JPH0147684B2 - - Google Patents

Info

Publication number
JPH0147684B2
JPH0147684B2 JP57002859A JP285982A JPH0147684B2 JP H0147684 B2 JPH0147684 B2 JP H0147684B2 JP 57002859 A JP57002859 A JP 57002859A JP 285982 A JP285982 A JP 285982A JP H0147684 B2 JPH0147684 B2 JP H0147684B2
Authority
JP
Japan
Prior art keywords
gas
temperature
low
fly ash
air preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57002859A
Other languages
Japanese (ja)
Other versions
JPS58120020A (en
Inventor
Masatoshi Kudome
Takeshi Kunimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57002859A priority Critical patent/JPS58120020A/en
Publication of JPS58120020A publication Critical patent/JPS58120020A/en
Publication of JPH0147684B2 publication Critical patent/JPH0147684B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant

Description

【発明の詳細な説明】 本発明は、石炭焚ボイラ排煙処理方法に関し、
特に該排煙中のSO3による低温腐食を防止する方
法に関する。
[Detailed Description of the Invention] The present invention relates to a coal-fired boiler flue gas treatment method,
In particular, the present invention relates to a method for preventing low-temperature corrosion caused by SO 3 in the flue gas.

従来の排煙処理は、第1図に示すような系統で
行われていた。
Conventional smoke exhaust treatment has been carried out using the system shown in Figure 1.

第1図において、ボイラ等の燃焼生成ガスは、
図示省略の節炭器と脱硝装置を経てライン5から
空気予熱器の燃焼生成ガス流路6に入り、押込通
風器1で昇圧されライン2から上記空気予熱器の
空気通路3に送られて来る燃焼用空気と熱交換
後、ライン7から電気集塵器8に入り、ここで除
塞され、ライン9、誘引通風機10、ライン11
を経て昇圧通風機12に入り、加圧されてライン
13からガス−ガス式熱交換器14に入る。ここ
で後述する処理ガスと熱交換後、ライン15から
増湿冷却塔16へ至り、増湿冷却後、ライン17
から吸収塔18へ入り、亜硫酸ガスが除去され、
次いで除湿器19にて水滴除去が行われる。この
水滴除去後の処理ガスが上記のガス−ガス式熱交
換器14に入り、上記の昇圧通風機12で加圧さ
れたガスと熱交換されるのである。この熱交換に
より高温となつた処理ガスは、ライン20、煙突
21を経て大気へ放出される。なお、22は上記
のライン12からライン20に至るまでの処理系
をバイパスするための切替ダンパである。
In Figure 1, the combustion generated gas from boilers, etc.
It enters the combustion product gas passage 6 of the air preheater from the line 5 through a carbon saver and a denitrification device (not shown), is pressurized by the forced draft fan 1, and is sent from the line 2 to the air passage 3 of the air preheater. After exchanging heat with the combustion air, it enters the electrostatic precipitator 8 from line 7, where it is deblocked, and the line 9, induced draft fan 10, and line 11
The air enters the booster fan 12 through the line 13, is pressurized, and enters the gas-gas heat exchanger 14 through the line 13. After heat exchange with the processing gas, which will be described later, the line 15 leads to the humidifying cooling tower 16, and after humidifying and cooling, the line 17
It enters the absorption tower 18 from where the sulfur dioxide gas is removed,
Next, a dehumidifier 19 removes water droplets. The treated gas from which the water droplets have been removed enters the gas-to-gas heat exchanger 14, where it exchanges heat with the gas pressurized by the booster fan 12. The processing gas heated to high temperature by this heat exchange is discharged to the atmosphere through a line 20 and a chimney 21. Note that 22 is a switching damper for bypassing the processing system from line 12 to line 20 described above.

