JPS6073204A - Coal-water slurry combustion apparatus - Google Patents

Coal-water slurry combustion apparatus

Info

Publication number
JPS6073204A
JPS6073204A JP58182513A JP18251383A JPS6073204A JP S6073204 A JPS6073204 A JP S6073204A JP 58182513 A JP58182513 A JP 58182513A JP 18251383 A JP18251383 A JP 18251383A JP S6073204 A JPS6073204 A JP S6073204A
Authority
JP
Japan
Prior art keywords
gas
cooling
water
exhaust gas
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58182513A
Other languages
Japanese (ja)
Other versions
JPH0343522B2 (en
Inventor
Kazuo Miura
一夫 三浦
Tsuneo Narita
成田 恒雄
Hiroshi Terada
博 寺田
Kazunori Shoji
正路 一紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58182513A priority Critical patent/JPS6073204A/en
Publication of JPS6073204A publication Critical patent/JPS6073204A/en
Publication of JPH0343522B2 publication Critical patent/JPH0343522B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids

Abstract

PURPOSE:To decrease the quantity of supplying water to a system, and the power consumption for an induced fan, by decreasing the wet rate and the volume of exhaust gas, as well as to recover circulating liquid by a cooling pipe while it is circulating through the absorption tower of a desulfurizer, in a boiler system for combustion of coal-water slurry, combined with an exhaust gas desulfurizer of wet type. CONSTITUTION:Exhaust gas generated in a boiler 1 is led into the cooling tower 3 of a wet type exhaust gas desulfurizer, after the temperature in the gas is lowered down to about 80 deg.C by a gas . gas heat exchanger 9. The gas is cooled by cooling water which is circulating through the cooling tower 3 by a circulating pump 4, and then the gas is led into an absorption tower 5, where sulfurous acid in the gas is absorbed by lime- water slurry fed into the absorption tower 5. The purified exhaust gas is heated again in the gas . gas heat exchanger 9 in order to prevent white smoke, and is exhausted outside from a stack 10. In this case, the quantity of cooling water circulated by the pump 4 can be saved by the method of cooling slurry by dipping a cooling pipe 7 in the slurry in the absorption tower 5. Besides, the consumption of power for an induced fan can be saved as much as the volume corresponding to the decreased exhaust gas, by installing an induced fan 2 on the downstream side of an exhaust gas desulfurizer.

Description

【発明の詳細な説明】 本発明は、石炭−水スラリ燃焼装置に係り、特に補給水
量および送風機消費動力を節減するための石炭−水スラ
リ燃焼装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal-water slurry combustion apparatus, and more particularly to a coal-water slurry combustion apparatus for reducing the amount of make-up water and the power consumption of a blower.

最近、火力発電所を中心として、石油に代わり石炭を燃
料として利用することが活発になってきている。しかし
、石炭自体は固体燃料であり、ハンドリングが困難であ
るため輸送費が多くかかり、このことが石炭の価格にも
大きな影響を及ぼしている。そこで、石炭を流体化して
取り扱う技術の開発が盛んに進められている。その一つ
の方法は、石炭と重油の混合物であるCOM(Coal
 an d Oi 1 ’M i x t u r e
 )とするものであるが、COMの場合、石炭と重油の
重量比は約1:1であり、完全な膜面油燃料とは言えず
、価格の点でもメリソ)−が少ない。また、メタノール
と石炭との混合物であるメタコールも価格が高く、実用
段階には至っていない。
Recently, the use of coal as a fuel instead of oil has become active, mainly in thermal power plants. However, coal itself is a solid fuel and is difficult to handle, so transportation costs are high, and this has a large impact on the price of coal. Therefore, the development of technology for handling coal by turning it into a fluid is actively underway. One method is to use COM (Coal
and Oi 1 'M i x t u r e
) However, in the case of COM, the weight ratio of coal to heavy oil is approximately 1:1, so it cannot be said to be a perfect membrane oil fuel, and the cost is low in terms of price. Furthermore, methacol, which is a mixture of methanol and coal, is expensive and has not yet reached the practical stage.

