JPS6071416A - Control method for continuous quantitative supply operation - Google Patents

Control method for continuous quantitative supply operation

Info

Publication number
JPS6071416A
JPS6071416A JP18124083A JP18124083A JPS6071416A JP S6071416 A JPS6071416 A JP S6071416A JP 18124083 A JP18124083 A JP 18124083A JP 18124083 A JP18124083 A JP 18124083A JP S6071416 A JPS6071416 A JP S6071416A
Authority
JP
Japan
Prior art keywords
amount
supply
manipulated variable
characteristic
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18124083A
Other languages
Japanese (ja)
Other versions
JPS6365563B2 (en
Inventor
Eiji Oki
栄治 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP18124083A priority Critical patent/JPS6071416A/en
Publication of JPS6071416A publication Critical patent/JPS6071416A/en
Publication of JPS6365563B2 publication Critical patent/JPS6365563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • B65G65/44Devices for emptying otherwise than from the top using reciprocating conveyors, e.g. jigging conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/06Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing of strip material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)
  • Jigging Conveyors (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

PURPOSE:To enable at all times the optimum amount of intial operation to be set by conducting simulated operation and thereby previously obtaining a characteristic of an operation amount to a supply amount when powdered substance in a hopper scale is continuously and quantitatively supplied, using a discharge feeder. CONSTITUTION:An amount of powdered substance in a hopper scale 1 is detected by a load cell 3, and the optimum amount of operation is evaluated in a measurement controller 4 based on the detected value. The output is applied to a discharge feeder 2 for continuous quantitative supply. In this instance, an amount of intial operation is applied in order to prevent rising of supply start of the discharge feeder 2 from being delayed. Simulated operation is conducted before actual operation. A supply amount at each amount of divided operation obtained by dividing a full span of the operation amount into plural sections is measured and plotted. A characteristic of the operation amount to the supply amount is obtained employing linear approtimation among the plots. Thereafter, an operation amount corresponding to a set continuous supply amount is estimated based on the aforesaid characteristic to provide the amount of intial operation.

Description

【発明の詳細な説明】 この発明はディジタル式計量制御における連続定量供給
運転制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous quantitative supply operation control method in digital metering control.

連続定量供給運転はホッパ内の粉粒体量に応して排出フ
ィーダを制御して行う。第1図にホッパスケール(1)
、排出フィーダ(2)、ロードセル(3)、計量制御器
(4)の配置関係を示すが、ロードセル(3)により検
出したホッパスケール(1)内の粉粒体量に基づき計量
制御器(・I)において適切の操作量を演算、排出フィ
ーダ(2)へ加え駆動させる。
Continuous quantitative supply operation is performed by controlling the discharge feeder according to the amount of powder or granules in the hopper. Figure 1 shows hopper scale (1)
, the arrangement relationship of the discharge feeder (2), the load cell (3), and the weighing controller (4) is shown. In I), an appropriate operation amount is calculated and applied to the discharge feeder (2) to drive it.

操作量F(lの演算は、設定の連続供給量をR[kg/
hlとすれば、次の制御アルゴリスムにより行われる。
The operation amount F(l is calculated by converting the set continuous supply amount to R[kg/
If hl, the following control algorithm is used.

F(t)=K(△wt+4−土△W i )・・・・・
・(2)−O t;排出開始からの経過時間(s) Wt;を秒後のホッパスケール内紛粒体景(kg)Wo
;排出開始時のホッパスケール内粉粒体量(kl?) K;比例定数 T;積分時間定数 これら式により明らかのように計量制御器(4)はPL
調節系であり、比例定数K、積分時間定数Tを変えるこ
とにより最適の制御状態に調整することができる。とこ
ろで、比例定数K、積分時間定数Tの調整は定常状態の
下で行われるのが一般的であり、当然のことながら過渡
時の現象は最適状態にはなく、特にI制御系を含むこと
の故供給開始の際の立上り遅れの問題が発生する。
F(t)=K(△wt+4−Sat△W i )・・・・・・
・(2) - O t; Elapsed time from the start of discharge (s) Wt; Particle body appearance in the hopper scale in seconds (kg) Wo
; Amount of powder and granular material in the hopper scale at the start of discharge (kl?) K; Proportionality constant T; Integral time constant As is clear from these equations, the metering controller (4) is PL
It is an adjustment system, and can be adjusted to the optimum control state by changing the proportional constant K and the integral time constant T. By the way, the proportionality constant K and the integral time constant T are generally adjusted under steady state conditions, and as a matter of course, transient phenomena are not in the optimal state, especially when the I control system is involved. Therefore, the problem of start-up delay occurs when starting supply.

