JPS58120020A - Disposal of exhaust smoke - Google Patents

Disposal of exhaust smoke

Info

Publication number
JPS58120020A
JPS58120020A JP57002859A JP285982A JPS58120020A JP S58120020 A JPS58120020 A JP S58120020A JP 57002859 A JP57002859 A JP 57002859A JP 285982 A JP285982 A JP 285982A JP S58120020 A JPS58120020 A JP S58120020A
Authority
JP
Japan
Prior art keywords
gas
temperature
air preheater
heat exchanger
fly ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57002859A
Other languages
Japanese (ja)
Other versions
JPH0147684B2 (en
Inventor
Masatoshi Kudome
正敏 久留
Takeshi Kunimoto
国本 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57002859A priority Critical patent/JPS58120020A/en
Publication of JPS58120020A publication Critical patent/JPS58120020A/en
Publication of JPH0147684B2 publication Critical patent/JPH0147684B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent the corrosion of a heat exchanger due to sulfuric acid by a method wherein a low pressure supply water heater is provided between an air preheater and an electrical dust collector so that the temperature of the gas at the outlet of the air preheater is lowered and SO3 contained in the gas is removed by making it condensed and adsorbed by fly ash. CONSTITUTION:The combustion gas thermally collected by combustion air at an air preheater is thermally collected additionally by the gas heating low pressure supply water heater 101 and reaches the electrical dust collector 8 after the temperature thereof is lowered. The coal combustion gas contains fly ash and unburned carbon and more than about 99% of the contents is deprived of dust by the dust collector 8. After that, the gas is desulfurized, flows from the gas- gas heat exchanger 14 to a line 20 where it is prevented from generating white smoke and heated to a temperature sufficient for it to be diffused into the atmosphere, and finally reaches a chimney 12. As a consequence, it is possible to prevent the heat exchanger 14 from corrosion due to sulfuric acid.

Description

【発明の詳細な説明】 本発明は、石炭焚ボイラ排煙処理方法に関し、特に該排
煙中の803による低温腐食を防止する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating coal-fired boiler flue gas, and particularly to a method for preventing low-temperature corrosion due to 803 in the flue gas.

で行われていた。It was held in

第1図において、ボイラ等の燃焼生成ガスは、図示省略
の節炭器と脱硝装置を経てライン575・ら空気予熱器
の燃焼生成ガス流路乙に入り、押込通風器1で昇圧され
ライン2から上記空気予熱器の空気通路3に送られて来
る燃焼用空気と熱交換後、ライン7から電気集塵器8に
入り、ここで除塵され、ライン9、誘引通風機10゜ラ
イン11を経て昇圧通風機12に入り、カロ圧されてラ
イン13からガス−ガス式熱交換器14に入る。ここで
後述する処理ガスと熱交換後、ライン15から増湿冷却
塔16へ至り、増湿冷却後、ライン17から吸収塔18
へ入り、亜硫酸ガスが除去され、次いで除湿器19にて
水滴除去が行われる。この水滴除去後の処理ガスが上記
のガス−ガス式熱交換器14に入り、上記の昇圧通風機
12で加圧され九ガスと熱交換されるのである。この熱
交換により高温となった処理ガスは、ライン20、煙突
21を経て大気へ放出される。なお、22は上記のライ
ン12からライン20に至るまでの処理系をバイパスす
るための切替ダンパである。
In FIG. 1, combustion gas from a boiler, etc. passes through a carbon saver and a denitrification device (not shown), enters the combustion gas flow path B of the air preheater from line 575, is pressurized by forced draft fan 1, and is pressurized by line 2. After exchanging heat with the combustion air sent from the air to the air passage 3 of the air preheater, it enters the electrostatic precipitator 8 from the line 7, where it is dedusted, and then passes through the line 9, the induced draft fan 10°, and the line 11. It enters the booster fan 12, is pressurized, and enters the gas-gas heat exchanger 14 through the line 13. After heat exchange with the processing gas, which will be described later, the line 15 leads to the humidifying cooling tower 16, and after humidifying and cooling, the line 17 leads to the absorption tower 18.
, sulfur dioxide gas is removed, and then a dehumidifier 19 removes water droplets. The treated gas from which the water droplets have been removed enters the gas-to-gas heat exchanger 14, is pressurized by the booster fan 12, and is heat exchanged with the gas. The processing gas heated to high temperature by this heat exchange is discharged into the atmosphere through a line 20 and a chimney 21. Note that 22 is a switching damper for bypassing the processing system from line 12 to line 20 described above.

