JPS6067908A - Optical fiber and its manufacture - Google Patents

Optical fiber and its manufacture

Info

Publication number
JPS6067908A
JPS6067908A JP58176235A JP17623583A JPS6067908A JP S6067908 A JPS6067908 A JP S6067908A JP 58176235 A JP58176235 A JP 58176235A JP 17623583 A JP17623583 A JP 17623583A JP S6067908 A JPS6067908 A JP S6067908A
Authority
JP
Japan
Prior art keywords
quartz glass
optical fiber
base material
metal
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58176235A
Other languages
Japanese (ja)
Inventor
Juichi Noda
野田 壽一
Masaru Igarashi
賢 五十嵐
Toshito Hosaka
保坂 敏人
Yutaka Sasaki
豊 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58176235A priority Critical patent/JPS6067908A/en
Publication of JPS6067908A publication Critical patent/JPS6067908A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To make metal and semiconductor into a fiber as well as a quartz glass fiber by embedding the metal and semiconductor in an optical fiber consisting principally of quartz glass. CONSTITUTION:A material A is used as an insert base material 10a and a material A, material B, or quartz glass for stress induction is used as a base material 10b at the circumference of synthesized optical fiber base materials 8 and 9. Further, base materials, i.e. materials A for the base materials 10a and 10b, and materials A or B, or quartgz glass for stress induction for base materials 10c and 10d are inserted into a quartz glass pipe 12 and drawn. The materials A or B, or quartz glass for stress induction deforms from the circular materials into a sector shape to fill circumferential gaps because they are low in softening point or fustion point than pure quartz glass. The large difference in coefficient of thermal expansion between the metal and glass induces axial stress in the section of the core of the optical fiber, so the function of a sensor and the function for maintaining polarization are obtained.

Description

【発明の詳細な説明】 本発明は光フアイバセンサ用の光ファイバラ実現する新
しい光ファイバの構造とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new optical fiber structure for realizing an optical fiber array for an optical fiber sensor, and a method for manufacturing the same.

従来、光フアイバセンサ用の光ファイバとして異種材料
である金屑と一体化する必要があシ、これには光ファイ
バの表面に金属を蒸着やスパッタ等で付着したり、さら
にその上に“メッキ法”によシ厚く被覆していた。ある
いは光ファイバtm引く際、インジウム等低融点金属を
被覆していた。
Conventionally, it has been necessary to integrate metal scraps, which are dissimilar materials, as optical fibers for optical fiber sensors. It was covered very thickly. Alternatively, when drawing the optical fiber tm, it was coated with a low melting point metal such as indium.

前者の場合、金属と光ファイバの付着が必ずしも均一に
ならず、また長尺にわたって付着させることは極めて難
しい問題がある。
In the former case, there is a problem that the attachment of the metal and the optical fiber is not necessarily uniform, and it is extremely difficult to attach the metal over a long length.

一方、後者の場合にはインジウムのような低融点の金属
でなければ被覆が難しく、センサに適合した金属、例え
ば磁性材料のような高融点金属を光ファイバに被覆する
ことはできない欠点があった。
On the other hand, in the latter case, it is difficult to coat the optical fiber unless it is a metal with a low melting point such as indium, and there is a drawback that it is not possible to coat the optical fiber with a metal that is compatible with the sensor, such as a high melting point metal such as a magnetic material. .

いずれの場合でも、従来の方法では硬い材料や半導体の
ような材料を光ファイバに安定に被覆できなかったので
、光ファイバと金属の一体構造はないと考えられていた
In either case, conventional methods have not been able to stably coat optical fibers with materials such as hard materials or semiconductors, so it has been thought that there is no integrated structure of optical fibers and metals.

本発明は金属や半導体を石英ガラスを主成分とする光フ
ァイバの中に埋め込んだg造およびそのM遣方法を提案
するもので、石英ガラスとn種材料である金属や半導体
もファイバ化できることを利用したものである。
The present invention proposes a G structure in which metals and semiconductors are embedded in an optical fiber whose main component is silica glass, and a method for using the M structure, and it shows that silica glass and metals and semiconductors, which are n-type materials, can also be made into fibers. It was used.

第1図は本発明の構造を示す断面図で、1はコア、2は
金属もしくは半導体、8はクラッド、番は外被石英ガラ
ス、5は中間石英ガラス、6は2に示すと同種の金属も
しくは半導体である。
FIG. 1 is a cross-sectional view showing the structure of the present invention, where 1 is a core, 2 is a metal or semiconductor, 8 is a cladding, No. is an outer covering quartz glass, 5 is an intermediate quartz glass, and 6 is a metal of the same type as shown in 2. Or a semiconductor.