本発明はこの立上り遅れの問題に対処するもので、設定
の連続供給量R(kg/b)に対応して初期繰作量F。
The present invention deals with this problem of start-up delay, and the initial operation amount F is adjusted in accordance with the set continuous supply amount R (kg/b).

を決定しこれを初期条件として排出フィーダに与えたこ
とを特長とし、かつ困難視される初期繰作量F。の決定
は予じめのシミュレーション運転を行うことにより解決
しようとするものである。す、下、実施例に基づき具体
的に説明する。
The feature is that this is determined and given to the discharge feeder as an initial condition, and the initial operation amount F is considered to be difficult. This decision is to be solved by conducting a preliminary simulation operation. This will be explained in detail below based on examples.

先の(2)式に代る、初期操作量F。を考慮したホッパ
スケール内の粉粒体量Wと操作量F(t)の関係は、 で表せる。初期繰作量F。は設定の連続供給量R(kg
/h)に見合って決定されるが、それが少なすぎると“
立上り遅れ゛の解消にはならず逆に多すぎると゛ハンチ
ング現象゛につながり相当程度の正確な値に選定される
ことが必要である。ところで、連続供給量R(kg/h
)と繰作量F。の関係は、供給粉粒体の比重、粒度等の
祠料特性及び操作量を受け実際に排出フィーダより供給
される間の排出フィーダ特性、によりその都度異にする
のが通常であり、前以ってこの関係を予測するのは困難
である。
Initial operation amount F in place of equation (2) above. The relationship between the amount W of powder and granular material in the hopper scale and the manipulated variable F(t), taking into account, can be expressed as follows. Initial repetition amount F. is the set continuous supply amount R (kg
/h), but if it is too small, “
It does not eliminate the rise delay, and conversely, if it is too large, it will lead to the hunting phenomenon, so it is necessary to select a fairly accurate value. By the way, the continuous supply amount R (kg/h
) and the amount of repetition F. The relationship between the two is normally different each time depending on the abrasive properties such as the specific gravity and particle size of the supplied powder and granules, and the characteristics of the discharge feeder during the time when the amount of operation is received and the material is actually supplied from the discharge feeder. It is difficult to predict this relationship.

このため、本発明は予しめシミュレーション運転を行い
、操作量と供給量の関係を掴むもので、第2図のグラフ
にその具体的な方法を示す。即ち、操作量Fのフルスパ
ンを11等分しその11等分された各操作量F、、F2
・・・Fnでの各供給量R,,R2・・・1R)1を測
定し、それらをプロットしかつプロット間を直線で結び
操作量と供給量の関係として近虹した。
Therefore, in the present invention, a simulation operation is performed in advance to grasp the relationship between the operation amount and the supply amount, and a specific method thereof is shown in the graph of FIG. That is, the full span of the manipulated variable F is divided into 11 equal parts, and each of the 11 equally divided manipulated variables F, , F2
. . . Each supply amount R, , R2 . . . 1R) 1 at Fn was measured, plotted, and the plots were connected with a straight line to show the relationship between the manipulated variable and the supply amount.

各供給量R,,R2・・・Rnの測定は、それぞれの繰
作量F、’、F2・・・Fnを出力、排出フィーダに加
え、層厚の安定時間t。秒を経て後、ロードセルの示す
粉重体重量Wlo、W2o・・・WIloをサンプリン
グし、かつt秒後に再びサンプリングを行い、W、t、
L’t・・・Wlltをめ、次式により演算して得る。
To measure each supply amount R,, R2...Rn, the respective operation amounts F,', F2...Fn are output and outputted to the discharge feeder, and the layer thickness is stabilized for a time t. After seconds have elapsed, sample the powder weight Wlo, W2o...WIlo indicated by the load cell, and sample again after t seconds, W, t,
L't...Wllt is calculated using the following equation.

600 Rn=−一「=(Wno−Wnt)−・・(4)(n 
=1.2.・川・・n) 第2図に実線で示すのがこのシミュレーション運転でめ
た操作量−供給量特性図である。
600 Rn=-1"=(Wno-Wnt)--(4)(n
=1.2.・River...n) The solid line in FIG. 2 is the operation amount-supply amount characteristic diagram obtained in this simulation operation.