ところで、脱硫処理ガス(すなわち、吸収塔18での亜
硫酸ガス除去と除湿器19での除湿とを行った後のガス
)は、およそ50〜60℃で飽和湿分を含むため、ガス
−ガス熱交換器14で白煙防止と大気拡散とに必要な温
度(通常+00−130℃)に加熱されなければならな
い。従って、ライン15からガス−ガス熱交換器14へ
入るガスは、130〜140℃の温度を維持することが
必要となる。しかし、このような温度を維持しなければ
ならない系統においては、次のような不萬合がある。
By the way, the desulfurization treatment gas (that is, the gas after sulfur dioxide gas is removed in the absorption tower 18 and dehumidified in the dehumidifier 19) contains saturated moisture at approximately 50 to 60°C, so the gas-gas heat It must be heated in the exchanger 14 to a temperature (usually +00-130°C) necessary for preventing white smoke and dispersing it into the atmosphere. The gas entering the gas-gas heat exchanger 14 from line 15 is therefore required to maintain a temperature of 130-140°C. However, in systems that must maintain such a temperature, there are the following inconsistencies.

(1)空気予熱器6出ロガス温度、すなわちガス−ガス
熱交換器14人口ガス(ライン13からのガス)温度を
高くしなければならないので、熱損失が太きい。例えば
、空気予熱器6出ロガス温度全10℃低下できれば、空
気予熱器3出ロガス温度は10℃高くなり、ボイラ効率
は約1%向上する。
(1) Since the temperature of the gas output from the air preheater 6, that is, the temperature of the gas from the gas-gas heat exchanger 14 (gas from the line 13) must be increased, heat loss is large. For example, if the air preheater 6 output log gas temperature can be lowered by 10 degrees Celsius in total, the air preheater 3 output log gas temperature will increase by 10 degrees Celsius, and the boiler efficiency will improve by about 1%.

(11)空気予熱器6出ロガス温度が高いと、燃焼生成
ガス中のS03は凝縮せず、フライアッシュに付着しな
い。従って、S03け電気集塵器8で除去されることな
く、そのままガス−ガス式熱交換器14に持ち込捷れ、
該ガス−ガス式熱交換器14の低温端メタル温度が70
℃と低いことと、湿度が高いことから、上記のSO3は
伝熱面に凝縮付着し、伝熱面は勿論、構造部材は激しい
硫酸腐食を起す。
(11) If the temperature of the gas output from the air preheater 6 is high, S03 in the combustion generated gas will not condense and will not adhere to the fly ash. Therefore, S03 is not removed by the electrostatic precipitator 8 and is directly carried into the gas-gas heat exchanger 14.
The low temperature end metal temperature of the gas-gas heat exchanger 14 is 70
Due to the low temperature of 0.degree. C. and the high humidity, the above-mentioned SO3 condenses and adheres to heat transfer surfaces, causing severe sulfuric acid corrosion not only on the heat transfer surfaces but also on structural members.

本発明は、これらの不具合を解消するためになされたも
ので、 (1)空気予熱器と電気集塵器間に低圧給水加熱器(ガ
ス加熱低圧給水ヒータ)を設置し、空気予熱器出口ガス
温度を下げ、ガス中の803を凝縮させてフライアッシ
ュに吸着させ、電気集塵器でフライアッシュと伴に除去
し、ガス−ガス式熱交換器の硫酸腐食を防止することを
特徴とする排煙処理方法、および (2)  上記(1)の低圧給水加熱器全設置してガス
−ガス式熱交換器の硫酸腐食を防止すると共に、ガス−
ガス式熱交換器の処理ガス出口と煙突との間に上記の低
圧給水加熱器で得られる蒸気による加熱器(蒸気式加熱
器)を設置し、ガス−ガス熱交換器における熱交換量減
少分をこの蒸気式加熱器で補ない、煙突入口に必要なガ
ス温度とすること全特徴とする排煙処理方法、 に関するものである0 第2図は、本発明方法の一実施態様例を示す系統図であ
る。第2図中、第1図と同一符号は第1図と同−機能部
を示す。
The present invention was made to solve these problems. (1) A low-pressure feed water heater (gas-heated low-pressure water heater) is installed between the air preheater and the electrostatic precipitator, and An exhaust system characterized by lowering the temperature, condensing 803 in the gas, adsorbing it to fly ash, and removing it together with the fly ash in an electrostatic precipitator to prevent sulfuric acid corrosion of gas-gas heat exchangers. smoke treatment method, and (2) installing all the low-pressure feed water heaters in (1) above to prevent sulfuric acid corrosion of gas-to-gas heat exchangers;
A heater (steam type heater) using steam obtained from the above-mentioned low-pressure feed water heater is installed between the treated gas outlet of the gas heat exchanger and the chimney to reduce the amount of heat exchanged in the gas-gas heat exchanger. This relates to a flue gas treatment method, which is characterized in that the temperature of the gas is maintained at the required gas temperature at the smoke inlet, without supplementing the temperature with this steam heater. It is a diagram. In FIG. 2, the same reference numerals as in FIG. 1 indicate the same functional parts as in FIG.

