項1の発明の実施態様としては、下記請求項2ないし6の発明が好ましい。即ち、請求項1に記載の超電導変圧器において、前記電磁力支持用のテープは、半硬化状樹脂含浸ガラスバインドテープとする(請求項2の発明)。また、請求項1に記載の超電導変圧器において、前記電磁力支持用のテープは、常導電体の金属テープとする(請求項3の発明)。これらの実施態様に係る作用効果は、特許文献2および3に関わる前述の記載どおりである。
【0021】
さらに、前記絶縁円筒に関わる実施態様としては、下記請求項4の発明が好ましい。即ち、前記請求項1ないし3のいずれか1項に記載の超電導変圧器において、前記絶縁円筒は、エポキシ樹脂およびガラス繊維を主材とするFRPからなるものとする。
【0022】
また、前記請求項4に記載の超電導変圧器において、前記絶縁円筒は、半硬化状のエポキシガラスプリプレグシートを複数回巻回して硬化処理してなるものとする(請求項5の発明)。これにより、絶縁円筒の製造が容易となる。
【0023】
さらにまた、下記請求項6の発明のようにすることもできる。即ち、請求項4に記載の超電導変圧器において、前記絶縁円筒は、前記FRPの薄板状の絶縁シートを複数回巻回してエポキシ樹脂を塗布して硬化処理してなるものとする。これは、比較的大型装置の絶縁円筒の製造の場合であって、シートの巻回が困難な場合に好適である。
【0024】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下に述べる。
【0025】
図1は、本発明の実施例に関わる超電導変圧器の模式的部分断面図を示す。図1において、図3における部材と同一機能を有する部材には、同一番号を付して詳細な説明を省略する。
【0026】
図1の実施例と図3に示す超電導変圧器との相違点は、図1においては、内側コイル(低圧巻線)2と外側コイル(高圧巻線)3との間に、電気絶縁性材料からなる絶縁円筒10を、低圧巻線2の外周面および高圧巻線3の内周面とそれぞれ所定の間隙をもって、鉄心1の中心軸を軸心とする同心円筒状に配設した点である。
【0027】
絶縁円筒10の材質は、前述のようにエポキシ樹脂およびガラス繊維を主材とするFRPとし、半硬化状のエポキシガラスプリプレグシートを複数回巻回して硬化処理してなるもの、もしくは、前記FRPの薄板状の絶縁シートを複数回巻回してエポキシ樹脂を塗布して硬化処理してなるものとする。絶縁円筒10の厚さ及び前記間隙の寸法等は、超電導変圧器の仕様に基づいて設計上決定する。
【0028】
なお、前記低圧巻線の外周面および高圧巻線の内周面と絶縁円筒との両間隙は、それぞれ全周にわたって同一間隙が好ましい。その理由は、例えば絶縁円筒をFRP(誘電率4.5)、冷却媒体を液体窒素(誘電率1.3)とした場合、間隙が偏ると、電界集中が発生して好ましくないからである。
【0029】
また、低圧巻線および高圧巻線を形成する各コイルの構成は、図2に示すように、電気絶縁性材料からなる円筒状巻枠の外周面側に螺旋状の溝を形成し、この溝に沿って超電導線材を巻回し、この超電導線材に重ねてその外周側に電磁力支持用のテープを巻回してバインドし、かつ前記円筒状巻枠の外周面側の円筒軸方向に、複数個の冷却ダクトを有してなるものとする。
【0030】
【発明の効果】
この発明によれば前述のように、鉄心の中心軸を軸心とする同心円筒状に、円筒層状の超電導コイルを1層もしくは複数層有する低圧巻線と高圧巻線とを配設し、冷却容器内に収納支持してなる超電導変圧器において、
前記超電導コイルは、電気絶縁性材料からなる円筒状巻枠の外周面側に螺旋状の溝を形成し、この溝に沿って超電導線材を巻回し、この超電導線材に重ねてその外周側に電磁力支持用のテープを巻回してバインドし、かつ前記円筒状巻枠の外周面側の円筒軸方向に、複数個の冷却ダクトを有してなるものとし、さらに、前記低圧巻線と高圧巻線との間に、電気絶縁性材料からなる絶縁円筒を、低圧巻線の外周面および高圧巻線の内周面とそれぞれ所定の間隙をもって前記同心円筒状に配設したものとしたので、
%インピーダンスの小さな変圧器の場合においても、高圧巻線−低圧巻線間の絶縁性能を保持し絶縁破壊を防止可能とすると共に、冷却構造や電磁力支持構造ならびに絶縁構造が全体的にシンプルな超電導変圧器を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例に関わる超電導変圧器の模式的部分断面図
【図2】特許文献3に開示されかつ本発明の実施例にも関わる超電導コイルの構造を示す図
【図3】従来の超電導変圧器の一例の模式的部分断面図
【符号の説明】
1:鉄心、2:内側コイル(低圧巻線)、3:外側コイル(高圧巻線)、4:巻枠、4a:冷却ダクト、5:超電導線材、6:金属テープ、9:巻線支持部材、10:絶縁円筒、α:高圧巻線−低圧巻線間の距離。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a superconducting transformer formed by winding a superconducting wire.
