JPS6074560A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6074560A
JPS6074560A JP58180583A JP18058383A JPS6074560A JP S6074560 A JPS6074560 A JP S6074560A JP 58180583 A JP58180583 A JP 58180583A JP 18058383 A JP18058383 A JP 18058383A JP S6074560 A JPS6074560 A JP S6074560A
Authority
JP
Japan
Prior art keywords
film
transistor
type
well
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58180583A
Other languages
Japanese (ja)
Inventor
Hiromasa Takahashi
宏政 高橋
Satoru Fukano
深野 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58180583A priority Critical patent/JPS6074560A/en
Publication of JPS6074560A publication Critical patent/JPS6074560A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the formation of a parasitic transistor in the lateral direction, and to improve latch-up withstanding voltage by forming a groove to a semiconductor substrate, burying an insulator and terminating a p-n junction in a well. CONSTITUTION:An Si3N4 film 11, an MoSi2 film 12 and a photo-resist film 13 are formed to an n type silicon semiconductor substrate 1, a groove 12A is formed through selective etching, and the Si3N4 film 11 is etched to shape a groove 11A. B ions are implanted to form a p type well 2. The substrate 1 is etched to form fine grooves around the p type well 2, SiO2, etc. are buried, and insulator films 14 are shaped. Each impurity diffusion region, contact region and electrode are formed, thus forming CMOS structure consisting of an n channel side transistor QN and a p channel side transistor QP. The current amplification factor of a p-n-p transistor constituted by the p type well 2, the n type substrate 1 and a p<+> type impurity diffusion region 8 in the lateral direction remarkably lowers, and latch-up withstanding voltage is improved.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、ラッチ・アップを防止するのに有効な構造を
持った半導体装置を製造するのに好適な方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method suitable for manufacturing a semiconductor device having a structure effective in preventing latch-up.

従来技術と問題点 第1図は従来の代表的なCMO3半導体装置を表わす要
部切断側面図である。
Prior Art and Problems FIG. 1 is a cutaway side view of the main parts of a typical conventional CMO3 semiconductor device.

図に於いて、1はn型半導体基板、2はp型ウェル、3
はnチャネル・トランジスタのゲート電極、4及び5は
nチャネル・トランジスタを構成する為のn+型不純物
拡散領域、6はp+型接地コンタクト領域、7はpチャ
ネル・トランジスタのゲート電極、8及び9はpチャネ
ル・トランジスタを構成する為のp+型不純物拡散領域
、10はn1型電源コンタクト領域、VDtlは正側電
源レベルをそれぞれ示している。
In the figure, 1 is an n-type semiconductor substrate, 2 is a p-type well, and 3
is the gate electrode of the n-channel transistor, 4 and 5 are n+ type impurity diffusion regions for forming the n-channel transistor, 6 is the p+ type ground contact region, 7 is the gate electrode of the p-channel transistor, and 8 and 9 are the gate electrodes of the p-channel transistor. A p + -type impurity diffusion region for forming a p-channel transistor, 10 indicate an n1-type power supply contact region, and VDtl indicate a positive power supply level, respectively.

さて、このようなCMO5半導体装置では、寄生のバイ
ポーラ・トランジスタが形成され、サイリスク作用に依
りラッチ・アップ現象を呈し易いことで良く知られてい
る。
It is well known that in such a CMO5 semiconductor device, a parasitic bipolar transistor is formed and is likely to exhibit a latch-up phenomenon due to the silica effect.

即ち、n+型不純物拡散領域4とp型ウェル2とn型半
導体基板1とで縦方向に構成されるnpnトランジスタ
及びp型ウェル2とn型半導体基板1とp+型不純物拡
散領域8とで横方向に構成されるpnp)ランジスタで
ある。
That is, an npn transistor is formed vertically by an n+ type impurity diffusion region 4, a p type well 2, and an n type semiconductor substrate 1, and a horizontal structure is formed by a p type well 2, an n type semiconductor substrate 1, and a p+ type impurity diffusion region 8. It is a pnp) transistor configured in the direction.

