JPS6071859A - Heat pump - Google Patents

Heat pump

Info

Publication number
JPS6071859A
JPS6071859A JP17821083A JP17821083A JPS6071859A JP S6071859 A JPS6071859 A JP S6071859A JP 17821083 A JP17821083 A JP 17821083A JP 17821083 A JP17821083 A JP 17821083A JP S6071859 A JPS6071859 A JP S6071859A
Authority
JP
Japan
Prior art keywords
motor
cooled
pressure
condenser
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17821083A
Other languages
Japanese (ja)
Other versions
JPH0317054B2 (en
Inventor
四十宮 真次
小川 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP17821083A priority Critical patent/JPS6071859A/en
Publication of JPS6071859A publication Critical patent/JPS6071859A/en
Publication of JPH0317054B2 publication Critical patent/JPH0317054B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷媒にて冷却する形式の電動機を有するヒート
ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump having an electric motor that is cooled with a refrigerant.

本明細書において 「ヒートポンプ」 とは温流体を製
造する狭義のヒートポンプのみならず、冷流体を製造す
る冷凍機も含む広義のヒートポンプをいう。
In this specification, "heat pump" refers not only to heat pumps in a narrow sense that produce hot fluids, but also to heat pumps in a broad sense that includes refrigerators that produce cold fluids.

また、本明細書においては、凝縮器自体の内部1− の高圧ガス流路も、凝縮器の外の高圧ガス流路も含めて
 「高圧ガス流路」 という。
Furthermore, in this specification, the high-pressure gas flow path inside the condenser itself is also referred to as a "high-pressure gas flow path," including the high-pressure gas flow path outside the condenser.

従来、密閉形ターボ冷凍機等のモータの冷却方法として
は通常冷媒液冷方式か、冷媒ガス冷方式かの二種類の冷
却方式が採用されている。
Conventionally, two types of cooling methods have been used to cool the motor of a hermetic centrifugal refrigerator or the like: a refrigerant liquid cooling method and a refrigerant gas cooling method.

冷媒液冷方式は、大略蒸発圧力に保持したモーター内に
凝縮液を送り込み減圧蒸発させ、その蒸発潜熱によりモ
ーターを冷却する方法である。この方法はモーター冷却
に使用される熱量だけ蒸発器の容量が減少し、成積係数
が低下するという欠点がある。また従来の冷媒ガス冷方
式は凝縮器内ガスをモーター内部に組み込んだモーター
駆動ファンにより、吸引して、この冷媒がスにより冷却
し、再び凝縮器に戻すという方法である。しかしながら
この方法はモーター内部にファンを組み込む必要があり
モーターの構造が非常に複雑になるという欠点がある。
The refrigerant liquid cooling method is a method in which condensed liquid is fed into the motor maintained at approximately the evaporation pressure, evaporated under reduced pressure, and the motor is cooled by the latent heat of evaporation. This method has the disadvantage that the capacity of the evaporator is reduced by the amount of heat used to cool the motor, resulting in a lower buildup coefficient. Furthermore, in the conventional refrigerant gas cooling system, the gas in the condenser is sucked in by a motor-driven fan built into the motor, the refrigerant is cooled by gas, and then returned to the condenser. However, this method has the disadvantage that it is necessary to incorporate a fan inside the motor, making the structure of the motor very complicated.

本発明の目的はモーターの構造が複雑とならない冷媒ガ
ス冷方式のモータ冷却方法を有するヒートポンプを提供
することである。
An object of the present invention is to provide a heat pump having a refrigerant gas-cooled motor cooling method that does not require a complicated motor structure.

2− 本発明は、蒸発器、複数段の圧縮機、複数個の凝縮器、
複数個の膨張装置を備え、前記複数個の凝縮器が、被加
熱流体により直列に順に冷却されるよう配備され、前記
圧縮機は電動機により駆動され、該電動機の冷却が被加
熱流体の下流側の高圧ガス流路から電動機に導かれる冷
媒ガスにより行なわれ、該電動機を冷却した冷媒ガスは
被加熱流体の上流側の高圧ガス流路に導入されることを
特徴とするヒートポンプである。
2- The present invention comprises an evaporator, a multi-stage compressor, a plurality of condensers,
a plurality of expansion devices, the plurality of condensers are arranged to be sequentially cooled in series by the fluid to be heated, the compressor is driven by an electric motor, and the cooling of the motor is provided downstream of the fluid to be heated; This heat pump is characterized in that the refrigerant gas that has cooled the motor is introduced into the high-pressure gas flow path upstream of the fluid to be heated.