これに対して、石炭と水の混合物であるCWM(Coa
l and Water MixturC)は価格の点
でも十分実用的であり、最近注目を築めている。CWM
中の水分の割合は1、補給水の供給コストの点からもホ
イラ効率の点からも低い方が好ましいが、水分が低し寸
とCWMの粘度が高くなり、パイプライン等で輸送する
際の圧力損失も大さくなるという問題がある。最近、C
’WM中の水分を低減する技術の開発が進められ、現在
、水分約30%のところまできている。
In contrast, CWM (Coa
and Water MixturC) is quite practical in terms of price and has recently been gaining attention. C.W.M.
It is preferable that the water content in the CWM be lower than 1, from the point of view of make-up water supply cost and wheeler efficiency. There is also the problem that pressure loss increases. Recently, C.
'Development of technology to reduce the water content in WM is progressing, and the water content has now reached approximately 30%.

石炭1 kgを使用して水分30%のCWMを製造する
ためには、0.33kgの水が必要であるが、1時間あ
たり100万KWHの火力発電を行なう場合、石炭の使
用量は101万トンとなり、9れをCWM化するために
ば33001−ンという大量の補給水が必要になる。
To produce CWM with a moisture content of 30% using 1 kg of coal, 0.33 kg of water is required, but when generating 1 million KWH of thermal power per hour, the amount of coal used is 1.01 million KWH. A large amount of make-up water of 33,001 tons is required to convert 9 tons into CWM.

CWMを燃焼させる場合、石炭燃焼と同様に、亜硫酸ガ
スを発生するため、通常、排煙脱硫装置が併設される。
When CWM is combusted, a flue gas desulfurization device is usually installed in order to generate sulfur dioxide gas, similar to coal combustion.

排煙脱硫装置としては種々の形式のものが使用されてい
るが、現在は湿式排煙脱硫装置が主流になっている。石
灰石−水スラリによって亜硫酸カスを吸収する、いわゆ
る石灰石−石こう法排煙脱硫装置では、石炭1 kgか
ら発生ずる排煙を処理するために、0.32 kgの補
給水を必要とするが、これは前記のような100万KW
の火力発電に適用すると1日あたり3200トンの補給
水量を要することになる。
Although various types of flue gas desulfurization equipment are used, wet type flue gas desulfurization equipment is currently the mainstream. In the so-called limestone-gypsum flue gas desulfurization equipment that absorbs sulfite scum using a limestone-water slurry, 0.32 kg of make-up water is required to treat the flue gas generated from 1 kg of coal. is 1 million KW as mentioned above
If applied to thermal power generation, 3,200 tons of make-up water would be required per day.

従ってCWM製造と排煙脱硫の両者を考えれば、1日あ
たり6500)ンという大量の補給水を必要とすること
になるが、年々厳しさを増す水資源の確保の点からも、
この補給水量を低減することは、重要な技術開発課題で
ある。
Therefore, considering both CWM production and flue gas desulfurization, a large amount of make-up water of 6,500 tons per day is required, but from the perspective of securing water resources, which is becoming increasingly difficult every year.
Reducing the amount of make-up water is an important technological development issue.

水分30%のCWMを燃焼させる場合のもう一つの問題
点は、CWM中の水分が蒸発するために、微粉炭燃焼の
場合と比較して排煙の量が約6%増加し、これによって
誘引送風機の容量および消費動力が増加することである
Another problem when burning CWM with a moisture content of 30% is that as the moisture in the CWM evaporates, the amount of flue gas increases by approximately 6% compared to the case of pulverized coal combustion. The capacity and power consumption of the blower increases.

本発明の目的は、前記した従来技術の欠点をなくし、補
給水量および誘引送風機消費動力が少ない石炭−水スラ
リ燃焼装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a coal-water slurry combustion apparatus that requires less make-up water and less power consumption of an induced blower.

本発明者らは、排煙脱硫装置を有する石炭−水スラリ燃
焼装置から水を回収する方法について鋭意研究を進めた
結果、CWM製造と排煙脱硫のための合計補給水量を従
来よりも約50%低減できる技術を開発した。
As a result of intensive research into a method for recovering water from a coal-water slurry combustion equipment equipped with a flue gas desulfurization device, the present inventors have found that the total amount of make-up water for CWM production and flue gas desulfurization can be reduced by approximately 50% compared to conventional methods. We have developed a technology that can reduce this by 30%.

