JP2004020836A - Optical fiber and its manufacturing method - Google Patents

Optical fiber and its manufacturing method Download PDF

Info

Publication number
JP2004020836A
JP2004020836A JP2002174605A JP2002174605A JP2004020836A JP 2004020836 A JP2004020836 A JP 2004020836A JP 2002174605 A JP2002174605 A JP 2002174605A JP 2002174605 A JP2002174605 A JP 2002174605A JP 2004020836 A JP2004020836 A JP 2004020836A
Authority
JP
Japan
Prior art keywords
optical fiber
region
glass
bubbles
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002174605A
Other languages
Japanese (ja)
Other versions
JP3802843B2 (en
Inventor
Masataka Nakazawa
中沢 正隆
Shinji Kusaka
日下 眞二
Kazumasa Osono
大薗 和正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002174605A priority Critical patent/JP3802843B2/en
Publication of JP2004020836A publication Critical patent/JP2004020836A/en
Application granted granted Critical
Publication of JP3802843B2 publication Critical patent/JP3802843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new optical fiber causing no concentration of anisotropic stress to a core region due to melting residual stress and having a superior PMD (Polarization Mode Dispersion) characteristic. <P>SOLUTION: In the optical fiber provided with a clad layer 3 in the circumference of the core region 2, an assembly region of air bubbles 5 is formed in the clad layer 3. This eliminates the concentration of the anisotropic stress to the core region 2 due to the melting residual stress as seen in the conventional photonic crystal optical fiber, so that the superior PMD characteristic can be displayed to easily attain fine refractive index distribution control of the inner clad layer 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野において用いられる光ファイバのうち、さらなる大容量な通信を可能とする光ファイバ及びその製造方法に関するものである。
【0002】
【従来の技術】
大容量,高速な通信を可能とする光ファイバは、光通信ネットワークを構築する上で欠くことができないものであるが、近年及び将来の光通信ネットワークにおける光信号の高速化、情報の増大化に伴ってさらなる大容量の光ファイバが要求されており、現在、この要求を満たす新たな光ファイバとして、いわゆるフォトニッククリスタル光ファイバと称される光ファイバが注目されている。
【0003】
このフォトニッククリスタルファイバとは、コアを覆うクラッドとして、ファイバの長手方向に一様な二次元周期構造を持つフォトニック結晶(PC:Photonic Crystal)を用いた光ファイバであり、クラッドに相当する領域にフォトニックバンドギャップ(PBG:Photonic Band Gap)を設け、ブラッグ反射によって光波をコア内に閉じ込めるものである。
【0004】