本発明を実施例につき図面を用いて説明する。The present invention will be explained with reference to the drawings based on examples.

第1図は凝縮器が4セツトあり圧縮機羽根車も4個ある
し一トポンプの70−シートである。
Figure 1 shows a 70-sheet pump with four sets of condensers, four compressor impellers, and one pump.

蒸発器1は1個であり、配管2に上り送り込まれる熱源
水により加熱され、蒸発した冷媒ガスは吸込管3→吸込
ヘツダ4→吸込管5.5’ 、5″。
There is only one evaporator 1, and it is heated by the heat source water that is sent up to the pipe 2, and the evaporated refrigerant gas is passed through the suction pipe 3 → suction header 4 → suction pipes 5.5', 5''.

5″を経て圧縮Wi6の各段の羽根車7.7’、7″。5″ to the impellers of each stage of compression Wi6 7.7′, 7″.

7″に吸込まれる。圧縮機6により圧縮されたガスは四
つの凝縮器8.8’ 、8″、8’すに吐出される。こ
の凝縮器の冷却は被加熱流体としての負荷流体により行
なわれる。負荷流体はポンプ9によ3− リ、これら四つの凝縮器をシリーズに順に貫流腰加熱さ
れる。
The gas compressed by the compressor 6 is discharged into four condensers 8, 8', 8' and 8'. This condenser is cooled by a load fluid as a fluid to be heated. The load fluid is heated by the pump 9 as it flows through these four condensers in series.

通常このシステムの負荷流体は給湯や、乾燥用空気等の
出入口温度差の大きい負荷流体が適用される。例えば負
荷流体出口10より約20℃の給水が各凝縮器で10℃
づつ加熱され、負荷流体出口11では約60℃となり負
荷に供される。
Usually, the load fluid of this system is a load fluid with a large difference in temperature between the inlet and outlet, such as hot water supply or drying air. For example, if the water supplied from the load fluid outlet 10 is about 20°C, the temperature will be 10°C in each condenser.
The temperature at the load fluid outlet 11 reaches about 60° C. and is used for loading.

逆に冷媒ガスは冷却され、凝縮し、配管12゜+ 2’
 、+ 2″、12″を通り、膨張装置13゜13’ 
、+ 3” 、+ 3”で減圧され、蒸発器に送られる
Conversely, the refrigerant gas is cooled and condensed, and the pipe 12° + 2'
, + 2″, 12″, expansion device 13° 13′
, +3", +3" and sent to the evaporator.

前述のように負荷流体の出入口温度差が天外いので、四
つの凝縮器の凝縮温度は異なっている。
As mentioned above, since the temperature difference between the inlet and outlet of the load fluid is enormous, the condensation temperatures of the four condensers are different.

例えば前述の給湯装置の場合、凝縮温度はそれぞれ約3
5℃、45℃、55℃、65°Cである。従って蒸発温
度が15°Cの場合、羽根車7は15°C相当圧より3
5℃相当圧まで圧力上昇させればよい。羽根車7″は1
5℃相当圧より65℃相当圧まで圧力上昇させる必要が
ある。
For example, in the case of the water heater mentioned above, the condensing temperature is approximately 3
5°C, 45°C, 55°C, and 65°C. Therefore, when the evaporation temperature is 15°C, the impeller 7 is
The pressure may be increased to a pressure equivalent to 5°C. Impeller 7″ is 1
It is necessary to raise the pressure from the pressure equivalent to 5°C to the pressure equivalent to 65°C.