第2図において、空気予熱器6にて燃焼用空気で熱回収
された燃焼生成ガスは、ガス加熱低圧給水ヒータ101
で更に熱回収され、減温されて電気集塵器8に至る。石
炭燃焼ガスは、通常5〜50 S’/Nm3  のフラ
イアッシュと未燃炭素を含むが、このうち99%以上が
該集塵器8で除塵される。しかる後、第1図と同様の糸
路を経て脱硫され、ガス−ガス式熱交換器14からライ
ン20へ流出し、蒸気式加熱器+02で白煙防止および
大気拡散に必要な温度に加熱され、煙突21へ至る。
In FIG. 2, the combustion generated gas whose heat has been recovered by the combustion air in the air preheater 6 is transferred to the gas-heated low-pressure water heater 101.
The heat is further recovered and the temperature is reduced before reaching the electrostatic precipitator 8. Coal combustion gas usually contains 5 to 50 S'/Nm3 of fly ash and unburned carbon, of which 99% or more is removed by the dust collector 8. Thereafter, it is desulfurized through the same thread path as shown in Figure 1, flows out from the gas-gas heat exchanger 14 to the line 20, and is heated in the steam heater +02 to a temperature necessary for preventing white smoke and dispersing it into the atmosphere. , leading to the chimney 21.

上記のガス加熱低圧給水ヒータ101は、タービンサイ
クルの低圧給水加熱器であって加熱源をタービン抽気の
代りに空気予熱器6出ロガス番使用するものであり、ガ
ス温度より成る程度低い(通常100℃以下)温度域で
使用するため低圧給水とするものである。
The gas-heated low-pressure feedwater heater 101 is a turbine cycle low-pressure feedwater heater that uses the air preheater 6 output gas as a heating source instead of turbine bleed air, and has a temperature lower than the gas temperature (usually 100 This is a low-pressure water supply for use in a temperature range (below ℃).

また、上記の蒸気式加熱器102の加熱蒸気としては、
上記のガス加熱低圧給水ヒータ101で得られる蒸気を
抽気して使用する。
Moreover, as the heating steam of the above steam heater 102,
The steam obtained by the gas-heated low-pressure water supply heater 101 described above is extracted and used.

ところで、増湿冷却器16では、燃焼生成ガスを吸収塔
18での脱硫に必要な湿度および温度(通常50℃)と
なるよう調整するが、この増湿冷却器16人ロガス温度
全低くすればする程、増湿冷却器16での熱損失は減少
し、しかもガス加熱低圧給水ヒータ101での回収熱量
は増大するためその分だけ蒸気発生量が増え蒸気式加熱
器102用加熱蒸気量が多くなってプラント効率が改善
される。
By the way, the humidifying cooler 16 adjusts the combustion generated gas to the humidity and temperature (usually 50°C) necessary for desulfurization in the absorption tower 18, but if the humidity and temperature of the humidifying cooler 16 is lowered, As the heat loss in the humidifying cooler 16 decreases, the amount of heat recovered in the gas-heated low-pressure feed water heater 101 increases, so the amount of steam generated increases accordingly, and the amount of heating steam for the steam heater 102 increases. This improves plant efficiency.