[0002]
[Prior art]
Superconducting coils are used in various fields as high magnetic field generating means. On the other hand, the practical application of superconducting coils to AC equipment such as transformers has not progressed much because of the phenomenon in which superconducting conductors generate losses due to alternating current.
[0003]
However, in recent years, since superconducting wires with small AC loss due to thinning of superconducting conductor wires were developed, research on application to AC equipment such as transformers has progressed, and the configuration of superconducting transformers will also be described later. Various proposals have been made (for example, see Patent Documents 1 to 3).
[0004]
As a superconducting conductor in this case, a superconducting wire using a metal superconductor that maintains a superconducting state at an extremely low temperature of 4 K, which is the evaporation temperature of liquid helium, is mainly used as a practical superconducting material. Then, as described in the above-mentioned patent document, development of a superconducting coil using an oxide superconductor is also in progress. This oxide superconductor is also called a high-temperature superconductor, and when using this high-temperature superconductor, the cooling temperature is higher than when using a metal superconductor. Good, there is an advantage that the operating cost is low.
[0005]
FIG. 3 shows a schematic partial sectional view of the superconducting transformer. 3, the core 1, the inner coil 2, and the outer coil 3 are arranged concentrically with the center axis of the core as an axis, and the center axis is on the left side of the core 1 in FIG. Therefore, the inner coil 2 is arranged on the outer diameter side of the central shaft portion of the iron core 1, and the outer coil 3 is further arranged on the outer diameter side. In the case of a transformer, the inner coil is generally a low-voltage winding and the outer coil is a high-voltage winding.
[0006]
When a high-temperature superconductor is used, the inner coil 2 and the outer coil 3 are housed and supported in a cooling vessel (not shown) and are immersed and cooled in liquid nitrogen. Furthermore, in order to align each coil arranged concentrically with the winding and to support each coil, a winding is performed by forming a circular groove on a disk at both ends in the axial direction of the winding. A wire support member 9 is provided, which sandwiches and supports each coil, and is fixed by a through bolt (not shown).
[0007]
In the case of the transformer, the ratio of the number of turns of the low-voltage winding to that of the high-voltage winding is substantially proportional to the transformation ratio. For example, in the case of a transformer having a transformation ratio of 2, the number of turns of the high-voltage winding is almost twice the number of turns of the low-voltage winding. In this case, when the low-voltage winding has one layer, the high-voltage winding is generally configured as a two-layer structure. FIG. 3 shows a schematic structural diagram in the case of a transformation ratio of 2, where the inner coil (low-voltage winding) has two layers and the outer coil (high-voltage winding) has four layers.
[0008]
Incidentally, in the superconducting transformer, the configuration of the superconducting coil as the transformer winding is important from the viewpoint of cooling the superconducting wire and supporting the electromagnetic force generated in the superconducting coil.
[0009]
Patent Literature 1 discloses a basic superconducting transformer in which a spiral groove is formed on the outer peripheral surface side of a cylindrical bobbin made of an electrically insulating material, and a superconducting wire is wound along this groove to form a superconducting coil. A strategic configuration is disclosed.