第2図は前記寄生バイポーラ・]・ランジスタの構成を
等価回路的に表わしたものである。
FIG. 2 shows the structure of the parasitic bipolar transistor in terms of an equivalent circuit.

図に於いて、Qlは寄生npn )ランジスタ、Q2は
寄生pnpトランジスタ、R1,R2,R3、R4,R
5は各部分の内部抵抗をそれぞれ示している。
In the figure, Ql is a parasitic npn transistor, Q2 is a parasitic pnp transistor, R1, R2, R3, R4, R
5 indicates the internal resistance of each part.

このトランジスタQl、Q2は、通常、オフになってい
るが、何等かの原因で例えばトランジスタQ1のベース
にノイズ電流が流れるとトランジスタQ1はオン状態に
なる。このトランジスタQ1の増幅率はかなり大きいの
で、オン状態では大きな電流を引き込むことになり、抵
抗R5には電位降下が生じ、その結果、トランジスタQ
2のベースにも電流が流れ、オン状態となる。そして、
このトランジスタQ1及びQ2のオン状態は、それ等を
オンにした原因が解消、即ち、ノイズ電流がなくなって
も維持され、所謂、ランチ・アップの状態になるもので
あり、このような状態では最早CMO3半導体装置とし
て機能しないこと番才当然である。尚、このようなラッ
チ・アンプ現象は半導体装置が微細化されるほど発生し
易くなる。
These transistors Ql and Q2 are normally off, but if for some reason, for example, a noise current flows into the base of the transistor Q1, the transistor Q1 is turned on. Since the amplification factor of this transistor Q1 is quite large, it draws a large current in the on state, causing a potential drop in the resistor R5, and as a result, the transistor Q1 draws a large current.
Current also flows to the base of 2, turning it on. and,
The on state of these transistors Q1 and Q2 is maintained even if the cause of turning them on is resolved, that is, the noise current disappears, and the state is so-called a launch-up state. It goes without saying that it does not function as a CMO3 semiconductor device. Incidentally, such a latch amplifier phenomenon occurs more easily as the semiconductor device becomes finer.

そこで、斯かるCMO3半導体装置のランチ・アンプ現
象を抑制する為、p型ウェルの周辺に於けるpn接合部
分を酸化物アイソレーションに置換する構造が提案され
た(要すれば特開昭52−151574号公報参照)。
Therefore, in order to suppress the launch amplifier phenomenon of such a CMO3 semiconductor device, a structure was proposed in which the pn junction part around the p-type well was replaced with oxide isolation (see Japanese Patent Application Laid-Open No. 1983-1993). (See Publication No. 151574).

然し乍ら、この従来技術に於ける前記酸化物アイソレー
ションの形成方法は、陽極酸化法にてシリコン半導体基
板を多孔質化してからその部分を熱酸化するものであり
、アイソレーションの幅としては約10〔μm〕にも達
し、現在の高密度化集積回路にとっては不向きである。
However, the method for forming the oxide isolation in this prior art is to make the silicon semiconductor substrate porous by anodizing, and then thermally oxidize that portion, and the width of the isolation is approximately 10 mm. [μm], which is unsuitable for current high-density integrated circuits.

ところで、幅が狭い絶縁物アイソレーションに関する技
術は、現在盛んに研究開発が進められるでいる状況であ
るが、この技術をCMO3半導体装置に於けるウェル周
辺の絶縁物アイソレーションに適用するにしても、該技
術とCMO3半導体装置の製造プロセスとを充分に適合
させなければならない。
By the way, technology related to narrow insulator isolation is currently being actively researched and developed, but even if this technology is applied to insulator isolation around wells in CMO3 semiconductor devices, , the technology must be fully compatible with the manufacturing process of CMO3 semiconductor devices.

発明の目的 本発明は、前記技術的背景に立ち、絶縁物アイソレーシ
ョンの形成をCMO3半導体装置の製造プロセス中でセ
ルフ・アラインメントで実施することができるように、
また、得られるCMO3半導体装置のラッチ・アップ耐
圧を向上させることができるようにする。
OBJECTS OF THE INVENTION Based on the above technical background, the present invention provides a method for forming insulator isolation by self-alignment during the manufacturing process of a CMO3 semiconductor device.
Further, it is possible to improve the latch-up breakdown voltage of the obtained CMO3 semiconductor device.