以上のように、本発明方法は、ガス−ガス式熱交換器1
4の硫酸腐食を防止し、また処理ガスの再加熱に系内で
回熱した熱全利用するため、この種技術において極めて
効果的な方法ということができる。
As described above, the method of the present invention applies to the gas-gas heat exchanger 1
This method can be said to be extremely effective in this type of technology because it prevents the sulfuric acid corrosion described in No. 4 and also makes full use of the heat reheated within the system for reheating the processing gas.

以下、本発明方法による効果を、具体的なデータをも挙
げて、まとめて示す。
Below, the effects of the method of the present invention will be summarized, including specific data.

(1)第5図は、ガス温度と低温伝熱面におけるSO3
通過率との関係を示す図表である。
(1) Figure 5 shows the gas temperature and SO3 on the low-temperature heat transfer surface.
It is a chart showing the relationship with the passage rate.

該図によれば、ガス温度が低因程、ガス中の803は凝
縮して低温伝熱面に付着し、低温伝熱面におけるSO3
通過率は低くなるが、本発明方法では予めガスを減温し
、5o31凝縮してフライアッシュに吸着させ、電気集
塵器で該フライアッシュを除塵しておくため、低温伝熱
面へ送られるガス中のSC2濃度は大幅に低減し、該低
温伝熱面でのSO3通過率が低くても問題はない。
According to the figure, the lower the gas temperature, the more 803 in the gas condenses and adheres to the low-temperature heat transfer surface, resulting in SO3 on the low-temperature heat transfer surface.
Although the passage rate will be low, in the method of the present invention, the gas is cooled in advance, 5o31 condensed and adsorbed on fly ash, and the fly ash is removed using an electrostatic precipitator, so that it is sent to the low-temperature heat transfer surface. The SC2 concentration in the gas is significantly reduced, and there is no problem even if the SO3 passage rate on the low-temperature heat transfer surface is low.

また第4図は、ガス中のSo3濃度と酸露点温度との関
係を示す図である。
Moreover, FIG. 4 is a diagram showing the relationship between the So3 concentration in the gas and the acid dew point temperature.

該図によれば、SC2濃度が低い程、酸露点温度も低い
が、本発明方法では上記したように高煤塵域で減温、除
塵するため、SO3のフライアッシュへの凝縮吸着率お
よび該SO3付着フライアッシュの除去率が高く、SO
3の大部分が除去されたガスが低温伝熱面へ送られるの
で、酸露点温度が低くても凝縮すべきSO2が極めて少
なく、低温腐食のおそれはない0 なお、気相803を多量に含むガスを除塵後、低温伝熱
面へ送る従来方法では、除塵の際に気相SO3の除去は
できないため、低温伝熱面で凝縮するSO2量が多く、
激しい低温腐食が生じる。
According to the figure, the lower the SC2 concentration, the lower the acid dew point temperature. However, in the method of the present invention, as described above, the temperature is reduced and dust is removed in a high dust area, so the condensation adsorption rate of SO3 to fly ash and the SO3 High removal rate of adhered fly ash, SO
Since the gas from which most of 3 has been removed is sent to the low-temperature heat transfer surface, there is very little SO2 to condense even if the acid dew point temperature is low, and there is no risk of low-temperature corrosion.In addition, it contains a large amount of gas phase 803. In the conventional method of sending the gas to the low-temperature heat transfer surface after dust removal, it is not possible to remove gaseous SO3 during dust removal, so a large amount of SO2 condenses on the low-temperature heat transfer surface.
Severe cold corrosion occurs.

(11)第5図は、処理すべき排ガス温度とプラント効
率との関係の一例を示す図表である。
(11) FIG. 5 is a chart showing an example of the relationship between the temperature of the exhaust gas to be treated and the plant efficiency.

該図から明らかなように、処理すべき排ガス温度が低い
程、プラント効率が高いので、ガス加熱低圧給水ヒータ
で熱回収して減温したガスを処理する本発明方法は、プ
ラント効率が大幅に向上することが判る。
As is clear from the figure, the lower the temperature of the exhaust gas to be treated, the higher the plant efficiency. Therefore, the method of the present invention, which uses a gas-heated low-pressure water heater to recover heat and treat the gas whose temperature has been reduced, significantly improves the plant efficiency. It can be seen that it will improve.