第1図(alは金属もしくは半導体2(以後、これを材
料Aと称す)がコアlの両側に対称的に配置された場合
で、材料Aは一般に石英ガラスより融点の低い物質が選
ばれる。第1図(b)は材料Aがコアlの周囲に四つ配
置された場合で、材料Aが連続的な場合には第1図(c
lに示すようにリング状になる。第1図(d)および第
1図(elは第1図(alの材料Aとは形状の異なる場
合である。金属もしくは半導体はほとんどの場合、石英
ガラスよシ熱膨張係数が大きいので、第1図(a) +
 (dl # (e) K示すコアには応力が印加され
る。その結果、応力によって一方の屈折率異方性を生じ
るので、応力付与形の偏波保持光ファイバになる。光フ
アイバセンサでは偏波面を積極的に用いるので、第1図
fa) 、 (、il 、 telは練偏波保持光ファ
イバに適合する。第1図(f)は第1図(clのさらに
発展形で材料Aを2重にした場合である。第1図(bl
 、 (c) 、 (f)を偏波保持用として用いるに
陽光7アイパにねじシを加えることによって実現される
FIG. 1 (al indicates a case where metal or semiconductor 2 (hereinafter referred to as material A) is arranged symmetrically on both sides of core l, and material A is generally selected from a substance having a lower melting point than quartz glass. Figure 1 (b) shows the case where four pieces of material A are arranged around the core l, and when material A is continuous, Figure 1 (c
It becomes ring-shaped as shown in l. Figures 1(d) and 1(el are cases in which the shape is different from that of material A in Figure 1(al).Metals or semiconductors have a larger coefficient of thermal expansion than silica glass in most cases, so Figure 1 (a) +
(dl # (e) Stress is applied to the core shown by K. As a result, the stress causes one-sided refractive index anisotropy, resulting in a stress-applied polarization-maintaining optical fiber. Since the wavefront is actively used, fa), (, il, and tel in Fig. 1 are suitable for polarization-maintaining optical fibers. Fig. 1 (f) is a further developed form of Fig. 1 (cl), and material A is used. This is the case of double layering.Figure 1 (bl
, (c), and (f) are used for polarization maintenance by adding screws to the sunlight 7 eyeper.

第2図は材料Aと異なる金属もしくは半導体(これを材
料Bと称す)が配置された場合で、2aが材料A、2b
が材料Bに相当する。第2図(b)の場合には四つの金
属もしくは半導体がそれぞれ異なる種類でもよい。
Figure 2 shows a case where a metal or semiconductor different from material A (this is called material B) is placed, 2a is material A, 2b
corresponds to material B. In the case of FIG. 2(b), the four metals or semiconductors may be of different types.

第8図は本発明の他の構造を示す断面図で、2cは応力
付与用ガラスで不純物無添加石英ガラスの熱膨張係数と
異なる熱膨張係数を有するように各種のドーパントが添
加された石英系ガラス、7はバッファ層である。センサ
用の光ファイバは偏波面が保持されていることが不可欠
であるが、第8図は応力付与形の偏波保持光ファイバを
実現する構造の例を示した。第1図(al 、(al 
+ telに示したように、金属もしくは半導体2でも
応力付与形の偏波保持光ファイバが可能であるが、金属
もしくは半導体2の面積が小さい場合や、第1図(C)
FIG. 8 is a cross-sectional view showing another structure of the present invention, and 2c is a stress imparting glass, which is a quartz glass to which various dopants are added so as to have a thermal expansion coefficient different from that of impurity-free quartz glass. Glass, 7 is a buffer layer. It is essential that an optical fiber for a sensor maintains its polarization plane, and FIG. 8 shows an example of a structure for realizing a stress-applied polarization-maintaining optical fiber. Figure 1 (al, (al
+ As shown in tel, it is possible to create a stress-applied polarization-maintaining optical fiber using a metal or semiconductor 2, but if the area of the metal or semiconductor 2 is small,
.

Tflに示したように円形の場合には応力付与の効果が
小さいかまたはほとんどない。そこで第8図に示すよう
に応力付与部を材料Aと対向させるか〔第8図(a) 
+ (cl * (di )、応力付与用ガラス2cを
コアに対して対称に、かつ−直線上に並べる〔第8図(
bl 、 (el 、 (fl 、 (g) ”lこと
Kよって、コアに一方向の応力を印加することができる
。あるいは第8図(h)に示すように楕円形の応力付与
形でも応力付与形の偏波保持光ファイバが実現される。
In the case of a circular shape as shown in Tfl, the effect of applying stress is small or almost absent. Therefore, as shown in Fig. 8, the stress-applying part should be made to face the material A [Fig. 8 (a)]
+ (cl * (di), the stress-applying glasses 2c are arranged symmetrically with respect to the core and on a - straight line [Fig. 8 (
bl , (el , (fl , (g) ”l) Therefore, it is possible to apply stress in one direction to the core. Alternatively, as shown in Fig. 8 (h), stress can be applied in an elliptical shape. A polarization-maintaining optical fiber of the form is realized.