[0010]
Patent Document 2 discloses a superconducting coil, which was previously filed by the same applicant as the present invention and has a preferable structure with respect to cooling of the superconducting wire and supporting of an electromagnetic force generated in the superconducting coil. . In particular, the configuration described in FIG. 6 and FIG. 7 of Patent Document 2 is particularly preferable from the above viewpoint, and the gist of the configuration is “a tape-shaped superconducting wire wound on the outer peripheral side of a bobbin. After winding a binding tape such as glass or polyester fiber impregnated with semi-cured resin on the outer periphery, the resin is cured to bind the superconducting wire from the outside. A plurality of cooling ducts through which liquid nitrogen flows. "
[0011]
Further, Patent Literature 3 discloses a further improvement of the superconducting coil described in Patent Literature 2, which protects the superconducting wire from being damaged by an excessive electromagnetic force applied in the event of a short circuit or the like. It is an object of the present invention to provide a mechanically and thermally reliable superconducting coil for an induction device, which skillfully prevents excessive heat generation due to transition of a superconducting wire into a normal conducting state due to electric current.
[0012]
2 shows the structure of the superconducting coil disclosed in FIG. 1 of Patent Document 3, FIG. 2 (a) is a longitudinal side view of the superconducting coil, and FIG. 2 (b) is a cross-sectional plan view of FIG. 2 (a). Show. In the configuration shown in FIG. 2, a metal tape 6 of a normal conductor is wound around the outer peripheral side of the tape-shaped superconducting wire 5 wound around the outer peripheral surface side of the winding frame 4. As the metal tape 6, a tape made of copper or copper alloy, titanium, stainless steel, or the like that can be used at a very low temperature is employed. , And an adhesive such as an epoxy resin is applied to a peripheral area thereof, and is subjected to a hardening treatment so as to be firmly bound. With this configuration, a radially outward force applied to the outer coil (high-voltage winding) 3 can be supported.
[0013]
Further, the metal tape 6 functions as a heat transfer material to radiate Joule heat generated in the superconducting wire 5 to a refrigerant (liquid nitrogen or the like) flowing therearound. As a result, the Joule heat of the superconducting wire 5 due to a short-circuit current is generated. The resulting rapid temperature rise can be suppressed.
[0014]
[Patent Document 1]
JP-A-1-286304 (page 1-2, FIG. 1-3)
[Patent Document 2]
JP-A-2000-133515 (pages 5-6, FIGS. 6, 7)
[Patent Document 3]
JP 2001-244108 A (page 3-4, FIG. 1)
[0015]
[Problems to be solved by the invention]
Incidentally, since the transformer is used at a high voltage, a predetermined insulation performance is required between the superconducting windings (between turns), between the coils, and between the high-voltage winding and the low-voltage winding. Among them, it is possible to easily obtain a configuration having a predetermined insulation performance by appropriately setting an insulation distance between turns and between layers.
[0016]
However, the distance between the high-voltage winding and the low-voltage winding (α in FIG. 3) cannot be arbitrarily set because there is a correlation with the% impedance value of the transformer. In the case of the conventional transformer as shown in FIG. 3, the interval α between the inner peripheral surface of the high-voltage winding and the outer peripheral surface of the low-voltage winding is determined to a predetermined value based on% impedance which is a specification of the transformer. . On the other hand, the breakdown voltage between the high-voltage winding and the low-voltage winding is determined by the insulation characteristics of liquid nitrogen. there's a possibility that. That is, when designing a transformer having a small% impedance, the distance α between the high-voltage winding and the low-voltage winding must be reduced, so that there is a problem that a required insulation distance cannot be maintained.
[0017]
The present invention has been made to solve the above problems, and an object of the present invention is to improve the insulation performance between a high-voltage winding and a low-voltage winding even in the case of a transformer having a small% impedance. An object of the present invention is to provide a superconducting transformer capable of holding and preventing dielectric breakdown, and having a simple cooling structure, electromagnetic force supporting structure and insulating structure as a whole.
[0018]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a low-voltage winding and a high-voltage winding having one or more cylindrical superconducting coils in a concentric cylindrical shape with the center axis of an iron core as an axis. In the superconducting transformer housed and supported in a cooling vessel, the superconducting coil forms a spiral groove on the outer peripheral surface side of a cylindrical winding frame made of an electrically insulating material, and the superconducting wire is formed along the groove. Is wound around the superconducting wire, and a tape for supporting an electromagnetic force is wound around the outer periphery thereof for binding, and a plurality of cooling ducts are provided in the cylindrical axis direction on the outer peripheral surface side of the cylindrical winding frame. Further, an insulating cylinder made of an electrically insulating material is provided between the low-voltage winding and the high-voltage winding with a predetermined gap between the outer peripheral surface of the low-voltage winding and the inner peripheral surface of the high-voltage winding. Are arranged in the concentric cylindrical shape. Invention).