すなわち、この発明に係る操作量−供給量の関係は、全
操作量を何段階かに分け、その各段階でのシミュレーシ
ョン運転を行い各供給量を測定し、これら複数操作量段
階での各供給量をプロットしこれらプロット点を直線で
結んだもので、プロット点以外の操作量−供給量の関係
は線形近似により得るのであり、例えば設定の連続供給
量Rを図示するべくRn−、とRnとの間のRxとすれ
ば請求める初期操作量Fxoは 1Fxo”=Fn−1+”XRX ”−’n 1ヨや、
・・・・・・(5) として演算することができる。連続供給量Rが任意のプ
ロット間にあり、例えばRm−,≦R’<Rm。
In other words, the relationship between the manipulated variable and the supply amount according to the present invention is determined by dividing the total manipulated variable into several stages, performing simulation operation at each stage, and measuring each supply amount. The amount is plotted and these plot points are connected with a straight line.The relationship between the operation amount and the supply amount other than the plot points is obtained by linear approximation.For example, to illustrate the set continuous supply amount R, Rn-, Rn If Rx is between
...(5) It can be calculated as follows. The continuous supply amount R is between any plots, for example Rm-, ≦R'<Rm.

にある場合の一般式を示すと、 F o = F II+ −1+−” X R−R’。The general formula for the case is shown as F o = F II+ -1+-” X R-R'.

−4゜■Fつ、・・・・・・(6) となる。-4゜■F,・・・・・・(6) becomes.

なお、第2図に実際の操作量−供給量特性を破船で示す
が、シミュレーション運転特性である実線との差は、操
作量の段階数を増すに従って減少するのであり、繰作量
段階数を調整、実用に差支えない程度の値とすればよく
屋根の問題にはならない。
In addition, although the actual manipulated variable-supply rate characteristic is shown in Figure 2 as a broken ship, the difference from the solid line, which is the simulated operating characteristic, decreases as the number of manipulated variable stages increases, and as the number of manipulated variable stages increases, As long as the value is adjusted and set to a level that does not pose a problem in practical use, it will not cause any problems with the roof.

上記のように、この発明は排出フィーダを用いホッパス
ケール中の粉粒体を連続して定量供給するものにおいて
、系はPI制御系で構成され1制御系を含み、このため
フィーダからの供給初期に立上り遅れの問題を発生し、
これを解決するため、初期操作量を別途加えるとともに
、設定の連続供給量に応じた初期繰作量をめるべく、供
給運転前にシミュレーション運転を行い、捏作量−供給
量特性を予しめ得ておくものであり、いがなる供給量を
設定した場合においても、常に最適の初期操作量を設定
でき立上り遅れのない連続した定量供給を実現できる。
As mentioned above, the present invention uses a discharge feeder to continuously supply a fixed amount of powder or granular material in a hopper scale, and the system is composed of a PI control system and includes one control system, so that the initial supply from the feeder is This causes a startup delay problem,
In order to solve this problem, in addition to adding an initial operation amount separately, in order to determine the initial repetition rate according to the set continuous supply rate, a simulation operation is performed before the supply operation to determine the fabrication rate - supply rate characteristic in advance. Even when a different supply amount is set, it is possible to always set the optimum initial operation amount and realize continuous fixed amount supply without any start-up delay.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、第1図が実施例のブロック図、第2図がその動
作を説明するためのグラフである。 (1)・・・・・・ホッパスケール (2)・・・・・・排出フィーダ (3)・・・・・・ロードセル (4)・・・・・・計量制御器 出願人神鋼電機株式会社 代理人 弁理士 斎 藤 春 弥 矛1図 KL 岸(¥f1
In the drawings, FIG. 1 is a block diagram of the embodiment, and FIG. 2 is a graph for explaining its operation. (1) Hopper scale (2) Discharge feeder (3) Load cell (4) Metering controller applicant Shinko Electric Co., Ltd. Agent Patent Attorney Haru Saifuji Yako 1 KL Kishi (¥f1

Claims (1)