第8図(fl 、 (gl 、 (hlは金属もしくは
半導体2aをリング状に配置する場合の構造を示す。
FIG. 8 (fl, (gl, (hl) shows a structure in which metal or semiconductor 2a is arranged in a ring shape.

本発明による実施方法を以Fに述べる。第4図は第1図
(al 、 (b)、第2図(a) I (bl、第8
図(at + (bl +(e)を実現する方法を示し
、8はコア部、9はクラッド部、l Oa 、 l O
bは挿入母材である。まず光フアイバ母材を用意する。
An implementation method according to the present invention will be described below. Figure 4 is similar to Figure 1 (al, (b), Figure 2 (a) I (bl, 8th
The figure shows a method for realizing at + (bl + (e), where 8 is the core part, 9 is the clad part, l Oa , l O
b is the insertion base material. First, an optical fiber base material is prepared.

すなわちMOVDもしくはVADによって合成した光フ
アイバ母材またはさらに該母材を石英ガラスパイプに入
れ高温加熱してジャケットした母材に、超音波加工にょ
シ孔をうがち、その内壁を研磨またはさらに火炎研磨す
る。孔数は設計に応じて2個以上で、極力コアに対して
対称になるように選ぶ。次にこの孔径に合わせて挿入母
材10aに材料A、挿入母材10bに材料Aもしくは材
料Bまたは応力付与用の石英ガラスを用意し、第4図に
示すよう孔に挿入する。
That is, an optical fiber base material synthesized by MOVD or VAD, or a base material that is jacketed by placing the base material in a quartz glass pipe and heating it at high temperature, is subjected to ultrasonic processing to make holes, and its inner wall is polished or flame polished. . The number of holes should be two or more depending on the design, and should be chosen as symmetrically as possible with respect to the core. Next, material A is prepared for the insertion base material 10a, material A or material B, or quartz glass for applying stress is prepared for the insertion base material 10b, and the materials are inserted into the hole as shown in FIG. 4 in accordance with the hole diameter.

つぎの工程である線引については第7図を用いて後述す
る。
The next step, drawing, will be described later with reference to FIG.

第5図は第1図fa)、第2図(al、第8図(clを
実現する方法を示し、8はコア部、9はクラッド部、1
0a、Rob、10c、10dは材料Aもしくは材料B
または応力付与用の石英ガラス、11は不純物無添加石
英ガラス、12は不純物無添加石英ガラスパイプである
。第5図に示すように、MOVD ’P VAD等によ
って合成した光フアイバ母材8.9の周囲に、lOaに
材料A、l0bK材料Aもしくは材料Bまたは応力付与
用の石英ガラス、1、Oc、lOdには11と同じ石英
ガラス、または10a r l obに材料A、loc
、lOdには材料Aもしくは材料Bまたは応力付与用の
石英ガラスのそれぞれの母材を、石英ガラスパイプ12
に挿入して、第7図に示す方法で線引く。この線引時に
材料Aもしくは材料B*たは応力付与用の石英ガラスは
純粋石英ガラスよシ軟化点または融点が低いので、周囲
の空隙をうずめるため円形の母相から扇形状に変形する
Fig. 5 shows a method for realizing Fig. 1 fa), Fig. 2 (al), Fig. 8 (cl), where 8 is a core part, 9 is a clad part, 1
0a, Rob, 10c, 10d are material A or material B
11 is impurity-free quartz glass; and 12 is impurity-free quartz glass pipe. As shown in FIG. 5, around the optical fiber base material 8.9 synthesized by MOVD'P VAD etc., lOa is coated with material A, l0bK material A or material B, or quartz glass for applying stress, 1, Oc, 1Od is the same quartz glass as 11, or 10a r l ob is material A, loc
, lOd is a base material of material A or material B or quartz glass for applying stress, and a quartz glass pipe 12
and draw a line using the method shown in Figure 7. During this wire drawing, since material A or material B* or the quartz glass for applying stress has a lower softening point or melting point than pure silica glass, the circular matrix is deformed into a fan shape in order to fill the surrounding voids.