発明の構成 本発明の半導体装置の製造方法では、半導体基板表面を
反応性イオン・エツチング可能な膜で覆い、更にフォト
・レジストにて覆い、前記半導体基板と逆導電型のウェ
ルを形成すべき部分に於ける前記フォト・レジストに開
口を形成し、反応性イオン・エツチングに依り前記開口
周辺に於ける前記膜を除去し、前記開口で定まる半導体
基板領域に逆導電型不純物を導入してウェルを形成し、
前記膜の除去部分と同じ位置の半導体基板部分に溝を形
成し、前記溝に絶縁物を埋め込むことにより該絶縁物で
前記ウェルに於けるpn接合を終端させるようにしてい
るので、所謂、絶縁物アイソレーションの形成はセルフ
・アラインメントで実施され、また、例えば、第1図に
見られる縦方向のnpnトランジスタはさておき、横方
向のpnpトランジスタは前記溝を埋める絶縁物膜に遮
られて形成され難いので、ランチ・アップ耐圧は飛躍的
に向上するものである。
Structure of the Invention In the method for manufacturing a semiconductor device of the present invention, the surface of a semiconductor substrate is covered with a film that can be etched by reactive ions, and further covered with a photoresist, so that a portion of the semiconductor substrate where a well of a conductivity type opposite to that of the semiconductor substrate is to be formed is formed. An opening is formed in the photoresist, the film around the opening is removed by reactive ion etching, and an opposite conductivity type impurity is introduced into a region of the semiconductor substrate defined by the opening to form a well. form,
A trench is formed in the semiconductor substrate at the same position as the removed portion of the film, and an insulating material is buried in the trench so that the pn junction in the well is terminated with the insulating material. The formation of physical isolation is performed by self-alignment, and for example, apart from the vertical npn transistor shown in FIG. 1, the horizontal pnp transistor is formed blocked by the insulating film filling the trench. Therefore, the launch-up withstand voltage is dramatically improved.

発明の実施例 第3図乃至第8図は本発明一実施例を製造する場合につ
いて解説する為の工程要所に於けるCMO8半導体装置
の要部切断側面図であり、次に、これ等の各図を参照し
つつ説明する。尚、第1図及び第2図に関して説明した
部分と同部分は同記号で指示しである。
Embodiment of the Invention FIGS. 3 to 8 are cross-sectional side views of essential parts of a CMO8 semiconductor device at key points in the process for explaining the case of manufacturing an embodiment of the present invention. This will be explained with reference to each figure. Note that the same parts as those described with reference to FIGS. 1 and 2 are indicated by the same symbols.

第3図参照 ■ n型シリコン半導体基板1に化学気相堆積法(CV
D法)を適用することに依り窒化シリコン(Si3N4
)膜11を厚さ1500 C人〕程度に形成する。
Refer to Figure 3 ■ Chemical vapor deposition (CV) is applied to the n-type silicon semiconductor substrate 1.
By applying silicon nitride (Si3N4 method)
) The film 11 is formed to a thickness of about 1500 mm.

■ マグネトロン・スパッタ法を適用することに依りモ
リブデン・シリサイド(MOSi2)膜12を厚さ30
00 (人〕程度に形成する。
■ By applying the magnetron sputtering method, the molybdenum silicide (MOSi2) film 12 is formed to a thickness of 30 mm.
Form to about 00 (persons).

■ フォト・リソグラフィ技術を適用することに依りフ
ォト・レジスト膜13を形成し、これにベーキング、露
光、現像等所定の加工を加えてバターニングすることに
依りウェルを形成する為の開口13Aを形成する。
■ A photoresist film 13 is formed by applying photolithography technology, and an opening 13A for forming a well is formed by applying predetermined processing such as baking, exposure, and development, and then buttering it. do.