要するに本発明は、石炭−水スラリ燃焼ボイラと湿式υ
1煙脱硫装置を組合せたシステムにおいて、脱硫装置の
吸収塔循yi液を冷却することによって水回収を行なう
と同時に、排煙を減湿減容し、これによってシステムへ
の水の補給量および誘引送風機の消費動力を低減したも
のである。
In short, the present invention provides a coal-water slurry combustion boiler and a wet υ
1 In a system that combines smoke desulfurization equipment, water is recovered by cooling the liquid circulating in the absorption tower of the desulfurization equipment, and at the same time, the flue gas is dehumidified and its volume is reduced, thereby increasing the amount of water supplied to the system and the attraction This reduces the power consumption of the blower.

以下、本発明を従来技術と比較して、図によって詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be explained in detail with reference to the drawings in comparison with the prior art.

第1図は、従来技術によって石炭−水スラリ燃焼ボイラ
システムを構成した例である。ボイラlで発生した排煙
は、誘引送風機2を経てガス・ガス熱交換器9で約80
°Cまで降温した後、湿式排煙脱硫装置の冷却塔3に供
給される。ここで排煙は、冷却塔循環ポンプ4を通って
循環する冷却液によって40〜60℃までさらに冷却さ
れ後、吸収塔5に導入される石灰石−水スラリによって
排煙中の亜硫酸ガスが吸収され、浄化された排煙は、白
煙防止のためにガス・ガス熱交換器9で再加熱された後
、煙突10から排出される。この方式は前記したように
、冷却塔3および吸収塔5への補給水量が多く、誘引送
風機2の消費動力が大きいという欠点がある。
FIG. 1 shows an example of a coal-water slurry combustion boiler system constructed using the conventional technology. The flue gas generated in the boiler 1 passes through the induced fan 2 and is sent to the gas-gas heat exchanger 9 at approximately 80%
After cooling down to °C, it is supplied to the cooling tower 3 of the wet flue gas desulfurization equipment. Here, the flue gas is further cooled to 40 to 60°C by the cooling liquid circulating through the cooling tower circulation pump 4, and then the sulfur dioxide gas in the flue gas is absorbed by the limestone-water slurry introduced into the absorption tower 5. The purified flue gas is reheated in a gas-to-gas heat exchanger 9 to prevent white smoke, and then is discharged from a chimney 10. As described above, this method has the disadvantage that the amount of make-up water to the cooling tower 3 and the absorption tower 5 is large, and the power consumption of the induced blower 2 is large.

第2図は、本発明の一実施例を示す同様なボイラシステ
ムを示す図であるが、第1図の従来技術によるシステム
と比較して異なる点は、吸収塔5にある石灰石−水スラ
リ中に吸収液冷却管7を浸漬してスラリを冷却すること
、および排煙脱硫装置5の後流側にあたるガス・ガス熱
交換器9と煙突10の中間に誘引送風機2を設置したこ
とである。
FIG. 2 shows a similar boiler system illustrating an embodiment of the present invention, except that the limestone-water slurry in the absorption tower 5 is different from the prior art system of FIG. The absorbent cooling pipe 7 is immersed in the slurry to cool the slurry, and the induced blower 2 is installed between the gas-gas heat exchanger 9 and the chimney 10 on the downstream side of the flue gas desulfurization device 5.