【特許請求の範囲】[Claims] 1、ホンパスケール内の粉粒体量をロードセルにより検
出し、その検出値に基づき計量制御器において最適の操
作量を演算、排出フィーダへ加え、連続の定量供給を行
うものにおいて、排出フィーダ供給開始の立上り遅れを
防ぐべく初期操作量を加え、かつ実際の運転前にシミュ
レーション運転を行い操作量のフルスパンを複数分割し
た各分割操作量毎における供給量を測定・プロットシ、
かつプロット間の線形近似を行って操作量−供給量特性
を得、この特性に基づき設定の連続供給量に対応する操
作量をめ、初期操作量としたことを特徴とする連続定量
供給運転制御方法。
1. Detect the amount of powder in the Hompa scale with a load cell, calculate the optimal operation amount in the metering controller based on the detected value, add it to the discharge feeder, and start supplying the discharge feeder for continuous quantitative supply. In order to prevent the start-up delay, an initial manipulated variable is added, and the full span of the manipulated variable is divided into multiple segments by simulation operation before actual operation, and the supply amount for each divided manipulated variable is measured and plotted.
A continuous constant supply operation control characterized in that linear approximation between the plots is performed to obtain the manipulated variable-supply amount characteristic, and based on this characteristic, the manipulated variable corresponding to the set continuous supply amount is determined and set as the initial manipulated variable. Method.
JP18124083A 1983-09-28 1983-09-28 Control method for continuous quantitative supply operation Granted JPS6071416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18124083A JPS6071416A (en) 1983-09-28 1983-09-28 Control method for continuous quantitative supply operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18124083A JPS6071416A (en) 1983-09-28 1983-09-28 Control method for continuous quantitative supply operation

Publications (2)

Publication Number Publication Date
JPS6071416A true JPS6071416A (en) 1985-04-23
JPS6365563B2 JPS6365563B2 (en) 1988-12-16

Family

ID=16097242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18124083A Granted JPS6071416A (en) 1983-09-28 1983-09-28 Control method for continuous quantitative supply operation

Country Status (1)

Country Link
JP (1) JPS6071416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036689A (en) * 1988-09-20 1991-08-06 Hitachi, Ltd. Descaling rolled material
KR100895082B1 (en) * 2002-09-10 2009-04-28 주식회사 포스코 Apparatus For Discharging Quantitatively Cokes Through Loading Chute

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036689A (en) * 1988-09-20 1991-08-06 Hitachi, Ltd. Descaling rolled material
KR100895082B1 (en) * 2002-09-10 2009-04-28 주식회사 포스코 Apparatus For Discharging Quantitatively Cokes Through Loading Chute

Also Published As

Publication number Publication date
JPS6365563B2 (en) 1988-12-16

Similar Documents

Publication Publication Date Title
US20200033896A1 (en) Flow rate control apparatus, flow rate control method, and program recording medium
CN108593055A (en) A kind of on-line automatic scaling method of pulverized coal mass flow meter and system
JPH0359447B2 (en)
KR100281820B1 (en) Mixing Control Method and System of Cement Raw Material and Renewing Method
JPS63309821A (en) Control of differential distribution scale especially for bulk load and differential distribution scale for executing the same
JPS6071416A (en) Control method for continuous quantitative supply operation
JPS56148019A (en) Flow rate controlling method using measuring hopper
JPH0841552A (en) Control of moisture in mixing device for sintering raw material
KR19990071315A (en) Discharge amount adjusting device of fixed quantity dispenser
JPS6215435B2 (en)
JP3999539B2 (en) Weight-type feeder and raw material supply method using weight-type feeder
JPS5772016A (en) Fall correction method for constant quanitity detecting balance
JPS60149926A (en) Measuring of feed level of granular bulk material
JP2760936B2 (en) Control method
SU714161A1 (en) Device for regulating bulk density of loose material in a flow
JPS5956116A (en) Automatic weighing supply device
JPS60102998A (en) Return sludge controller
JP2998234B2 (en) Mill output measurement device
RU2026376C1 (en) Method for automatic stabilization of sinter burden thickness on sintering machine
SU829172A1 (en) Method of controlling single-stage grinding ball-type mill
JPH09204226A (en) Pressure controller
JPS63274441A (en) Powder weighing and mixing apparatus
JPS59213434A (en) Controlling method of fixed quantity feed of powder and particulate body
JPS60135727A (en) Correcting method of fall extent of quantitative cutting weighing machine
JPS6117024A (en) Method for controlling receiving/delivering