第6図は第1図(c) 、 (fl、第2図fcl s
 (flを実現する方法を示し、18は材料A、14は
石英ガラスパイプである。第6図に示すように、光フア
イバ母材8,9の外径および石英ガラスパイプ14の内
径に合わせた材料Aを挿入して線引く。第1図(f)、
第2図(flに示す2重4111造の場合には、これに
合わせた材料Aもしくは材料Bパイプおよび中間石英ガ
ラスパイプを用意すればよい。
Figure 6 shows Figure 1 (c), (fl, Figure 2 fcl s
18 is material A, and 14 is a quartz glass pipe. As shown in FIG. Insert material A and draw a line.Figure 1(f),
In the case of the double 4111 structure shown in FIG. 2 (fl), it is sufficient to prepare a material A or material B pipe and an intermediate quartz glass pipe according to the structure.

第1図(e)、第2図(el、第8図(d)の形状を実
現するには、光フアイバ母材、材料Aもしくは材料Bま
たは応力付与用の石英ガラス母材を外形加工し、これら
を貼り合わせて線引きすればよく、この方法によれば、
2に示す形状は自由に変えることができる。
In order to realize the shapes shown in Figures 1(e), 2(el), and 8(d), the optical fiber base material, material A or material B, or the quartz glass base material for applying stress must be shaped. , all you have to do is paste them together and draw a line. According to this method,
The shape shown in 2 can be changed freely.

第8図(fl 、 (g)は第4図と第6図の組み合わ
せた方法で実現できる。第8図(hlはMOVD法によ
り楕円形応力付与用の石英ガラス2c、パンファ層7お
よびコア1を連続的に形成した光)フィバ母材を第6製
の方法によって実現される。
Fig. 8 (fl, g) can be realized by a method combining Fig. 4 and Fig. 6. This is realized by the sixth manufacturing method, in which a fiber matrix is continuously formed.

第7図は線引の方法を示す説明図で、15゜16は光フ
アイバ母材に挿入した材料A、材料Bおよび応力付与用
の石英ガラスが、線引時に、はみ出さないようにした石
英ガラスの蓋で、いずれも融着固定されている。17は
光7アイパ母材と連続しているか、融着された石英ガラ
スパイプ、18は真空排気用キャップ、19はoリング
、20はヒータである。
Figure 7 is an explanatory diagram showing the method of wire drawing, and 15° and 16 are quartz glass plates inserted into the optical fiber base material to prevent material A, material B, and quartz glass for applying stress from protruding during wire drawing. Both have glass lids that are fused together. Reference numeral 17 is a quartz glass pipe that is continuous with or fused to the Hikari 7 Eyepa base material, 18 is a cap for evacuation, 19 is an O-ring, and 20 is a heater.

本発明を実施するには、金属もしくは半導体を線引時に
金属もしくは半導体の酸化を進ませないように工夫する
必要がある。そのために第7図に示すように、まず材料
A、Bまたは応力付与用石英ガラスを設定するための孔
をあけた母材9の片側に蓋15を、他端に石英ガラスパ
イプ17を高温融着し材料A、材料Bまたは応力付与用
の石英ガラスを設定した後、石英ガラスの蓋16を落と
し込む。次にパイプ内17を10−2〜1O−5tor
rの高真空に保持しつつ高温加熱して一体化するか、光
フアイバ母材を石英ガラスの蓋15の方から徐々に材料
A、材料Bまたは応力付与用の石英ガラスと光フアイバ
母材が一体化するようにヒータにより加熱し、石英ガラ
スの蓋16も光フアイバ母材と融着一体化した後、石英
ガラスパイプ内に空気を入れて、再びimf15を融着
した側から高温加熱して線引く。注意すべきことは光フ
アイバ母材と材料A、材料Bまたは応力伺与用の石英ガ
ラスとの間に空気が入らないように密封されていること
である。
In order to carry out the present invention, it is necessary to take measures to prevent the oxidation of the metal or semiconductor from proceeding when drawing the metal or semiconductor. To do this, as shown in FIG. 7, first, a lid 15 is placed on one side of the base material 9 in which holes have been made for setting materials A, B or quartz glass for applying stress, and a quartz glass pipe 17 is placed at high temperature on the other end. After setting the attachment material A, material B, or quartz glass for applying stress, the quartz glass lid 16 is dropped. Next, the inside of the pipe 17 is heated to 10-2 to 1O-5 tor.
Either the optical fiber base material is heated to a high temperature while being held in a high vacuum of r to integrate it, or the material A, material B or the quartz glass for applying stress and the optical fiber base material are gradually separated from the quartz glass lid 15. After the quartz glass lid 16 was fused and integrated with the optical fiber base material, air was introduced into the quartz glass pipe and the IMF 15 was heated again at high temperature from the fused side. draw a line What should be noted is that the optical fiber base material and material A, material B, or quartz glass for applying stress be sealed to prevent air from entering.