本発明においては、吸収塔の石灰石−水スラリを冷却す
るが、その理由は次のとおりである。すなわち、吸収塔
ではなくて、冷却塔3の循環液を冷却しようとすると、
この循環液はボイラから送られる酸性ガスとの接触によ
ってI)H値が0.5〜7.0の酸性になっているので
、冷却用熱交換器の金属伝熱面を腐食させ、装置寿命が
短かくなるという問題を生ずる。また、伝熱面に合成樹
脂等のライニングを施して腐食を防止しようとしても、
コストが高くなる上に、熱交換器としての熱貫流率が低
下し、十分な冷却性能を発揮することはできない。冷却
塔循環液を冷却することによるもう一つの問題点は、冷
却塔循環液を石灰石−水スラリより低温になるように冷
却しても、吸収塔において石灰石−水スラリ中の水分が
り1煙の方に移動し、排煙は本発明の目的とするところ
とは逆に増湿されてしまう。これに対して、吸収塔側の
石灰石−水スラリは、石灰石によってpH値が5.5〜
9.0まで高くなり、中性に近い状態であるため、この
液を冷却するための熱交換器の伝熱面を腐食するおそれ
がない。また、系統中で気液接触を行なう部分としては
最下流にある吸収塔5の吸収液を冷却するため、排煙に
よって系外に持ち去られる水分は確実に低減される。以
上により、水回収と排煙容積減少のための排煙の冷却は
、冷却塔循環液ではなく、吸収塔内の循環液石灰石−水
スラリによって行なうのがよいことがわかる。冷却方法
としては、例えば、海水、河川水等の冷却流体を用いて
間接冷却することが好ましいが、これに限定されるもの
ではない。
In the present invention, the limestone-water slurry in the absorption tower is cooled for the following reasons. In other words, if you try to cool the circulating fluid in the cooling tower 3 instead of the absorption tower,
This circulating fluid becomes acidic with an I)H value of 0.5 to 7.0 due to contact with the acidic gas sent from the boiler, which corrodes the metal heat transfer surface of the cooling heat exchanger and reduces the lifespan of the equipment. This causes the problem that the length becomes shorter. In addition, even if you try to prevent corrosion by lining the heat transfer surface with synthetic resin, etc.
Not only does the cost increase, but the heat transfer coefficient as a heat exchanger decreases, making it impossible to exhibit sufficient cooling performance. Another problem with cooling the cooling tower circulating fluid is that even if the cooling tower circulating fluid is cooled to a temperature lower than that of the limestone-water slurry, the moisture in the limestone-water slurry in the absorption tower is As a result, the exhaust gas becomes humid, which is contrary to the purpose of the present invention. On the other hand, the limestone-water slurry on the absorption tower side has a pH value of 5.5 to 5.5 due to the limestone.
9.0, which is close to neutral, so there is no risk of corrosion on the heat transfer surface of the heat exchanger for cooling this liquid. Furthermore, since the absorption liquid in the absorption tower 5, which is the most downstream part of the system that makes contact with gas and liquid, is cooled, the amount of moisture carried out of the system by the flue gas is reliably reduced. From the above, it can be seen that the cooling of flue gas for water recovery and reduction of flue gas volume is preferably carried out by the limestone-water slurry of the circulating fluid in the absorption tower, rather than by the circulating fluid of the cooling tower. The cooling method is preferably indirect cooling using a cooling fluid such as seawater or river water, but is not limited thereto.

第2図の例では、石灰石−水スラリは吸収塔5の上部か
ら噴霧され、滴表面および装置壁にできる液膜表面で熱
と水蒸気の同時移動が起こる。滴の寸法、速度、密度、
ガスと滴の温度、ガス流速を変化させて行った実験の結
果、滴まわりの移動熱量は、ガスと滴のエンタルピ差、
hg−hd (k c a 1 /cJ)を駆動力とし
て、次式で表されることが証明された。
In the example of FIG. 2, the limestone-water slurry is sprayed from the top of the absorption tower 5, and simultaneous transfer of heat and water vapor occurs on the droplet surface and on the surface of the liquid film formed on the device wall. Droplet size, velocity, density,
As a result of experiments conducted by changing the temperature of the gas and the droplet, and the gas flow rate, the amount of heat transferred around the droplet was determined by the enthalpy difference between the gas and the droplet,
It was proved that hg-hd (k c a 1 /cJ) is expressed by the following equation as the driving force.

ここに、qd:ガスから滴への移動熱it (k c 
a l /5)Red :ン妬のレイノルズ数(−) Sc:シュミソト数(−) γg:ガスの比重量(cn+/%) I):拡散係数(rrr/S) d:滴直径(m) Ad:滴表面積 ガスと垂直平面との間の移動熱1iqfs(kcal/
s)は次式で表される。
Here, qd: heat transferred from the gas to the droplet it (k c
a l /5) Red: Reynolds number (-) Sc: Schmidt number (-) γg: Specific weight of gas (cn+/%) I): Diffusion coefficient (rrr/S) d: Droplet diameter (m) Ad: Droplet surface area Transfer heat between gas and vertical plane 1iqfs (kcal/
s) is expressed by the following formula.