これに依り、開口13A内にはMoSi2膜12の一部
が露出される。
As a result, a portion of the MoSi2 film 12 is exposed within the opening 13A.

■ 全体を平行平板型リアクティブ・イオン・ビーム・
エツチング装置中に配置し、エッチャントとしてcc1
4+o2混合ガスを使用してリアクティブ・イオン・ビ
ーム・エツチングを行なう。
■ The entire parallel plate type reactive ion beam
Placed in an etching device and used cc1 as an etchant.
Reactive ion beam etching is performed using a 4+O2 gas mixture.

通常、この種のエツチングを行なうと、フォト・レジス
ト膜I3で被覆されていない部分がエツチングされる筈
であるが、前記エッチャントの混合ガスに於ける02の
分圧比を60乃至70〔%〕程度に相対的に増加させる
とエツチングはフォト・レジスト膜13のエツジに沿っ
てのみ行なわれ、細い溝12Aが形成される。この細い
溝12Aの幅は1 〔μm)pl下であり、極めて微細
である。尚、この技術に関する詳細は特願昭57−20
9173号或いは雑誌「セミコンダクタ・ワールド」 
(西暦1983年 10月号 第49頁乃至第62頁)
などを参照されると良い。
Normally, when this type of etching is performed, the portions not covered with the photoresist film I3 will be etched, but the partial pressure ratio of 02 in the etchant mixture gas should be adjusted to about 60 to 70%. When the etching is increased relative to , etching is performed only along the edges of the photoresist film 13, and a narrow groove 12A is formed. The width of this narrow groove 12A is less than 1 [μm] pl, which is extremely fine. For details regarding this technology, please refer to the patent application 1986-20.
Issue 9173 or magazine “Semiconductor World”
(October 1983, pages 49 to 62)
Please refer to the following.

第4図参照 ■ 反応性イオン・エツチング法を適用し、M。See Figure 4 ■ Applying reactive ion etching method, M.

S12膜12をマスクドしてSi3N+1*11をエツ
チングすることに依り溝12Aと同様な溝lIAを形成
する。
A groove lIA similar to the groove 12A is formed by masking the S12 film 12 and etching the Si3N+1*11.

■ マスクとして使用したM OS l 2膜I2のう
ち、開口13A内の部分を除去してから、イオン注入法
を適用し、p型ウェルを形成する為の硼素(B)イオン
をI X 1013(cm2)程度のドーズ量で打ち込
みを行なう。
■ After removing the portion inside the opening 13A of the MOS I 2 film I2 used as a mask, an ion implantation method is applied to implant boron (B) ions to form a p-type well using IX 1013 ( The implantation is performed at a dose of approximately cm2).

第5図参照 ■ 所謂ランニングと呼ばれる熱処理を行なうと図示の
ようなp型ウェル2が形成される。
Refer to FIG. 5. When a heat treatment called running is performed, a p-type well 2 as shown in the figure is formed.

第6図参照 ■ 反応性イオン・エツチング法を適用し5i3Nsl
臭11をマスクにしてシリコン半導体基板1のエツチン
グを行ないp型ウェル2の周囲に微細な溝2Aを形成す
る。尚、このエツチングを行なう際にはM o S i
 2膜12を除去して良い。
See Figure 6 ■ 5i3Nsl by applying reactive ion etching method
Using the odor 11 as a mask, the silicon semiconductor substrate 1 is etched to form a fine groove 2A around the p-type well 2. In addition, when performing this etching, M o S i
2 film 12 may be removed.

1第7図参照 ■ 熱酸化法或いはCVD法を適用して前記溝2A中に
5i02等を埋め込むことに依り、p型ウェル2の周辺
に自己整合で絶縁物膜14を形成する。
1. See FIG. 7. By applying a thermal oxidation method or a CVD method to bury 5i02 or the like in the trench 2A, an insulating film 14 is formed around the p-type well 2 in a self-aligned manner.

[相] Si3N4膜11を除去すると図示の状態にな
る。
[Phase] When the Si3N4 film 11 is removed, the state shown in the figure is obtained.