実施例 第8図(alの作製例を以下に示す。VAD法によって
得られた光フアイバ母材を逍明ガラス化し、50nφの
光フアイバ母材を得た。この光フアイバ母材のコア部の
直径は1.4m、コアとクラッドの比屈折率差は0.6
%である。直径5 matのニッケル棒用の孔とB2O
2が約15 mo1%添加されている応力付与用の石英
ガラスの孔(直径1]]1を超音波加工によってうがち
、内壁が鏡面になるように研磨した。一端に石英ガラス
のi15および石英ガラスパイプ17を高温融着し、ニ
ッケル棒と応力付与用の石英ガラス棒を、第4図に示す
ように光フアイバ母材にうがった孔に挿入し、蓋16を
落とし込む。ついで石英ガラスパイプ17内を真空度1
0 ’ torrまで高真空にして、線引炉よりニッケ
ル棒と応力付与用の石英ガラス棒を一体化する。加熱時
の石英ガラスパイプ内の真空度はニッケル棒等からのガ
ス発生により5 X l O””−’torrに悪くな
る。石英ガラスの蓋16も光フアイバ母材と融着一体化
した後、石英ガラスパイプ内に空気を導入し、再び下部
から高温加熱して光フアイバ母材を線引いた。
Example Figure 8 (A fabrication example of al is shown below. An optical fiber base material obtained by the VAD method was vitrified to obtain an optical fiber base material of 50 nφ. The core part of this optical fiber base material was Diameter is 1.4m, relative refractive index difference between core and cladding is 0.6
%. Hole for 5 mat diameter nickel rod and B2O
A hole (diameter 1) in quartz glass for applying stress containing about 15 mo1% of 2 was cut by ultrasonic processing, and the inner wall was polished to a mirror surface. The pipe 17 is fused at high temperature, a nickel rod and a quartz glass rod for applying stress are inserted into the hole in the optical fiber base material as shown in FIG. vacuum degree 1
A high vacuum is applied to 0' torr, and a nickel rod and a quartz glass rod for applying stress are integrated in a drawing furnace. The degree of vacuum inside the quartz glass pipe during heating deteriorates to 5 X l O""-'torr due to gas generation from the nickel rod and the like. After the quartz glass lid 16 was also fused and integrated with the optical fiber base material, air was introduced into the quartz glass pipe, and the optical fiber base material was drawn by heating at a high temperature from the bottom again.

得られた光ファイバの特性は波長1.8μmで、ニッケ
ル部とコアと応力付与用の石英ガラス部の中心線を結ぶ
方向と平行に振動する光(これをHEly1モード光と
称する)の損失は100 dB/m 。
The characteristics of the obtained optical fiber are that the wavelength is 1.8 μm, and the loss of light that vibrates parallel to the direction connecting the center line of the nickel part, the core, and the quartz glass part for applying stress (this is called HEly1 mode light) is as follows. 100 dB/m.

該中心線と垂直方向に振動する光(これをHE青モード
光と称する)の損失は2 ab/mであった。
The loss of light vibrating in a direction perpendicular to the center line (this is referred to as HE blue mode light) was 2 ab/m.

従って1mの本発明の光ファイバに円偏波光を導入する
と、出射光はl OOdB近い消光比を有する偏光特性
を示した。
Therefore, when circularly polarized light was introduced into the 1 m long optical fiber of the present invention, the output light exhibited polarization characteristics with an extinction ratio close to 100 dB.