ここに、Res:膜のレイノズル数(−)ds:Iq長
さ (m) As:膜面積(ボ) 。
Here, Res: Raynozzle number of membrane (-) ds: Iq length (m) As: membrane area (bo).

hfs:膜エンタルピ(k c a 1 /cJ)ガス
と水平面の間の移動熱量qfb(kcal/S)は次式
で表される。
hfs: membrane enthalpy (k c a 1 /cJ) The amount of heat transferred between the gas and the horizontal plane qfb (kcal/S) is expressed by the following formula.

ここに、■g:ガス速度(m/ S )Ab:膜面積(
rrr) hfb:IIQエンタルピ(k c a l /ci)
(1)〜(3)式によってガスエンタルピの変化と移動
熱量をめることができ、これと平衡するガスの温度が定
まる。
Here, ■g: gas velocity (m/S) Ab: membrane area (
rrr) hfb: IIQ enthalpy (k a l /ci)
Using equations (1) to (3), the change in gas enthalpy and the amount of heat transferred can be calculated, and the temperature of the gas that is in equilibrium with this can be determined.

以上は基礎実験の結果であるが、これとは別に実施した
パイロットプラントによる実験で、(1)〜(3)式に
よる段重が可能であることが証明された。
The above are the results of basic experiments, but in an experiment using a pilot plant conducted separately from this, it was proven that stage loads based on formulas (1) to (3) are possible.

石灰石−水スラリに対する冷却量が多いほど、回収水量
は多くなるが、1例として、スラリを10℃冷却すると
回収水量は石炭1 kgあたり0.32kgとなり、C
WM製造および排煙脱硫用の合計補。
The greater the amount of cooling for the limestone-water slurry, the greater the amount of water recovered. As an example, when the slurry is cooled by 10°C, the amount of recovered water is 0.32 kg per 1 kg of coal, and C
Total supplement for WM production and flue gas desulfurization.

給水量は従来方式の51%となる。また、これによって
、脱硫装置の補給水に相当する水を確保することができ
る。この量は100万KWの火力発電に対しては、1日
あたり73200)ンの水の節約に相当する。
The amount of water supplied will be 51% of that of the conventional method. Moreover, this makes it possible to secure water equivalent to make-up water for the desulfurization equipment. This amount is equivalent to saving 73,200 tons of water per day for 1 million KW of thermal power generation.

前記のように石灰石−水スラリを10°C冷却した場合
、排煙中の酸素濃度が3%になるように燃焼するものと
すると、排煙の容積は従来方式と比較して8%低減する
。したがって、誘引送風機2をυ1煙脱硫装置の下流側
に設置することによって、この排煙容積の減少に見合っ
た、誘引送風機消費動力の低減を計ることができる。ま
た第2図のようにガス・ガス熱交換器9を設けた場合は
、この熱交換器の後流側に誘引送風機を設LJた方が、
露点による腐食の可能性が少なくなる。
If the limestone-water slurry is cooled by 10°C as described above, and if it is combusted so that the oxygen concentration in the flue gas becomes 3%, the volume of flue gas will be reduced by 8% compared to the conventional method. . Therefore, by installing the induced blower 2 on the downstream side of the υ1 smoke desulfurization device, it is possible to reduce the power consumption of the induced blower commensurate with this reduction in the exhaust gas volume. In addition, when a gas-gas heat exchanger 9 is installed as shown in Fig. 2, it is better to install an induced blower LJ on the downstream side of this heat exchanger.
Less chance of dew point corrosion.

石灰石−水スラリを冷却する方法は、冷却塔内のスラリ
に冷却管7を浸漬させるものに限定されず、例えば外部
冷却器で冷却するようにしてもよい。
The method of cooling the limestone-water slurry is not limited to immersing the cooling pipe 7 in the slurry in the cooling tower, but may be cooled with an external cooler, for example.