本実施例のし一トボンプのモーター冷却は一例4− を示せば下記の如く行なわれる。すなわち負荷流体の最
も下流の、最高圧力の凝縮器8″の冷媒ガスが配管14
により、モーター15に導かれ、モーター内部のステー
ター16、ローター17を冷却して、配管18を経由し
て8″より圧力の低い、負荷流体の上流側の凝縮器8″
に導入される。
To give an example 4--, cooling of the motor of the pump of this embodiment is carried out as follows. In other words, the refrigerant gas in the highest pressure condenser 8'', which is the most downstream of the load fluid, is transferred to the pipe 14.
The load fluid is guided to the motor 15, cools the stator 16 and rotor 17 inside the motor, and passes through the piping 18 to the condenser 8'' on the upstream side of the load fluid, which has a lower pressure than 8''.
will be introduced in

なお、この例ではガス流れは 8 IN→8″となって
いるが、8″→8′や8′→8でもよく、また圧力差が
少ない場合は8″′→8’、8”→8やB゛′→8とす
ることも可能である。即ち負荷流体の下流側の凝縮器か
ら上流側の凝縮器へ流れるようにする。
In this example, the gas flow is 8 IN→8'', but it may be 8''→8' or 8'→8, or if the pressure difference is small, 8''→8', 8''→8 It is also possible to set B′′→8. That is, the load fluid is caused to flow from the downstream condenser to the upstream condenser.

冷媒ガスを取り出す位置は凝縮器8″’、8”、B自体
の内部からでも、凝縮器外のガス通路からでもよい。冷
媒ガスを戻す位置は、凝縮器8″、8’。
The refrigerant gas may be taken out from inside the condenser 8'', 8'', B itself or from a gas passage outside the condenser. The refrigerant gas is returned to condensers 8″ and 8′.

8自体の内部へでもよく、凝縮器外のガス通路へでもよ
く負荷流体の下流側の高圧がス流路から取り出し、電動
機を冷却し、負荷流体の上流側の高圧ガス流路へ戻すよ
うにする。
The high pressure on the downstream side of the load fluid is taken out from the gas flow path, cools the motor, and is returned to the high pressure gas flow path on the upstream side of the load fluid. do.

なお、本説明例では4個の凝縮器を図示したが、5− これは−っの凝縮器の内部を4個に仕切って、外見上は
あたかも1個の凝縮器のように構成することは可能であ
り、このような場合でも、凝縮室は4個にわかれ、それ
ぞれ、圧力差が生じているので、本発明の範ちゅうに属
するものである。即ち、機能上、凝縮圧力が複数個に分
割されているすべての場合を本発明は含むものである。
Although four condensers are shown in this example, it is not possible to partition the inside of the condenser 5-- into four parts and configure it as if it were one condenser from the outside. This is possible, and even in such a case, the condensing chamber is divided into four parts, each having a pressure difference, and therefore falls within the scope of the present invention. That is, the present invention includes all cases where the condensing pressure is functionally divided into a plurality of parts.

なお、圧縮機の段数も4段の場合だけでなく、複数段の
場合に於いでは、本発明の骨子とする所はすべて適用可
能であり、本発明の範ちゅうに属するものである。
Note that not only the case where the number of stages of the compressor is four, but also the case where the compressor has multiple stages, the gist of the present invention is applicable to all cases and belongs to the scope of the present invention.

本発明により、モータ冷却ガスの流れが複数個の凝縮器
の開の圧力差によるものなので、モータにファンを組み
込む必要がなく、モータ構造が簡単となるヒートポンプ
を提供することができ、実用上極めて大なる効果を奏す
ることができる。
According to the present invention, since the flow of motor cooling gas is based on the pressure difference between a plurality of condensers, it is possible to provide a heat pump with a simple motor structure without the need to incorporate a fan into the motor, which is extremely practical in practice. It can have great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すフロー図である。 1・・蒸発器、2・・配管、3・・吸込管、46− ・・吸込ヘッダ、5.5’ 、5″、5″’・・吸込管
、6・・圧縮機、7.7’ 、7″、7″’・・羽根車
、8.8’ 、8” 、8″’・・凝縮器、9・・ポン
プ、10・・負荷流体入口、11・・負荷流体出口、1
2.12’ 、+ 2” 、+ 2”’・・配管、+3
.13゜+ 3” 、+ 3″’・・膨張装置、14・
・配管、15・・モータ、16・・ステータ、17・・
ローター、18・・配管。 特許出願人 株式会社 荏原製作所 代理人弁理士 高 木 正 行 間 千 1) 捻 回 丸 山 隆 夫 7−
The drawing is a flow diagram illustrating an embodiment of the invention. 1... Evaporator, 2... Piping, 3... Suction pipe, 46-... Suction header, 5.5', 5'', 5'''... Suction pipe, 6... Compressor, 7.7' , 7'', 7'''... Impeller, 8.8', 8'', 8'''... Condenser, 9... Pump, 10... Load fluid inlet, 11... Load fluid outlet, 1
2.12', +2", +2"'...Piping, +3
.. 13゜+3", +3"...expansion device, 14.
・Piping, 15...Motor, 16...Stator, 17...
Rotor, 18...Piping. Patent Applicant Ebara Corporation Representative Patent Attorney Masaru Takagi Sen Yukuma 1) Twisting Takao Maruyama 7-