011)  ガス−ガス式熱交換器での低温腐食のおそ
れがないので、該熱交換器へ導入する未処理ガス(すな
わちライン13から導入するガス)の温度を低下するこ
とができ、増湿冷却器での減温量を少なくすることがで
きる(すなわち、増湿冷却器での熱損失を低減できる)
0(IV)  ガス−ガス式熱交換器のみでの再加熱で
は白煙防止や大気拡散に必要な温度まで昇温できない場
合は、蒸気式加熱器で更に加熱を行うことができ、しか
もこの蒸気式加熱器に使用する加゛熱蒸気としてタービ
ンサイクルのガス加熱低圧給水ヒータで得られた蒸気を
抽気して使用すれば、タービン効率も向上する。
011) Since there is no risk of low-temperature corrosion in the gas-gas heat exchanger, the temperature of the untreated gas introduced into the heat exchanger (i.e., the gas introduced from line 13) can be lowered, resulting in humidification and cooling. The amount of temperature loss in the humidifier can be reduced (i.e., the heat loss in the humidifying cooler can be reduced)
0 (IV) If reheating using only a gas-gas heat exchanger does not raise the temperature to the temperature required for preventing white smoke or dispersing it into the atmosphere, further heating can be performed using a steam heater, and this steam If the steam obtained by the gas-heated low-pressure feedwater heater of the turbine cycle is extracted and used as heated steam for use in the type heater, the efficiency of the turbine will also be improved.

(V)  処理すべきガス温度が低いので、燃焼ガスの
体積流量が減少し、誘引通風機および昇圧通風機を小形
化でき、かつその消費動力をも低減することができる。
(V) Since the temperature of the gas to be treated is low, the volumetric flow rate of the combustion gas is reduced, the induced draft fan and the boost draft fan can be downsized, and their power consumption can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排煙処理方法を示す系統図、第2図は本
発明方法の一実施態様例を示す系統図、第6図はガス温
度と低温伝熱面におけるSO3通過率との関係を示す図
表、第4図はSC2濃度と酸露点温度との関係を示す図
表、第5図は処理すべき排ガス温度とプラント効率との
関係の一例に示す図表である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 馬3図 帛5図 牟4図
Fig. 1 is a system diagram showing a conventional flue gas treatment method, Fig. 2 is a system diagram showing an embodiment of the method of the present invention, and Fig. 6 is the relationship between gas temperature and SO3 passage rate on a low-temperature heat transfer surface. FIG. 4 is a chart showing the relationship between SC2 concentration and acid dew point temperature, and FIG. 5 is a chart showing an example of the relationship between the exhaust gas temperature to be treated and plant efficiency. Sub-agents 1) Meifuku agent Ryo Hagiwara - Horse 3 illustrations 5 illustrations 4 illustrations

Claims (2)

【特許請求の範囲】[Claims] (1)  石炭焚ボイラ排煙処理系において、空気予熱
器と電気集塵器との間に低圧給水加熱器を設置して空気
予熱器出口ガス温度を低下し、燃焼ガス中の5o3iフ
ライアツシユに吸着させ、該フライアッシュを電気集塵
器にて除去して燃焼ガス中のSO,濃度を低下させた後
、脱硫設備のガス−ガス式熱交換器へ送ることを特徴と
する排煙処理方法。
(1) In the coal-fired boiler flue gas treatment system, a low-pressure feed water heater is installed between the air preheater and the electrostatic precipitator to lower the air preheater outlet gas temperature and adsorb it to the 5o3i fly ash in the combustion gas. A flue gas treatment method comprising: removing the fly ash with an electrostatic precipitator to reduce the concentration of SO in the combustion gas, and then sending it to a gas-gas heat exchanger of a desulfurization facility.
(2)  石炭焚ボイラ排煙処理系において、空気予熱
器と電気集塵器との間に低圧給水加熱器を設置して空気
予熱器出口ガス温度を低下し、燃焼ガス中の5o3fフ
ライアツシユに吸着させ、該フライアッシュを電気集塵
器にて除去して燃焼ガス中のSO,濃度を低下させた後
、脱硫設備のガス−ガス式熱交換器へ送ると共に、脱硫
後の処理ガスを煙突から大気放出する前に蒸気式加熱器
を設置して脱硫後の処理装置。
(2) In the coal-fired boiler flue gas treatment system, a low-pressure feed water heater is installed between the air preheater and the electrostatic precipitator to lower the air preheater outlet gas temperature and adsorb it to the 5o3f fly ash in the combustion gas. After removing the fly ash with an electrostatic precipitator to reduce the concentration of SO in the combustion gas, it is sent to the gas-to-gas heat exchanger of the desulfurization equipment, and the treated gas after desulfurization is passed through the chimney. A post-desulfurization treatment device that installs a steam heater before releasing into the atmosphere.
JP57002859A 1982-01-13 1982-01-13 Disposal of exhaust smoke Granted JPS58120020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57002859A JPS58120020A (en) 1982-01-13 1982-01-13 Disposal of exhaust smoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57002859A JPS58120020A (en) 1982-01-13 1982-01-13 Disposal of exhaust smoke