第3図は、このような本発明の他の実施例を示すもので
あり、石灰石−水スラリは吸収鍵循環系内の吸収塔循環
ポンプ6出口と吸収塔5の間に設置された吸収液冷却器
8において、例えば海水のような冷却体によって間接冷
却される。この実施例によれば、前記の効果に加えて、
吸収塔冷却器8ば専用の熱交換器となるため、冷却体と
スラリの流れを最適化することが可能となり、経済的な
設計を行なうことができる。
FIG. 3 shows another embodiment of the present invention, in which the limestone-water slurry is absorbed into the absorption liquid installed between the absorption tower circulation pump 6 outlet and the absorption tower 5 in the absorption key circulation system. In the cooler 8, it is indirectly cooled by a cooling body such as seawater. According to this embodiment, in addition to the above effects,
Since the absorption tower cooler 8 is a dedicated heat exchanger, it is possible to optimize the flow of the cooling body and slurry, and an economical design can be achieved.

以上、本発明によれば、下記のような効果が達成される
As described above, according to the present invention, the following effects are achieved.

(1)石灰石−水スラリを燃焼するシステム内の湿式排
煙脱硫装置の吸収塔循環スラリを冷却することにより、
排煙から水を回収するとともに、排煙を減湿、減量する
ことができ、これにより、システムへの補給水を例えば
約50%に低減することができる。
(1) By cooling the slurry circulating in the absorption tower of the wet flue gas desulfurization equipment in the system that burns limestone-water slurry,
As well as recovering water from the flue gas, the flue gas can be dehumidified and reduced in weight, thereby reducing the amount of make-up water to the system by, for example, about 50%.

(2)誘引送風機を減量後の排煙が通る系統に設置した
ことにより、その消費動力を例えば約8%低減すること
ができる。
(2) By installing the induced blower in the system through which the reduced exhaust gas passes, the power consumption thereof can be reduced by about 8%, for example.

(3)排煙の減湿により、排煙脱硫装置後流側のダクト
および機器の腐食を軽減することができる。
(3) By dehumidifying the flue gas, corrosion of the duct and equipment on the downstream side of the flue gas desulfurization device can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術による石炭−水スラリ燃焼ボイラシ
ステムの系統図、第2図は、本発明の一実施例を示すも
ので、吸収塔内の吸収塔内の石灰石−水スラリを冷却し
、誘引送風機を排煙脱硫装置の後流側に設置した石炭−
水スラリ燃焼ボイラシステムの系統図、第3図は、本発
明の他の実施例を示すもので、石灰石−水スラリを吸収
塔循環ポンプと吸収塔の間で冷却する方式の同様なシス
テムを示す系統図である。 1・・・ボイラ、2・・・誘引送風機、3・・・冷却塔
、4・・・冷却塔循環ポンプ、5・・・吸収塔、6・・
・吸収塔循環ポンプ、7・・・吸収液冷却管、8・・・
吸収液冷却器、9・・・ガス・ガス熱交換器、1o・・
・煙突。 代理人 弁理士 川 北 武 長
Fig. 1 is a system diagram of a coal-water slurry combustion boiler system according to the prior art, and Fig. 2 shows an embodiment of the present invention, in which limestone-water slurry in an absorption tower is cooled. , Coal with an induced blower installed downstream of the flue gas desulfurization equipment.
FIG. 3, a system diagram of a water slurry combustion boiler system, shows another embodiment of the present invention, and shows a similar system in which a limestone-water slurry is cooled between an absorption tower circulation pump and an absorption tower. It is a system diagram. 1... Boiler, 2... Induced blower, 3... Cooling tower, 4... Cooling tower circulation pump, 5... Absorption tower, 6...
・Absorption tower circulation pump, 7... Absorption liquid cooling pipe, 8...
Absorption liquid cooler, 9... Gas-gas heat exchanger, 1o...
·chimney. Agent Patent Attorney Takenaga Kawakita

Claims (1)

【特許請求の範囲】[Claims] (1)石炭−水スラリを燃焼させる火炉と、該火炉の排
ガス流路に設げられた、冷却塔と吸収塔を備えた湿式排
煙脱硫装置と、該吸収塔の循環液の冷却手段とを有する
ことを特徴とする石炭−水スラリ燃焼装置。 (2、特許請求の範囲第1項において、湿式排煙脱硫装
置の下流側に排煙の誘引送風機を設置したことを特徴と
する石炭−水スラリ燃焼装置。
(1) A furnace for burning a coal-water slurry, a wet flue gas desulfurization device equipped with a cooling tower and an absorption tower, installed in the exhaust gas flow path of the furnace, and means for cooling the circulating liquid of the absorption tower. A coal-water slurry combustion device comprising: (2. A coal-water slurry combustion device according to claim 1, characterized in that a flue gas induced blower is installed downstream of the wet flue gas desulfurization device.
JP58182513A 1983-09-30 1983-09-30 Coal-water slurry combustion apparatus Granted JPS6073204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182513A JPS6073204A (en) 1983-09-30 1983-09-30 Coal-water slurry combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182513A JPS6073204A (en) 1983-09-30 1983-09-30 Coal-water slurry combustion apparatus