第8図参照 ■ この後、通常の技術を適用してnチャネル・トラン
ジスタのゲート電極3、nチャネル・トランジスタを構
成する為のれ+型不純物拡散領域4及び5、p+型接地
コンタクト領域6、pチャネル・トランジスタのゲート
電@7、pチャネル・トランジスタを構成する為のp+
型不純物拡散領域8及び9、n+型電源コンタクト領域
10、例えば5lo2からなる絶縁膜15、例えばアル
ミニウム(Aβ)からなるソース電極16.ドレイン電
極17.ゲート電極18.p型ウェル・コンタクト電極
19.ソース電極20.ドレイン電極21、ゲート電極
22.基板コンタクト電極23等を形成し0MO3構造
にすれば良い。尚、QNはnチャネル側トランジスタ、
QPはpチャネル側トランジスタを示している。
Refer to FIG. 8■ After this, by applying a normal technique, the gate electrode 3 of the n-channel transistor, the leakage + type impurity diffusion regions 4 and 5 for forming the n-channel transistor, the p + type ground contact region 6, Gate voltage of p-channel transistor @7, p+ for forming p-channel transistor
type impurity diffusion regions 8 and 9, an n+ type power contact region 10, an insulating film 15 made of, for example, 5LO2, and a source electrode 16 made of, for example, aluminum (Aβ). Drain electrode 17. Gate electrode 18. P-type well contact electrode 19. Source electrode 20. Drain electrode 21, gate electrode 22. The substrate contact electrode 23 and the like may be formed to have an 0MO3 structure. In addition, QN is an n-channel side transistor,
QP indicates a p-channel side transistor.

このようにして製造したCMO3半導体装置にでは、第
1図及び第2図に関して説明した寄生バイポーラ・トラ
ンジスタQ1及びQ2のうち、pnp)ランジスタであ
るトランジスタQ2のベースに絶縁物膜14が形成され
た構造になり、該トランジスタQ2の電流増幅率が低下
するとともに抵抗R2が太き(なることが明らかである
In the CMO3 semiconductor device manufactured in this way, an insulating film 14 was formed on the base of transistor Q2, which is a pnp transistor, among the parasitic bipolar transistors Q1 and Q2 explained with reference to FIGS. 1 and 2. It is clear that the current amplification factor of the transistor Q2 decreases and the resistor R2 becomes thicker.