ところで、脱硫処理ガス(すなわち、吸収塔1
8での亜硫酸ガス除去と除湿器19での除湿とを
行つた後のガス)は、およそ50〜60℃で飽和湿分
を含むため、ガス−ガス熱交換器14で白煙防止
と大気拡散とに必要な温度(通常100−130℃)に
加熱されなければならない。従つて、ライン13
からガス−ガス熱交換器14へ入るガスは、130
〜140℃の温度を維持することが必要となる。し
かし、このような温度を維持しなければならない
系統においては、次のような不具合がある。
By the way, the desulfurization treatment gas (i.e. absorption tower 1
The gas (after removing sulfur dioxide gas in step 8 and dehumidifying in dehumidifier 19) contains saturated moisture at approximately 50 to 60 degrees Celsius, so the gas-gas heat exchanger 14 prevents white smoke and diffuses it into the atmosphere. and must be heated to the required temperature (usually 100-130°C). Therefore, line 13
The gas entering the gas-gas heat exchanger 14 from 130
It will be necessary to maintain a temperature of ~140°C. However, systems that must maintain such temperatures have the following problems.

(i) 空気予熱器6出口ガス温度、すなわちガス−
ガス熱交換器14入口ガス(ライン13からの
ガス)温度を高くしなければならないので、熱
損失が大きい。例えば、空気予熱器6出口ガス
温度を10℃低下できれば、空気予熱器3出口ガ
ス温度は10℃高くなり、ボイラ効率は約1%向
上する。
(i) Air preheater 6 outlet gas temperature, i.e. gas-
Since the gas heat exchanger 14 inlet gas (gas from line 13) temperature must be increased, heat loss is large. For example, if the air preheater 6 outlet gas temperature can be lowered by 10°C, the air preheater 3 outlet gas temperature will increase by 10°C, and the boiler efficiency will improve by about 1%.

(ii) 空気予熱器6出口ガス温度が高いと、燃焼生
成ガス中のSO3は凝縮せず、フライアツシユに
付着しない。従つて、SO3は電気集塵器8で除
去されることなく、そのままガス−ガス式熱交
換器14に持ち込まれ、該ガス−ガス式熱交換
器14の低温端メタル温度が70℃と低いこと
と、湿度が高いことから、上記のSO3は伝熱面
に凝縮付着し、伝熱面は勿論、構造部材は激し
い硫酸腐食を起す。
(ii) If the gas temperature at the outlet of air preheater 6 is high, SO 3 in the combustion generated gas will not condense and will not adhere to the fly ash. Therefore, SO 3 is not removed by the electrostatic precipitator 8, but is brought into the gas-gas heat exchanger 14 as it is, and the low-temperature end metal temperature of the gas-gas heat exchanger 14 is as low as 70°C. Due to this and high humidity, the SO 3 mentioned above condenses and adheres to heat transfer surfaces, causing severe sulfuric acid corrosion not only on heat transfer surfaces but also on structural members.

本発明は、これらの不具合を解消するためにな
されたもので、 (1) 空気予熱器と電気集塵器間に低圧給水加熱器
(ガス加熱低圧給水ヒータ)を設置し、空気予
熱器出口ガス温度を下げ、ガス中のSO3を凝縮
させてフライアツシユに吸着させ、電気集塵器
でフライアツシユと伴に除去し、ガス−ガス式
熱交換器の硫酸腐食を防止することを特徴とす
る排煙処理方法、および (2) 上記(1)の低圧給水加熱器を設置してガス−ガ
ス式熱交換器の硫酸腐食を防止すると共に、ガ
ス−ガス式熱交換器の処理ガス出口と煙突との
間に上記の低圧給水加熱器で得られる蒸気によ
る加熱器(蒸気式加熱器)を設置し、ガス−ガ
ス熱交換器における熱交換量減少分をこの蒸気
式加熱器で補ない、煙突入口に必要なガス温度
とすることを特徴とする排煙処理方法、 に関するものである。
The present invention was made to solve these problems. (1) A low-pressure feed water heater (gas-heated low-pressure water heater) is installed between the air preheater and the electrostatic precipitator, and the air preheater outlet gas A flue gas system characterized by lowering the temperature, condensing SO 3 in the gas, adsorbing it to the fly ash, and removing it along with the fly ash using an electrostatic precipitator to prevent sulfuric acid corrosion of gas-gas heat exchangers. treatment method, and (2) installing the low-pressure feed water heater described in (1) above to prevent sulfuric acid corrosion of the gas-gas heat exchanger, as well as ensuring that the treated gas outlet of the gas-gas heat exchanger is connected to the chimney. A heater (steam type heater) using steam obtained from the above-mentioned low-pressure feed water heater is installed in between, and this steam type heater compensates for the decrease in heat exchange in the gas-gas heat exchanger. The present invention relates to a flue gas treatment method characterized by bringing the gas temperature to a required level.