[0019]
According to the above-described invention, by inserting an insulating cylinder between the high-voltage winding and the low-voltage winding, the dielectric strength between the high-voltage winding and the low-voltage winding can be improved, and dielectric breakdown can be prevented. Further, since the cylindrical superconducting coil serving as a unit of the winding is configured to be capable of independently supporting and cooling the electromagnetic force by the above-described configuration, the insulating cylinder is configured to support the electromagnetic force and the cooling configuration. It is possible to assemble independently of the above, and the overall structure is simplified.
[0020]
As an embodiment of the invention of claim 1, the following inventions of claims 2 to 6 are preferable. That is, in the superconducting transformer according to the first aspect, the tape for supporting the electromagnetic force is a semi-cured resin-impregnated glass bind tape (the invention of the second aspect). Further, in the superconducting transformer according to the first aspect, the tape for supporting the electromagnetic force is a metal tape of a normal conductor (the invention of the third aspect). The operational effects according to these embodiments are as described above with reference to Patent Documents 2 and 3.
[0021]
Further, as an embodiment relating to the insulating cylinder, the following invention of claim 4 is preferable. That is, in the superconducting transformer according to any one of claims 1 to 3, the insulating cylinder is made of FRP mainly composed of epoxy resin and glass fiber.
[0022]
Further, in the superconducting transformer according to the fourth aspect, the insulating cylinder is formed by winding a semi-cured epoxy glass prepreg sheet a plurality of times and performing a curing treatment (the invention of the fifth aspect). This facilitates manufacture of the insulating cylinder.
[0023]
Furthermore, the present invention can be configured as in the invention of claim 6 described below. That is, in the superconducting transformer according to claim 4, the insulating cylinder is formed by winding a thin insulating sheet of the FRP a plurality of times, applying an epoxy resin, and performing a curing treatment. This is suitable for the case of manufacturing an insulating cylinder of a relatively large device, and it is suitable for a case where winding of a sheet is difficult.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0025]
FIG. 1 is a schematic partial sectional view of a superconducting transformer according to an embodiment of the present invention. 1, members having the same functions as the members in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0026]
The difference between the embodiment of FIG. 1 and the superconducting transformer shown in FIG. 3 is that, in FIG. 1, an electrically insulating material is provided between an inner coil (low-voltage winding) 2 and an outer coil (high-voltage winding) 3. Is formed in a concentric cylindrical shape centered on the central axis of the iron core 1 with a predetermined gap between the outer peripheral surface of the low-voltage winding 2 and the inner peripheral surface of the high-voltage winding 3. .
[0027]
The material of the insulating cylinder 10 is FRP mainly composed of epoxy resin and glass fiber as described above, and a semi-cured epoxy glass prepreg sheet wound a plurality of times and cured, or the FRP. It is assumed that a thin insulating sheet is wound a plurality of times, coated with an epoxy resin, and cured. The thickness of the insulating cylinder 10 and the size of the gap are determined by design based on the specifications of the superconducting transformer.
[0028]
The gap between the outer peripheral surface of the low-voltage winding and the inner peripheral surface of the high-voltage winding and the insulating cylinder is preferably the same over the entire circumference. The reason is that, for example, when the insulating cylinder is made of FRP (dielectric constant 4.5) and the cooling medium is liquid nitrogen (dielectric constant 1.3), if the gaps are unbalanced, electric field concentration occurs, which is not preferable.
[0029]
As shown in FIG. 2, the configuration of each coil forming the low-voltage winding and the high-voltage winding is such that a spiral groove is formed on the outer peripheral surface side of a cylindrical winding frame made of an electrically insulating material. A superconducting wire is wound along the superconducting wire, and a tape for supporting an electromagnetic force is wound around the superconducting wire and bound, and a plurality of the superconducting wires are wound in a cylindrical axis direction on an outer peripheral surface side of the cylindrical reel. It has a cooling duct.