本発明によれば、例えば従来、磁気センサの場合には磁
歪効果の大きいニッケル膜を光ファイバの周囲に蒸着ま
たはスパッタで被覆していたが、直接光ファイバ中に埋
め込むことができるので、極めて動車のよいファイバ形
磁気センサとなり得る。これは磁気をはじめ温度、圧力
、回転等の微弱検知に適−する。ファイバセンサは出力
端で干渉光の変化を検出するので、偏波保持光ファイバ
が不可欠となる。本発明では金属とガラスの熱膨張係数
の大きな違いが光ファイバのコアに断面内において一軸
の応力を付与するので、センサ用と偏波保持の二つの機
能が得られる利点がある。実施例で実現できた光ファイ
バ形偏光子は通常の単−七−ド光ファイバとの接続が極
めてよく(融着接続が可能なため)また接続損が小さい
ので、ファイバセンサ、光通信用光アイソレータ用素子
として応用が広い。
According to the present invention, for example, conventionally, in the case of magnetic sensors, a nickel film with a large magnetostrictive effect was coated around the optical fiber by vapor deposition or sputtering, but since it can be directly embedded into the optical fiber, it is extremely useful for mobile applications. It can be a good fiber-type magnetic sensor. This is suitable for weak detection of magnetism, temperature, pressure, rotation, etc. Since a fiber sensor detects changes in interference light at its output end, a polarization-maintaining optical fiber is essential. In the present invention, the large difference in coefficient of thermal expansion between metal and glass applies uniaxial stress to the core of the optical fiber within the cross section, so there is an advantage that two functions can be obtained: one for sensor use and one for maintaining polarization. The optical fiber polarizer realized in this example can be connected very well to ordinary single-seven-band optical fibers (because fusion splicing is possible) and has low connection loss, so it can be used for fiber sensors and optical communications. Widely applicable as an isolator element.

半導体としてはシリコンが石英ガラスとの整合性がよい
ので、最も可能性ある物質である。ただしこれらの金属
や半導体を用いるときには、純粋石英ガラスではガラス
軟化点が極めて高いので、整合温度範囲が非常にせまく
、金属や半導体が用いられない場合がある。
As a semiconductor, silicon is the most promising material because of its good compatibility with silica glass. However, when these metals and semiconductors are used, since pure silica glass has an extremely high glass softening point, the matching temperature range is extremely narrow, and metals and semiconductors may not be used.

このようなときには、石英ガラス合成時にB、08や0
802等の不純物を多量に添加し、線引ガラス母材の融
点を下げる必要があり、その不純物添加の程度は金属や
半導体の融点と沸点の間に線引温度があるように決めら
れる。
In such cases, B, 08 or 0 may be used during silica glass synthesis.
It is necessary to add a large amount of impurities such as 802 to lower the melting point of the drawn glass base material, and the degree of impurity addition is determined so that the drawing temperature is between the melting point and boiling point of the metal or semiconductor.

以上説明したように、本発明によれば、次の長所がある
As explained above, the present invention has the following advantages.

■ 金属もしくは半導体の材料的制約を11とんと受け
ず、石英ガラスコアイノくと同様にコアイノく化が可能
である。
■It is not subject to the material limitations of metals or semiconductors, and can be made into core metal in the same way as quartz glass core metal.

■ 金属もしくは半導体と石英ガラスの同時線引ヲ行つ
ので、従来に比べてはるかに侵い異種材料光ファイバが
可能である。
■ Since metal or semiconductor and quartz glass are simultaneously drawn, it is possible to create optical fibers made of different materials, which are much more invasive than conventional methods.

■ 金属もしくは半導体が石英ガラスコアイノくσ)中
に埋め込められているので、金属もしくは半導体の酸化
の影響を受けない。
■ Since the metal or semiconductor is embedded in the silica glass core, it is not affected by the oxidation of the metal or semiconductor.

■ 金属もしくは半導体の線引は急冷効果やIi積が小
さくなる形状効果をもたらすので、ノ(ルク状の金属も
しくは半導体に比べて機械的強1Wにすぐれた特性が期
待できる。
■ Drawing a metal or semiconductor has a quenching effect and a shape effect that reduces the Ii product, so it can be expected to have superior mechanical strength of 1W compared to a metal or semiconductor in the form of a wire.

■ ・金属もしくは半導体装置、形状面積の設言fが自
由にできる。
■ - You can freely define the shape and area of metal or semiconductor devices.

■ 従来の出来上がった光コアイノ(の金g [被覆に
比べて作製が容易で、特に長尺の場合に&ま経済的効果
が大きい。
■ Compared to conventional optical core coatings, it is easier to produce and has a large economical effect, especially in the case of long pieces.

■ 金属もしくは半導体をコアに近づけること力tでき
るので1.センサ等の変換動車が極めて高い。
■ It is possible to bring the metal or semiconductor closer to the core, so 1. Conversion vehicles such as sensors are extremely expensive.