第2図は、本発明方法の一実施態様例を示す系
統図である。第2図中、第1図と同一符号は第1
図と同一機能部を示す。
FIG. 2 is a system diagram showing an embodiment of the method of the present invention. In Figure 2, the same symbols as in Figure 1 are
Shows the same functional parts as the figure.

第2図において、空気予熱器6にて燃焼用空気
で熱回収された燃焼生成ガスは、ガス加熱低圧給
水ヒータ101で更に熱回収され、減温されて電
気集塵器8に至る。石炭燃焼ガスは、通常5〜30
g/Nm3のフライアツシユと未燃炭素を含むが、
このうち99%以上が該集塵器8で除塵される。し
かる後、第1図と同様の系路を経て脱硫され、ガ
ス−ガス式熱交換器14からライン20へ流出
し、蒸気式加熱器102で白煙防止および大気拡
散に必要な温度に加熱され、煙突21へ至る。
In FIG. 2, the combustion generated gas whose heat has been recovered by the combustion air in the air preheater 6 is further recovered by the gas-heated low-pressure water heater 101, and then reaches the electrostatic precipitator 8 after being reduced in temperature. Coal combustion gas is usually 5 to 30
g/Nm 3 of flyash and unburned carbon, but
More than 99% of this dust is removed by the dust collector 8. Thereafter, it is desulfurized through a system similar to that shown in FIG. 1, flows out from the gas-gas heat exchanger 14 to the line 20, and is heated in the steam heater 102 to a temperature necessary for preventing white smoke and dispersing it into the atmosphere. , leading to the chimney 21.

上記のガス加熱低圧給水ヒータ101は、ター
ビンサイクルの低圧給水加熱器であつて加熱源を
タービン抽気の代りに空気予熱器6出口ガスを使
用するものであり、ガス温度より或る程度低い
(通常100℃以下)温度域で使用するため低圧給水
とするものである。
The gas-heated low-pressure feedwater heater 101 is a turbine cycle low-pressure feedwater heater that uses air preheater 6 outlet gas as a heat source instead of turbine bleed air, and has a temperature somewhat lower than the gas temperature (normally This is a low-pressure water supply for use in a temperature range (below 100℃).

また、上記の蒸気式加熱器102の加熱蒸気と
しては、上記のガス加熱低圧給水ヒータ101で
得られる蒸気を抽気して使用する。
Moreover, as the heating steam for the above-mentioned steam type heater 102, steam obtained by the above-mentioned gas-heated low-pressure water supply heater 101 is extracted and used.

ところで、増湿冷却器16では、燃焼生成ガス
を吸収塔18での脱硫に必要な湿度および温度
(通常50℃)となるよう調整するが、この増湿冷
却器16入口ガス温度を低くすればする程、増湿
冷却器16での熱損失は減少し、しかもガス加熱
低圧給水ヒータ101での回収熱量は増大するた
めその分だけ蒸気発生量が増え蒸気式加熱器10
2用加熱蒸気量が多くなつてプラント効率が改善
される。
By the way, the humidification cooler 16 adjusts the combustion generated gas to the humidity and temperature (usually 50°C) necessary for desulfurization in the absorption tower 18, but if the gas temperature at the inlet of the humidification cooler 16 is lowered, The more the heat loss in the humidifying cooler 16 decreases, the more the amount of heat recovered in the gas-heated low-pressure feed water heater 101 increases, so the amount of steam generated increases accordingly.
The amount of heating steam for No. 2 is increased, and plant efficiency is improved.

以上のように、本発明方法は、ガス−ガス式熱
交換器14の硫酸腐食を防止し、また処理ガスの
再加熱に系内で回熱した熱を利用するため、この
種技術において極めて効果的な方法ということが
できる。
As described above, the method of the present invention is extremely effective in this type of technology because it prevents sulfuric acid corrosion of the gas-gas heat exchanger 14 and uses the heat reheated within the system to reheat the treated gas. It can be said to be a method.

以下、本発明方法による効果を、具体的なデー
タをも挙げて、まとめて示す。
Below, the effects of the method of the present invention will be summarized, including specific data.