[0030]
【The invention's effect】
According to the present invention, as described above, the low-voltage winding and the high-voltage winding each having one or more cylindrical superconducting coils are arranged in a concentric cylinder centering on the central axis of the iron core, and the cooling is performed. In a superconducting transformer housed and supported in a container,
In the superconducting coil, a spiral groove is formed on the outer peripheral surface side of a cylindrical winding frame made of an electrically insulating material, and a superconducting wire is wound along the groove. A tape for force support is wound and bound, and a plurality of cooling ducts are provided in a cylindrical axis direction on an outer peripheral surface side of the cylindrical winding frame. Between the wire and the insulating cylinder made of an electrically insulating material, since the outer peripheral surface of the low-voltage winding and the inner peripheral surface of the high-voltage winding are disposed in the concentric cylindrical shape with a predetermined gap, respectively.
Even in the case of a transformer with a small% impedance, the insulation performance between the high-voltage winding and the low-voltage winding can be maintained and insulation breakdown can be prevented, and the cooling structure, electromagnetic force support structure, and insulation structure are generally simple. A superconducting transformer can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic partial sectional view of a superconducting transformer according to an embodiment of the present invention. FIG. 2 is a diagram showing a structure of a superconducting coil disclosed in Patent Document 3 and also according to an embodiment of the present invention. Schematic partial cross-sectional view of an example of a conventional superconducting transformer [Explanation of reference numerals]
1: iron core, 2: inner coil (low-voltage winding), 3: outer coil (high-voltage winding), 4: winding frame, 4a: cooling duct, 5: superconducting wire, 6: metal tape, 9: winding support member , 10: insulating cylinder, α: distance between high-voltage winding and low-voltage winding.

Claims (6)

鉄心の中心軸を軸心とする同心円筒状に、円筒層状の超電導コイルを1層もしくは複数層有する低圧巻線と高圧巻線とを配設し、冷却容器内に収納支持してなる超電導変圧器において、
前記超電導コイルは、電気絶縁性材料からなる円筒状巻枠の外周面側に螺旋状の溝を形成し、この溝に沿って超電導線材を巻回し、この超電導線材に重ねてその外周側に電磁力支持用のテープを巻回してバインドし、かつ前記円筒状巻枠の外周面側の円筒軸方向に、複数個の冷却ダクトを有してなるものとし、
さらに、前記低圧巻線と高圧巻線との間に、電気絶縁性材料からなる絶縁円筒を、低圧巻線の外周面および高圧巻線の内周面とそれぞれ所定の間隙をもって前記同心円筒状に配設したことを特徴とする超電導変圧器。
A superconducting transformer formed by arranging a low-voltage winding and a high-voltage winding having one or more layers of cylindrical superconducting coils in a concentric cylinder having the center axis of the iron core as an axis and storing and supporting the coils in a cooling container. In the vessel
In the superconducting coil, a spiral groove is formed on the outer peripheral surface side of a cylindrical winding frame made of an electrically insulating material, and a superconducting wire is wound along the groove. Wound and bind the tape for force support, and in the cylindrical axis direction on the outer peripheral surface side of the cylindrical reel, shall have a plurality of cooling ducts,
Furthermore, an insulating cylinder made of an electrically insulating material is formed between the low-voltage winding and the high-voltage winding in the concentric cylindrical shape with a predetermined gap between the outer peripheral surface of the low-voltage winding and the inner peripheral surface of the high-voltage winding. A superconducting transformer, which is provided.
請求項1に記載の超電導変圧器において、前記電磁力支持用のテープは、半硬化状樹脂含浸ガラスバインドテープとしたことを特徴とする超電導変圧器。2. The superconducting transformer according to claim 1, wherein the tape for supporting the electromagnetic force is a semi-cured resin-impregnated glass bind tape. 請求項1に記載の超電導変圧器において、前記電磁力支持用のテープは、常導電体の金属テープとしたことを特徴とする超電導変圧器。2. The superconducting transformer according to claim 1, wherein said tape for supporting electromagnetic force is a metal tape of a normal conductor. 請求項1ないし3のいずれか1項に記載の超電導変圧器において、前記絶縁円筒は、エポキシ樹脂およびガラス繊維を主材とするFRPからなるものとしたことを特徴とする超電導変圧器。The superconducting transformer according to any one of claims 1 to 3, wherein the insulating cylinder is made of FRP mainly composed of epoxy resin and glass fiber. 請求項4に記載の超電導変圧器において、前記絶縁円筒は、半硬化状のエポキシガラスプリプレグシートを複数回巻回して硬化処理してなるものとしたことを特徴とする超電導変圧器。5. The superconducting transformer according to claim 4, wherein the insulating cylinder is formed by winding a semi-cured epoxy glass prepreg sheet a plurality of times and curing the same. 6. 請求項4に記載の超電導変圧器において、前記絶縁円筒は、前記FRPの薄板状の絶縁シートを複数回巻回してエポキシ樹脂を塗布して硬化処理してなるものとしたことを特徴とする超電導変圧器。5. The superconducting transformer according to claim 4, wherein the insulating cylinder is formed by winding a thin insulating sheet of the FRP a plurality of times, applying an epoxy resin, and performing a curing treatment. Transformer.