■ 金属や半導体と光フアイバ母材とが一体となってい
るので、大気に存在する酸素による酸化の影響を受けな
い。
■ Since the metal or semiconductor and optical fiber base material are integrated, it is not affected by oxidation due to oxygen present in the atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第8図は本発明の方法によって得られ
る光ファイバの断面図、第4図、第5図、第6図は不発
明による材料の配肴を示す概略図、第7図は本発明によ
る線引の方法を示す説明図である。 l・・・コア、2.2a16・・・金属もしくは半導体
、2b・・・2aとは異なる金属もしくは半導体、2C
・・・各種ドーパントを含む石英ガラス、8・・・クラ
ンド、4・・・外様石英ガラス、5・・・中間石英ガラ
ス、7・・・バッファ層、8・・・コア部、9・・・ク
ラッド部、10a 、 lob 、 10c 、 10
d 、 1B −挿入母材、11・・・不純物無添加石
英ガラス(ダミー用石英ガラス棒)、12 、14 、
17・・・不純物無添加石英ガラスパイプ、15 、1
6・・・石英ガラスの蓋、18・・・真空排気用キャッ
プ、19・・・0リング、zO・・・ヒータ。 特許出願人 日本電信電話公社 一マ 第1 図 図 第3 第4図 第5図 第6図
1, 2, and 8 are cross-sectional views of optical fibers obtained by the method of the present invention; FIGS. 4, 5, and 6 are schematic views showing the arrangement of materials according to the invention; FIG. 7 is an explanatory diagram showing the line drawing method according to the present invention. l...core, 2.2a16...metal or semiconductor, 2b...metal or semiconductor different from 2a, 2C
...Quartz glass containing various dopants, 8.. Cland, 4.. External quartz glass, 5.. Intermediate quartz glass, 7.. Buffer layer, 8.. Core part, 9..・Clad part, 10a, lob, 10c, 10
d, 1B - Insertion base material, 11... Impurity-free quartz glass (silica glass rod for dummy), 12, 14,
17... Impurity-free quartz glass pipe, 15, 1
6...Quartz glass lid, 18...Evacuation cap, 19...0 ring, zO...Heater. Patent Applicant Nippon Telegraph and Telephone Public Corporation 1 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 L 石英ガラスを主成分とする光ファイバのコアの周囲
またはコアの近傍に、金属もしくは半導体が光ファイバ
の長手方向に連続に埋め込まれていることを特徴とする
光ファイバ。 ス 石英ガラスを主成分とする光フアイバ母材のコアの
近傍に貫通した孔を開け、該母材の長手方向の一端を気
密に封じ、他端に母材と外径の等しい石英ガラスバイブ
を融着した後、破孔の内径にほぼ等しい外径を有する金
属もしくは半導体の棒を挿入し、その上に石英ガラスの
蓋を落とし込み、破孔を含む石英ガラスパイプ内を高真
空に排気しつつ、落とし込んだ石英ガラスの蓋と光フア
イバ母材を高温加熱して気密一体化するか、または母材
の封じた側の端から順次加熱して、光フアイバ母材と金
属もしくは半導体および石英ガラスの蓋を一体化して出
発母材を作製し、この出発母材を再度、高温加熱して線
引きすることを特徴とする光ファイバの″製造方法。 & 光フアイバ母材として応力付与部を有する母材を用
い、この応力付厚部以外の部分に貫通した孔を開けるこ
とを特徴とする特許請求の範囲第2項記載の光ファイバ
の製造方法。 4 石英ガラスを主成分とする光フアイバ母材を、一端
を封じた石英ガラスパイ゛プに挿入し、該母材と石英バ
イブの間に金属もしくは半導体、または応力付与用石英
ガラスを挿入し、″゛前記石英ガラスパイプの内径にほ
ぼ等しい石英ガラスの蓋を落とし込んだ後、石英ガラス
パイプ内を高真空に排気しつつ、石英ガラスの蓋と光フ
アイバ母材を高温加熱して気密一体化するか、または石
英ガラスパイプの封じまた側の端から順次加熱して、光
フアイバ母材と金属もしくは半導体または応力付与用石
英ガラスおよび石英ガラスの器を一体化して出発母材を
作製し、この出発母材を再度、高温加熱しで線引きする
ことを特徴とする特許イバの製造方法。
[Scope of Claims] L An optical fiber characterized in that a metal or a semiconductor is embedded continuously in the longitudinal direction of the optical fiber around or near the core of the optical fiber, the main component of which is quartz glass. A penetrating hole is made near the core of an optical fiber base material whose main component is quartz glass, one longitudinal end of the base material is hermetically sealed, and a quartz glass vibrator with an outer diameter equal to that of the base material is attached to the other end. After welding, a metal or semiconductor rod with an outer diameter approximately equal to the inner diameter of the hole is inserted, a quartz glass lid is dropped onto it, and the inside of the quartz glass pipe, including the hole, is evacuated to a high vacuum. The dropped quartz glass lid and the optical fiber base material are heated at high temperature to form an airtight unit, or the base material is heated sequentially from the sealed end to bond the optical fiber base material, metal or semiconductor, and quartz glass. A method for producing an optical fiber, which is characterized in that a starting base material is produced by integrating a lid, and this starting base material is heated again at a high temperature and drawn. & A base material having a stress applying part as an optical fiber base material. A method for manufacturing an optical fiber according to claim 2, characterized in that a hole is formed through a portion other than the stressed thick portion by using an optical fiber base material containing quartz glass as a main component. , insert it into a quartz glass pipe with one end sealed, insert a metal or semiconductor, or quartz glass for stress application between the base material and the quartz vibrator, After dropping the lid, the inside of the quartz glass pipe is evacuated to a high vacuum and the quartz glass lid and the optical fiber base material are heated to high temperature to form an airtight unit, or the quartz glass lid and the optical fiber base material are heated to form an airtight unit, or the quartz glass pipe is heated sequentially from the sealed end of the quartz glass pipe. It is characterized by heating and integrating an optical fiber base material with a metal or semiconductor, quartz glass for applying stress, and a quartz glass vessel to produce a starting base material, and then heating this starting base material again at a high temperature and drawing it. A patented method for manufacturing iba.
JP58176235A 1983-09-26 1983-09-26 Optical fiber and its manufacture Pending JPS6067908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58176235A JPS6067908A (en) 1983-09-26 1983-09-26 Optical fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58176235A JPS6067908A (en) 1983-09-26 1983-09-26 Optical fiber and its manufacture