(i) 第3図は、ガス温度と低温伝熱面における
SO3通過率との関係を示す図表である。
(i) Figure 3 shows the relationship between gas temperature and low-temperature heat transfer surface.
It is a chart showing the relationship with the SO 3 passage rate.

該図によれば、ガス温度が低い程、ガス中の
SO3は凝縮して低温伝熱面に付着し、低温伝熱
面におけるSO3通過率は低くなるが、本発明方
法では予めガスを減温し、SO3を凝縮してフラ
イアツシユに吸着させ、電気集塵器で該フライ
アツシユを除塵しておくため、低温伝熱面へ送
られるガス中のSO3濃度は大幅に低減し、該低
温伝熱面でのSO3通過率が低くても問題はな
い。
According to the figure, the lower the gas temperature, the more
SO 3 condenses and adheres to the low-temperature heat transfer surface, lowering the SO 3 passage rate on the low-temperature heat transfer surface, but in the method of the present invention, the gas is cooled in advance, SO 3 is condensed and adsorbed on the fly ash, Since dust is removed from the fly ash using an electrostatic precipitator, the SO 3 concentration in the gas sent to the low-temperature heat transfer surface is significantly reduced, and there is no problem even if the SO 3 passage rate on the low-temperature heat transfer surface is low. do not have.

また第4図は、ガス中のSO3濃度と酸露点温
度との関係を示す図である。
Moreover, FIG. 4 is a diagram showing the relationship between the SO 3 concentration in the gas and the acid dew point temperature.

該図によれば、SO3濃度が低い程、酸露点温
度も低いが、本発明方法では上記したように高
煤塵域で減温、除塵するため、SO3のフライア
ツシユへの凝縮吸着率および該SO3付着フライ
アツシユの除去率が高く、SO3の大部分が除去
されたガスが低温伝熱面へ送られるので、酸露
点温度が低くても凝縮すべきSO3が極めて少な
く、低温腐食のおそれはない。
According to the figure, the lower the SO 3 concentration, the lower the acid dew point temperature. However, as mentioned above, in the method of the present invention, temperature is reduced and dust is removed in a high dust area, so the condensation adsorption rate of SO 3 on the fly ash and the The removal rate of SO 3 adhering fly ash is high, and the gas from which most of the SO 3 has been removed is sent to the low-temperature heat transfer surface, so even if the acid dew point temperature is low, there is very little SO 3 to condense, reducing the risk of low-temperature corrosion. That's not it.

なお、気相SO3を多量に含むガスを除塵後、
低温伝熱面へ送る従来方法では、除塵の際に気
相SO3の除去はできないため、低温伝熱面で凝
縮するSO3量が多く、激しい低温腐食が生じ
る。
In addition, after removing dust from the gas containing a large amount of gaseous SO 3 ,
With the conventional method of sending SO 3 to a low-temperature heat transfer surface, it is not possible to remove gaseous SO 3 during dust removal, so a large amount of SO 3 condenses on the low-temperature heat transfer surface, resulting in severe low-temperature corrosion.

(ii) 第5図は、処理すべき排ガス温度とプラント
効率との一例を示す図表である。
(ii) FIG. 5 is a chart showing an example of the temperature of the exhaust gas to be treated and the plant efficiency.

該図から明らかなように、処理すべき排ガス
温度が低い程、プラント効率が高いので、ガス
加熱低圧給水ヒータで熱回収して減温したガス
を処理する本発明方法は、プラント効率が大幅
に向上することが判る。
As is clear from the figure, the lower the temperature of the exhaust gas to be treated, the higher the plant efficiency. Therefore, the method of the present invention, which uses a gas-heated low-pressure water heater to recover heat and treat the gas whose temperature has been reduced, significantly improves the plant efficiency. It can be seen that it will improve.

(iii) ガス−ガス式熱交換器での低温腐食のおそれ
がないので、該熱交換器へ導入する未処理ガス
(すなわちライン13から導入するガス)の温
度を低下することができ、増湿冷却器での減温
量を少なくすることができる(すなわち、増湿
冷却器での熱損失を低減できる)。
(iii) Since there is no risk of low-temperature corrosion in the gas-to-gas heat exchanger, the temperature of the untreated gas introduced into the heat exchanger (i.e., the gas introduced from line 13) can be lowered, and humidification can be achieved. The amount of temperature reduction in the cooler can be reduced (that is, heat loss in the humidifying cooler can be reduced).