JP2003045683A 2003-02-24 2003-02-24 Superconducting transformer Pending JP2004259737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045683A JP2004259737A (en) 2003-02-24 2003-02-24 Superconducting transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045683A JP2004259737A (en) 2003-02-24 2003-02-24 Superconducting transformer

Publications (1)

Publication Number Publication Date
JP2004259737A true JP2004259737A (en) 2004-09-16

Family

ID=33112429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045683A Pending JP2004259737A (en) 2003-02-24 2003-02-24 Superconducting transformer

Country Status (1)

Country Link
JP (1) JP2004259737A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021324A (en) * 2011-07-06 2013-01-31 Siemens Shenzhen Magnetic Resonance Ltd Superconducting magnet device and magnetic resonance image system
JP2013120777A (en) * 2011-12-06 2013-06-17 Fuji Electric Co Ltd Superconducting coil and superconducting transformer
GB2477409B (en) * 2010-02-02 2013-08-07 Gen Electric Superconducting magnet assembly and fabricating method
JP2014165432A (en) * 2013-02-27 2014-09-08 Fuji Electric Co Ltd Superconducting coil and superconducting transformer
CN116564674A (en) * 2023-05-15 2023-08-08 河南龙翔电气股份有限公司 Electric furnace transformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477409B (en) * 2010-02-02 2013-08-07 Gen Electric Superconducting magnet assembly and fabricating method
US8903465B2 (en) 2010-02-02 2014-12-02 General Electric Company Superconducting magnet assembly and fabricating method
JP2013021324A (en) * 2011-07-06 2013-01-31 Siemens Shenzhen Magnetic Resonance Ltd Superconducting magnet device and magnetic resonance image system
JP2013120777A (en) * 2011-12-06 2013-06-17 Fuji Electric Co Ltd Superconducting coil and superconducting transformer
JP2014165432A (en) * 2013-02-27 2014-09-08 Fuji Electric Co Ltd Superconducting coil and superconducting transformer
CN116564674A (en) * 2023-05-15 2023-08-08 河南龙翔电气股份有限公司 Electric furnace transformer

Similar Documents

Publication Publication Date Title
JP5576246B2 (en) Axial gap type brushless motor
US7777602B2 (en) Superconducting wire and superconducting coil made therewith
US7227438B2 (en) Superconducting wire transposition method and superconducting transformer using the same
US7394338B2 (en) Superconducting coil
TW200934033A (en) Plane coil, and non-contact power transmission device using the same
JP5861805B2 (en) Transformer, power supply device, and method of manufacturing transformer
JP2012089838A (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
JP2009043912A (en) Superconducting coil
JP5399317B2 (en) Reactor
JP4409856B2 (en) Superconducting coil
JP2004259737A (en) Superconducting transformer
US9111677B2 (en) Method of manufacturing a dry-type open wound transformer having disc windings
US4906960A (en) Distribution transformer with coiled magnetic circuit
JP3840819B2 (en) Superconducting coil for induction equipment
MXPA02009646A (en) Superconductive armature winding for an electrical machine.
JP2015204406A (en) reactor
JP2003115405A (en) Superconductive coil
JP5262607B2 (en) Superconducting coil
JP2011124252A (en) Iron-core superconducting reactor including gap
JP2001244108A (en) Superconducting coil of induction apparatus
JP2011171641A (en) Superconductive coil of inductive apparatus
JP4674457B2 (en) Superconducting coil
JPH06260335A (en) High temperature superconducting magnet
JP2014165431A (en) Superconducting coil and superconducting transformer
CN117976377A (en) Transformer coil with half-turn structure, winding method and transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090205