Publications (2)

Publication Number Publication Date
JPS58120020A true JPS58120020A (en) 1983-07-16
JPH0147684B2 JPH0147684B2 (en) 1989-10-16

Family

ID=11541100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57002859A Granted JPS58120020A (en) 1982-01-13 1982-01-13 Disposal of exhaust smoke

Country Status (1)

Country Link
JP (1) JPS58120020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH0370907A (en) * 1989-08-09 1991-03-26 Chubu Electric Power Co Inc Method and device for treating exhaust gas of boiler
CN101825283A (en) * 2010-04-30 2010-09-08 山西太钢不锈钢股份有限公司 Method for improving thermal efficiency of regenerative heating furnace
CN109173668A (en) * 2018-09-29 2019-01-11 凤阳海泰科能源环境管理服务有限公司 Desulfurization plume system and its control method are eliminated in a kind of recycling of cooling water heat

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408832B2 (en) * 1993-02-16 2003-05-19 バブコック日立株式会社 Flue gas treatment equipment and its control equipment
JP3408845B2 (en) * 1993-09-13 2003-05-19 バブコック日立株式会社 Exhaust gas purifier and its operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH0370907A (en) * 1989-08-09 1991-03-26 Chubu Electric Power Co Inc Method and device for treating exhaust gas of boiler
CN101825283A (en) * 2010-04-30 2010-09-08 山西太钢不锈钢股份有限公司 Method for improving thermal efficiency of regenerative heating furnace
CN109173668A (en) * 2018-09-29 2019-01-11 凤阳海泰科能源环境管理服务有限公司 Desulfurization plume system and its control method are eliminated in a kind of recycling of cooling water heat

Also Published As

Publication number Publication date
JPH0147684B2 (en) 1989-10-16

Similar Documents

Publication Publication Date Title
CN105937773A (en) Power station boiler condensing flue gas dehumidification and purification energy-saving system
CN109939556A (en) The flue gas advanced purification system and its method that residual heat utilization-type plume is eliminated
CN208660405U (en) A kind of coal-fired power station boiler flue gas white-smoke-removing system tower-coupled with cooling
US4586940A (en) Process and apparatus for a recovery of heat comprising a heat-recovering absorption of water vapor from gases
CN110354670A (en) A kind of boiler with tailed flue gas takes off white system and method
JPS58120020A (en) Disposal of exhaust smoke
CN206755210U (en) Fire coal boiler fume purifies and waste heat recovery processing system
JPS63171622A (en) Exhaust gas treating device
CN109731431A (en) A kind of coal steam-electric plant smoke takes off white system and method
CN208553728U (en) Moisture is absorbed to carry out taking off white wet type fume sweetening device
JPS60227845A (en) Treating apparatus of exhaust gas
DE3573466D1 (en) Process and device for reheating flue gases
JP2592115B2 (en) Method for gradually removing SO lower 2 from exhaust gas containing SO 2
JPH10128152A (en) Device and method for flue gas treatment
JP3783122B2 (en) Smoke removal equipment
CN216384245U (en) Desulfurization slurry white-removing system
CN205690432U (en) A kind of station boiler condensed flue gas dehumidifying purifies and energy conserving system
CN111068453A (en) Flue gas whitening system and flue gas whitening method
CN109966887A (en) A kind of flue gas processing method and device based on energy matter allotment
CN108392975A (en) A kind of moisture that absorbs carries out de- white wet type fume sweetening device
JP2002372223A (en) Gas-gas heater
JPS60227844A (en) Treating equipment of stack gas
CN215863494U (en) White cigarette device is eliminated in coordination with moisture recovery to flue gas waste heat
CN216557190U (en) Boiler flue gas waste heat recovery and air heating humidification device
CS274412B2 (en) Method of precooled hot fue gases' further cooling