(iv) ガス−ガス式熱交換器のみでの再加熱では白
煙防止や大気拡散に必要な温度まで昇温できな
い場合は、蒸気式加熱器で更に加熱を行うこと
ができ、しかもこの蒸気式加熱器に使用する加
熱蒸気としてタービンサイクルのガス加熱低圧
給水ヒータで得られた蒸気を抽気して使用すれ
ば、タービン効率も向上する。
(iv) If reheating using only a gas-gas heat exchanger does not raise the temperature to the temperature required for white smoke prevention and atmospheric dispersion, further heating can be performed using a steam heater; If the steam obtained by the gas-heated low-pressure feed water heater of the turbine cycle is extracted and used as the heating steam used in the heater, the efficiency of the turbine will also be improved.

(v) 処理すべきガス温度が低いので、燃焼ガスの
体積流量が減少し、誘引通風機および昇圧通風
機を小形化でき、かつその消費動力をも低減す
ることができる。
(v) Since the temperature of the gas to be treated is low, the volumetric flow rate of the combustion gas is reduced, the induced draft fan and the boost draft fan can be downsized, and their power consumption can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の排煙処理方法を示す系統図、第
2図は本発明方法の一実施態様例を示す系統図、
第3図はガス温度と低温伝熱面におけるSO3通過
率との関係を示す図表、第4図はSO3濃度と酸露
点温度との関係を示す図表、第5図は処理すべき
排ガス温度とプラント効率との関係の一例を示す
図表である。
FIG. 1 is a system diagram showing a conventional flue gas treatment method, FIG. 2 is a system diagram showing an example of an embodiment of the method of the present invention,
Figure 3 is a chart showing the relationship between gas temperature and SO 3 passage rate on a low-temperature heat transfer surface, Figure 4 is a chart showing the relationship between SO 3 concentration and acid dew point temperature, and Figure 5 is the temperature of the exhaust gas to be treated. 2 is a chart showing an example of the relationship between plant efficiency and plant efficiency.

Claims (1)

【特許請求の範囲】 1 石炭焚ボイラ排煙処理系において、空気予熱
器と電気集塵器との間に低圧給水加熱器を設置し
て空気予熱器出口ガス温度を低下し、燃焼ガス中
のSO3をフライアツシユに吸着させ、該フライア
ツシユを電気集塵器にて除去して燃焼ガス中の
SO3濃度を低下させた後、脱硫設備のガス−ガス
式熱交換器へ送ることを特徴とする排煙処理方
法。 2 石炭焚ボイラ排煙処理系において、空気予熱
器と電気集塵器との間に低圧給水加熱器を設置し
て空気予熱器出口ガス温度を低下し、燃焼ガス中
のSO3をフライアツシユに吸着させ、該フライア
ツシユを電気集塵器にて除去して燃焼ガス中の
SO3濃度を低下させた後、脱硫設備のガス−ガス
式熱交換器へ送ると共に、脱硫後の処理ガスを煙
突から大気放出する前に蒸気式加熱器を設置して
脱硫後の処理ガスを昇温させることを特徴とする
排煙処理装置。
[Claims] 1. In a coal-fired boiler flue gas treatment system, a low-pressure feed water heater is installed between an air preheater and an electrostatic precipitator to lower the air preheater outlet gas temperature and reduce the SO 3 is adsorbed onto the fly ash, and the fly ash is removed using an electrostatic precipitator to remove the SO 3 from the combustion gas.
A flue gas treatment method characterized by reducing the SO 3 concentration and then sending it to a gas-gas heat exchanger of a desulfurization facility. 2. In a coal-fired boiler flue gas treatment system, a low-pressure feed water heater is installed between the air preheater and the electrostatic precipitator to lower the air preheater outlet gas temperature and adsorb SO 3 in the combustion gas to the fly ash. The fly ash is removed using an electrostatic precipitator to remove the fly ash from the combustion gas.
After reducing the SO 3 concentration, it is sent to the gas-to-gas heat exchanger of the desulfurization equipment, and a steam heater is installed before the desulfurized treated gas is released into the atmosphere from the chimney. A flue gas treatment device characterized by raising temperature.
JP57002859A 1982-01-13 1982-01-13 Disposal of exhaust smoke Granted JPS58120020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57002859A JPS58120020A (en) 1982-01-13 1982-01-13 Disposal of exhaust smoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57002859A JPS58120020A (en) 1982-01-13 1982-01-13 Disposal of exhaust smoke