Publications (1)

Publication Number Publication Date
JPS6067908A true JPS6067908A (en) 1985-04-18

Family

ID=16009997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176235A Pending JPS6067908A (en) 1983-09-26 1983-09-26 Optical fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPS6067908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083483A1 (en) * 2004-02-27 2005-09-09 Danmarks Tekniske Universitet (Dtu) Birefringent optical fibre
JP2017525127A (en) * 2015-06-01 2017-08-31 武漢睿芯特種光繊有限責任公司Wuhan Brightcore Optical Fiber Co., Ltd. Polarization-maintaining large mode area gain fiber with elliptical cladding layer
CN107129139A (en) * 2017-04-20 2017-09-05 华南理工大学 A kind of metal semiconductor glass photoelectric fiber-optical and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083483A1 (en) * 2004-02-27 2005-09-09 Danmarks Tekniske Universitet (Dtu) Birefringent optical fibre
JP2017525127A (en) * 2015-06-01 2017-08-31 武漢睿芯特種光繊有限責任公司Wuhan Brightcore Optical Fiber Co., Ltd. Polarization-maintaining large mode area gain fiber with elliptical cladding layer
CN107129139A (en) * 2017-04-20 2017-09-05 华南理工大学 A kind of metal semiconductor glass photoelectric fiber-optical and preparation method thereof
CN107129139B (en) * 2017-04-20 2019-11-15 华南理工大学 A kind of metal-semiconductor-glass photoelectric fiber-optical and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0414369B1 (en) Single-mode, single-polarization optical fiber
JPH02240608A (en) Polarization maintaining optical fiber
US4834786A (en) Method of manufacturing a preform for asymmetrical optical fiber
US10054735B2 (en) Method and apparatus for producing crystalline cladding and crystalline core optical fibers
JP2003337238A (en) Polarization preserving optical fiber
US5522003A (en) Glass preform with deep radial gradient layer and method of manufacturing same
JPS6067908A (en) Optical fiber and its manufacture
JPH11125727A (en) Production of optical waveguide
JPS5992929A (en) Preparation of optical fiber maintaining polarization
CN111443423B (en) Radiation-resistant polarization-maintaining optical fiber and preparation method and application thereof
JP2004020836A (en) Optical fiber and its manufacturing method
JPS59137330A (en) Manufacture of optical fiber sustaining polarization
JPS60186432A (en) Manufacture of polarization-maintaining fiber
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
JPH01503180A (en) Improved polarization preserving optical fiber and its manufacturing method
JP2003084160A (en) Polarization maintaining optical fiber
JPS58198003A (en) Preparation of fiber type polarizer
JPS62204207A (en) Production of quartz flat plate optical circuit
JP3950019B2 (en) Optical fiber manufacturing method
JPS60260442A (en) Preparation of fixed polarisation fiber
JP2002162526A (en) Optical waveguide and method for producing the same
JPH0930824A (en) Polarization maintaining optical fiber and its production
JPH0378707A (en) High-strength optical fiber
JPS62151806A (en) Optical fiber maintaining plane of polarization and its production
JPS6060940A (en) Manufacture of single-polarization optical fiber