発明の効果 本発明の半導体装置の製造方法に依れば、半導体基板表
面を反応性イオン・エツチング可能な膜で覆い、更にフ
ォト・レジストにて覆い、前記半導体基板と逆導電型の
ウェルを形成すべき部分に於ける前記フォト・レジスト
に開口を形成し、反0 応性イオン・エツチングに依り前記開口周縁に於ける前
記膜を除去し、前記開口で定まる半導体基板領域に逆導
電型不純物を導入してウェルを形成し、前記膜の除去部
分と同じ位置の半導体基板部、分に溝を形成し、前記溝
に絶縁物を埋め込むことに依り該絶縁物で前記ウェルに
於けるpn接合を終端させるようにしている為、前記ウ
ェルの周辺に於ける絶縁物アイソレーションはセルフ・
アラインメントで形成することができ、その幅は1〔μ
m〕以下であって極めて微細であるから高密度化を必要
とされる集積回路に好適であり、そして、得られるCM
O3半導体装置に於いては、横方向に形成される寄生バ
イポーラ・トランジスタであるpnp)ランジスタの電
流増幅率が著しく低下し、また、内部抵抗の一部が大き
くなることに依り、ラッチ・アンプ時の電流を保持し難
くなり、その結果、ラッチ・アップ耐圧は向上するもの
である。
Effects of the Invention According to the method for manufacturing a semiconductor device of the present invention, the surface of the semiconductor substrate is covered with a film that can be etched by reactive ions, and further covered with a photoresist to form a well of a conductivity type opposite to that of the semiconductor substrate. forming an opening in the photoresist at the desired location, removing the film at the periphery of the opening by reactive ion etching, and introducing an opposite conductivity type impurity into a region of the semiconductor substrate defined by the opening; forming a well, forming a groove in the semiconductor substrate at the same position as the removed portion of the film, and burying an insulator in the groove, thereby terminating the pn junction in the well with the insulator. Therefore, the insulator isolation around the well is self-contained.
It can be formed by alignment, and its width is 1 [μ
m] and is extremely fine, making it suitable for integrated circuits that require high density, and the resulting CM
In O3 semiconductor devices, the current amplification factor of the pnp (pnp) transistor, which is a parasitic bipolar transistor formed in the lateral direction, is significantly reduced, and a portion of the internal resistance becomes large, so that the latch amplifier As a result, the latch-up withstand voltage is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の要部切断側面図、第2図は第1 1図の従来例に於ける寄生バイポーラ・トランジスタが
発生ずる関係を説明する為の要部等価回路図、第3図乃
至第8図は本発明−実施例を製造する場合の説明をする
為の工程要所に於けるCMO8半導体装置の要部切断側
面図である。 図に於いて、■はn型半導体基板、2はp型ウェル、3
はnチャネル・トランジスタのゲート電極、4及び5は
nチャネル・トランジスタを構成する為のn+型不純物
拡散領域、6はp+型接地コンタクト領域、7はpチャ
ネル・トランジスタのゲート電極、8及び9はpチャネ
ル・トランジスタを構成くず為のp+型不純物拡散領域
、1゜はn+型電源コンタクト領域、11は窒化シリコ
ン(Si3N4)膜、12はモリブデン・シリサイド(
MoS+2)膜、12Aは溝、13はフォト・レジスト
膜、13Aは開口、14は絶縁物膜、15は絶縁膜、1
6及び20はソース電極、17及び21はドレイン電極
、18及び22はゲート電極、19はウェル・コンタク
ト電極、23は基板コンタクト電極、QNはnチャネル
側トランジ2 スタ、QPはpチャネル側トランジスタ、vnt+は正
側電源レベル、Qlは寄生npn)ランジスタ、Q2は
寄生pnpトランジスタ、R1,R2,R3、R4,R
5は内部抵抗である。 特許出願人 富士通株式会社 代理人弁理士 相 谷 昭 司 代理人弁理士 渡 邊 弘 − 3
Fig. 1 is a cutaway side view of the main part of the conventional example, Fig. 2 is an equivalent circuit diagram of the main part to explain the relationship in which the parasitic bipolar transistor is generated in the conventional example of Fig. 11, and Figs. FIG. 8 is a cross-sectional side view of a CMO8 semiconductor device at important points in the process for explaining the manufacturing of an embodiment of the present invention. In the figure, ■ is an n-type semiconductor substrate, 2 is a p-type well, and 3 is a p-type well.
is the gate electrode of the n-channel transistor, 4 and 5 are n+ type impurity diffusion regions for forming the n-channel transistor, 6 is the p+ type ground contact region, 7 is the gate electrode of the p-channel transistor, and 8 and 9 are the gate electrodes of the p-channel transistor. p+ type impurity diffusion region for forming p-channel transistor, 1° is n+ type power supply contact region, 11 is silicon nitride (Si3N4) film, 12 is molybdenum silicide (
MoS+2) film, 12A is a groove, 13 is a photoresist film, 13A is an opening, 14 is an insulating film, 15 is an insulating film, 1
6 and 20 are source electrodes, 17 and 21 are drain electrodes, 18 and 22 are gate electrodes, 19 is a well contact electrode, 23 is a substrate contact electrode, QN is an n-channel side transistor, QP is a p-channel side transistor, vnt+ is the positive power supply level, Ql is a parasitic npn) transistor, Q2 is a parasitic pnp transistor, R1, R2, R3, R4, R
5 is an internal resistance. Patent applicant: Fujitsu Ltd. Representative Patent Attorney Shoji Aitani Representative Patent Attorney Hiroshi Watanabe - 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面を反応性イオン・エツチング可能な膜で
覆い、更にフォト・レジストにて覆い、前記半導体基板
と逆導電型のウェルを形成すべき部分に於ける前記フォ
ト・レジストに開口を形成し、反応性イオン・エツチン
グに依り前記開口の周縁に於ける前記膜を除去し、前記
開口で定まる半導体基板領域に逆導電型不純物を導入し
てウェルを形成し、前記膜の除去部分と同じ位置の半導
体基板部分に溝を形成し、前記溝に絶縁物を埋め込むこ
とに依り該絶縁物で前記ウェルに於けるpn接合を終端
させることを特徴とする半導体装置の製造方法。
covering a surface of the semiconductor substrate with a reactive ion etching film, further covering with a photoresist, and forming an opening in the photoresist in a portion where a well of a conductivity type opposite to that of the semiconductor substrate is to be formed; The film at the periphery of the opening is removed by reactive ion etching, an opposite conductivity type impurity is introduced into the semiconductor substrate area defined by the opening to form a well, and a well is formed at the same position as the removed portion of the film. 1. A method of manufacturing a semiconductor device, comprising forming a groove in a semiconductor substrate portion, burying an insulator in the groove, and terminating a pn junction in the well with the insulator.
JP58180583A 1983-09-30 1983-09-30 Manufacture of semiconductor device Pending JPS6074560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180583A JPS6074560A (en) 1983-09-30 1983-09-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180583A JPS6074560A (en) 1983-09-30 1983-09-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6074560A true JPS6074560A (en) 1985-04-26