Publications (2)

Publication Number Publication Date
JPS58120020A JPS58120020A (en) 1983-07-16
JPH0147684B2 true JPH0147684B2 (en) 1989-10-16

Family

ID=11541100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57002859A Granted JPS58120020A (en) 1982-01-13 1982-01-13 Disposal of exhaust smoke

Country Status (1)

Country Link
JP (1) JPS58120020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238127A (en) * 1993-02-16 1994-08-30 Babcock Hitachi Kk Flue gas treating device and controller for same
JPH0780242A (en) * 1993-09-13 1995-03-28 Babcock Hitachi Kk Exhaust gas purifying apparatus and driving method of appararus thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573589B2 (en) * 1987-01-09 1997-01-22 バブコツク日立株式会社 Flue gas treatment equipment
JPH0756377B2 (en) * 1989-08-09 1995-06-14 中部電力株式会社 Method and apparatus for treating boiler exhaust gas
CN101825283A (en) * 2010-04-30 2010-09-08 山西太钢不锈钢股份有限公司 Method for improving thermal efficiency of regenerative heating furnace
CN109173668B (en) * 2018-09-29 2021-04-20 凤阳海泰科能源环境管理服务有限公司 Cooling water waste heat recovery and desulfurization smoke plume elimination system and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238127A (en) * 1993-02-16 1994-08-30 Babcock Hitachi Kk Flue gas treating device and controller for same
JPH0780242A (en) * 1993-09-13 1995-03-28 Babcock Hitachi Kk Exhaust gas purifying apparatus and driving method of appararus thereof

Also Published As

Publication number Publication date
JPS58120020A (en) 1983-07-16

Similar Documents

Publication Publication Date Title
CN105937773A (en) Power station boiler condensing flue gas dehumidification and purification energy-saving system
CN104848238B (en) Electric dust removal heat exchange system
CN208660405U (en) A kind of coal-fired power station boiler flue gas white-smoke-removing system tower-coupled with cooling
WO1985004946A1 (en) Method and apparatus for improving the operation of a heat generator
CN208704475U (en) A kind of flue gas for coking industry wet desulphurization takes off white system
US4586940A (en) Process and apparatus for a recovery of heat comprising a heat-recovering absorption of water vapor from gases
CN109939556A (en) The flue gas advanced purification system and its method that residual heat utilization-type plume is eliminated
CN110354670A (en) A kind of boiler with tailed flue gas takes off white system and method
JPH0147684B2 (en)
CN216273195U (en) System for noncondensable gas is got rid of in desulfurization thick liquid flash distillation
JP2002370012A (en) Exhaust gas treatment apparatus
CN105757645A (en) Efficient low-grade residual heat resource utilization system for coal-fired power plant
JPS60227845A (en) Treating apparatus of exhaust gas
CN211677009U (en) Smoke whitening system
CN211060156U (en) High-efficiency energy-saving smoke condensing and reheating white smoke eliminating system
CN209386338U (en) A kind of electricity generation boiler tail flue gas based on high-temperature dust removal disappears white device
DE3573466D1 (en) Process and device for reheating flue gases
JP2592115B2 (en) Method for gradually removing SO lower 2 from exhaust gas containing SO 2
CN111068453A (en) Flue gas whitening system and flue gas whitening method
JP3783122B2 (en) Smoke removal equipment
CN216384245U (en) Desulfurization slurry white-removing system
CN205690432U (en) A kind of station boiler condensed flue gas dehumidifying purifies and energy conserving system
CN110631040A (en) High-efficiency energy-saving smoke condensing and reheating white smoke eliminating system
CN214513749U (en) White smoke plume eliminating system by wet desulphurization
CN216557190U (en) Boiler flue gas waste heat recovery and air heating humidification device