Publications (2)

Publication Number Publication Date
JPS6073204A true JPS6073204A (en) 1985-04-25
JPH0343522B2 JPH0343522B2 (en) 1991-07-02

Family

ID=16119609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182513A Granted JPS6073204A (en) 1983-09-30 1983-09-30 Coal-water slurry combustion apparatus

Country Status (1)

Country Link
JP (1) JPS6073204A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296655C (en) * 2004-09-10 2007-01-24 南京东大能源环保科技有限公司 Apparatus and method for treating incineration exhaust gas of dry-wet mixed solid waste
JP2010172878A (en) * 2009-02-02 2010-08-12 Babcock Hitachi Kk Exhaust gas treatment device of coal-fired boiler of oxygen combustion type and method using this device
JP2021109793A (en) * 2020-01-08 2021-08-02 宇部興産株式会社 Method for producing reducing material
JP2021109794A (en) * 2020-01-08 2021-08-02 宇部興産株式会社 Apparatus for producing reducing material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296655C (en) * 2004-09-10 2007-01-24 南京东大能源环保科技有限公司 Apparatus and method for treating incineration exhaust gas of dry-wet mixed solid waste
JP2010172878A (en) * 2009-02-02 2010-08-12 Babcock Hitachi Kk Exhaust gas treatment device of coal-fired boiler of oxygen combustion type and method using this device
JP2021109793A (en) * 2020-01-08 2021-08-02 宇部興産株式会社 Method for producing reducing material
JP2021109794A (en) * 2020-01-08 2021-08-02 宇部興産株式会社 Apparatus for producing reducing material

Also Published As

Publication number Publication date
JPH0343522B2 (en) 1991-07-02

Similar Documents

Publication Publication Date Title
US7585476B2 (en) Process for controlling the moisture concentration of a combustion flue gas
JP3053914B2 (en) CO2 recovery boiler
CN109432936A (en) Sintering flue gas processing method and processing system
JP5107418B2 (en) Primary recirculation exhaust gas flow controller for oxyfuel boiler
KR20120092174A (en) Method and system for condensing water vapour from a carbon dioxide rich flue gas
CN107519757A (en) A kind of unpowered cooling cigarette tower apparatus of wet flue gas
JPS59157419A (en) Method and device for burning fuel containing water
JP5313304B2 (en) Integrated flue gas dehumidification and wet cooling tower system
US5878675A (en) Flue gas desulfurizer, boiler equipment and thermal electric power generation equipment
CN204107298U (en) Oxidation trough, system of flue-gas desulfurization with seawater and electricity generation system
JP5432098B2 (en) Oxyfuel boiler
JPH10110628A (en) Gas turbine exhaust processing device
JPS6073204A (en) Coal-water slurry combustion apparatus
CN206695159U (en) A kind of chimney for eliminating wet desulphurization white cigarette
GB2138555A (en) Process for Utilising Heat Removed on Cooling a Flue Gas Stream
JPH0694212A (en) Fossil fuel combustion boiler
US4097217A (en) Method for converting combustor from hydrocarbonaceous fuel to carbonaceous fuel
JPS60206429A (en) Composite plant of exhaust gas desulfurization apparatus in combustion boiler
CN207324502U (en) A kind of unpowered cooling cigarette tower apparatus of wet flue gas
FI90912B (en) Procedure for the operation of a small power plant
JPH09103641A (en) Flue gas desulfurization facility and boiler equipment
JPH07169498A (en) Exhaust device for fuel cell power plant
JPH0147684B2 (en)
JP2001520329A (en) Method for black liquor gasification of recovery boiler
EP0398199B1 (en) Desulfurizing method and equipment for exhaust gas from combuster