Family

ID=16085797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180583A Pending JPS6074560A (en) 1983-09-30 1983-09-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6074560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979850B2 (en) 2003-03-27 2005-12-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device capable of avoiding latchup breakdown resulting from negative varation of floating offset voltage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979850B2 (en) 2003-03-27 2005-12-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device capable of avoiding latchup breakdown resulting from negative varation of floating offset voltage
US7190034B2 (en) 2003-03-27 2007-03-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor device capable of avoiding latchup breakdown resulting from negative variation of floating offset voltage
US7408228B2 (en) 2003-03-27 2008-08-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device capable of avoiding latchup breakdown resulting from negative variation of floating offset voltage
US7545005B2 (en) 2003-03-27 2009-06-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device capable of avoiding latchup breakdown resulting from negative variation of floating offset voltage
US7777279B2 (en) 2003-03-27 2010-08-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device capable of avoiding latchup breakdown resulting from negative variation of floating offset voltage

Similar Documents

Publication Publication Date Title
JPH08222645A (en) Method for forming lightly doped drain region
KR0166052B1 (en) High voltage merged bipolar cmos technology
US5153146A (en) Maufacturing method of semiconductor devices
JPH0557741B2 (en)
JPH08125180A (en) Semiconductor device and fabrication thereof
US20040065942A1 (en) Reduce 1/f noise in NPN transistors without degrading the properties of PNP transistors in integrated circuit technologies
JP2001291679A (en) Method for manufacturing semiconductor device
JP2005101602A (en) High-breakdown voltage field-effect transistor and method of forming the same
JP2001291678A (en) Method for manufacturing semiconductor device
KR930005508B1 (en) Semiconductor device and manufacturing method of the same
KR20010016838A (en) Method of forming impurity doped region of MOS transistor
JPS6074560A (en) Manufacture of semiconductor device
JPS5835966A (en) Complementary metal insulator semiconductor transistor and manufacture thereof
JPS60149149A (en) Manufacture of semiconductor device
JP2001298187A (en) Manufacturing method for high-voltage transistor
JPS6158987B2 (en)
JPS5940563A (en) Manufacture of semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
KR100379534B1 (en) Method for Fabrication Semiconductor Device
JP3164375B2 (en) Method of forming transistor
KR100448591B1 (en) Method of manufacturing a transistor in a semiconductor
US20040166625A1 (en) Method for increasing the Beta of PNP BJT device in CMOS process
JPS6016469A (en) Manufacture of mis semiconductor device
JPH01137645A (en) Manufacture of semiconductor device
JPH0358430A (en) Semiconductor device and manufacture thereof