Claims (1)

【特許請求の範囲】[Claims] 1、蒸発器、複数段の圧縮機、複数個の凝縮器、複数個
の膨張装置を備え、前記複数個の凝縮器が、被加熱流体
により直列に順に冷却されるよう配備され、前記圧縮機
は電動機により駆動され、該電動機の冷却が被加熱流体
の下流側の高圧ガス流路から電動機に導かれる冷媒ガス
により行なわれ、該電動機を冷却した冷媒ガスは被加熱
流体の上流側の高圧ガス流路に導入されることを特徴と
するヒートポンプ。
1. An evaporator, a multi-stage compressor, a plurality of condensers, and a plurality of expansion devices are provided, and the plurality of condensers are arranged to be sequentially cooled in series by the fluid to be heated, and the compressor is driven by an electric motor, and the motor is cooled by refrigerant gas guided to the electric motor from a high-pressure gas flow path downstream of the fluid to be heated, and the refrigerant gas that cooled the electric motor is cooled by the high-pressure gas flow upstream of the fluid to be heated. A heat pump characterized by being introduced into a flow path.
JP17821083A 1983-09-28 1983-09-28 Heat pump Granted JPS6071859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17821083A JPS6071859A (en) 1983-09-28 1983-09-28 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17821083A JPS6071859A (en) 1983-09-28 1983-09-28 Heat pump

Publications (2)

Publication Number Publication Date
JPS6071859A true JPS6071859A (en) 1985-04-23
JPH0317054B2 JPH0317054B2 (en) 1991-03-07

Family

ID=16044502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17821083A Granted JPS6071859A (en) 1983-09-28 1983-09-28 Heat pump

Country Status (1)

Country Link
JP (1) JPS6071859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599533A (en) * 1991-10-07 1993-04-20 Mitsubishi Electric Corp Hot water supplying heat pump device
JP2017201216A (en) * 2016-05-02 2017-11-09 荏原冷熱システム株式会社 Turbo refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599533A (en) * 1991-10-07 1993-04-20 Mitsubishi Electric Corp Hot water supplying heat pump device
JP2017201216A (en) * 2016-05-02 2017-11-09 荏原冷熱システム株式会社 Turbo refrigerator

Also Published As

Publication number Publication date
JPH0317054B2 (en) 1991-03-07

Similar Documents

Publication Publication Date Title
KR101699712B1 (en) Motor cooling system
US10274233B2 (en) Refrigerant cooling and lubrication system with refrigerant source access from an evaporator
US2793506A (en) Refrigerating apparatus with motor driven centrifugal compressor
KR102014466B1 (en) Ciller unit and Chiller system including the same
JPH05223090A (en) Turbo-compressor
CN108895694A (en) A kind of improvement self-cascade refrigeration system system and its control method
JPS6071859A (en) Heat pump
WO2024020019A1 (en) Compressor system for heating, ventilation, air conditioning & refrigeration system
JP2002188865A (en) Multiple stage compression type refrigerating machine
EP0149413A2 (en) Method and apparatus for refrigeration
JPS5824764A (en) Heat pump device
JP5090932B2 (en) Cooling device for transcritical operation with economizer
US10309704B2 (en) Compressor with an oil separator between compressing stages
JPS61159053A (en) Heat pump
US20200041181A1 (en) Systems and methods for purging a chiller system
US2117693A (en) Apparatus for refrigerating purposes
JPS60226668A (en) Heat pump
JPS6124950A (en) Two-element refrigerator
US11959492B2 (en) Hybrid after cooling system and method of operation
JPH0421109B2 (en)
JPS60238650A (en) Heat pump
JPH10292948A (en) Refrigerator
RU2152568C1 (en) Heat pump
JPS59225259A (en) Refrigerator
JPS60126546A (en) Heat pump