これまでに提案されているフォトニッククリスタル光ファイバは、例えば、ホーリーファイバ(HF:Holey Fiber)のように、クラッドにファイバの長手方向に途切れることなく連続する空孔を設けてその領域の実効屈折率を下げる方法で実現している。尚、このホーリーファイバはクラッド中の空孔のデザインよって超広帯域単一モード伝送領域、大きな実効コア断面積、高屈折率差(High−△)、大きな構造分散など通常の光ファイバでは達成できない特性を実現可能である。
【0005】
このようなフォトニッククリスタル光ファイバは、例えば図3に示すように、外径約500μmの細径石英棒aと、内径約300μm程度の細径石英管bを長さそれぞれ300mm前後に切断し、その細径石英棒aの周囲を数百本の細径石英管b,b…で囲むように束ね、その束cを内径10〜15mm、外径25mm程度の石英ジャケット管d内に挿入して、プリフォームeを形成した後、このプリフォームeを通常の光ファイバ線引工程によってこれら細径石英棒a及び細径石英管b,b…の束cと石英ジャケット管dを融着一体化させながら、所定のファイバ径である100〜150μmに線引きして得られるようになっている。
【0006】
そして、このようなフォトニッククリスタル光ファイバにあっては、図3に示すように、上記細径石英棒aからなる軸心部分が光を伝播させるコア領域となると共に、その周囲の細径石英管b,b…からなる部分が多数の空孔を有する内部クラッド層となり、さらにその周囲の石英ジャケット管5からなる中実の部分が外部クラッド層となり、コア領域を伝播する光波の殆どを内部クラッド層で反射させてコア領域内に閉じ込めることで効率的に光波を伝播させるようにしたものである。
【0007】
【発明が解決しようとする課題】
ところで、このようにして得られる従来のフォトニッククリスタル光ファイバにあっては、細径石英棒aと細径石英管b,b…とを融着一体化させるときに石英管b径の差による融着残留応力がガラス内に残り、コア領域に異方応力を与え、PMD(偏波モード分散)特性等を悪化させ、内部クラッド層の繊細な屈折率分布制御が困難であるといった問題点がある。
【0008】
そこで、本発明はこのような課題を有効に解決するために案出されたものであり、その目的は、融着残留応力によるコア領域への異方応力の集中がなく、優れたPMD特性を有する新規な光ファイバ及びその製造方法を提供するものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明は、請求項1に示すように、コア領域の周囲にクラッド層を備えた光ファイバにおいて、上記クラッド層内に気泡の集合体領域を形成したものである。具体的には、請求項2に示すように、上記気泡の集合体領域を、コア領域と同心円の層状に形成し、請求項3に示すように、上記クラッド層を、内部クラッドと、内部クラッドの周囲に設けられた外部クラッドとで構成し、その内部クラッドに上記気泡の集合体領域を形成している。
【0010】
これによって従来のファイバのように、融着残留応力によるコア領域への異方応力の集中がなくなるため、優れたPMD特性を発揮し、内部クラッド層の繊細な屈折率分布制御を容易に達成できる。
【0011】
また、請求項4に示すように、上記気泡を、直径4μm以下に形成にすれば、上記の作用効果を顕著に発揮することができる。
【0012】
さらに、請求項5に示すように、上記気泡の分布密度を径方向に変化させて、上記気泡の集合体領域の等価屈折率に径方向の分布を持たせたり、請求項6に示すように、上記気泡の直径を径方向に変化させて、上記気泡の集合体領域の等価屈折率に径方向の分布を持たせれば、構造分散を制御し、大きな正分散ファイバ、及び負分散・負分散スロープを持つファイバーが得られる。
【0013】
一方、本発明は、請求項7に示すように、コア領域の周囲にクラッド層を形成する光ファイバの製造方法において、コア領域となるコアガラス母材の周囲にガラススート層を形成し、ガラス中での拡散係数がヘリウムよりも小さい不活性ガスを含むガス雰囲気中で上記ガラススート層を加熱してガラス化し、不活性ガスの気泡を有するガラス層を形成するものである。
【0014】
これによって、上述した本発明の光ファイバを得ることができる。
【0015】
具体的には、請求項8に示すように、上記ガス雰囲気を、ガラス中での拡散係数がヘリウムよりも小さい不活性ガスのみで形成したり、請求項9に示すように、上記ガス雰囲気を、ヘリウムガスとガラス中での拡散係数がヘリウムよりも小さい不活性ガスとの混合ガスで形成すれば、上記作用効果を顕著に発揮することができる。また、請求項10に示すように、上記ガラス中での拡散係数がヘリウムよりも小さい不活性ガスとしては、窒素ガス又はアルゴンガスが好ましい。
【0016】
【発明の実施の形態】
次に、本発明を実施する好適一形態を添付図面を参照しながら説明する。
【0017】
図1は、本発明に係る光ファイバ1の実施の一形態を示したものである。
【0018】
図示するように、この光ファイバ1は、軸心部に位置するコア領域2の周囲に、内部クラッド層3を有すると共に、その内部クラッド層3の周囲に外径が125μm程度の外部クラッド層4を一体的に備えたものである。
【0019】
内部クラッド層3には、直径が4μm以下の独立した気泡5が多数密に集合した領域が形成されており、上記コア領域2の周囲を囲繞するように層状に存在している。
【0020】
そして、このような構造をした本発明の光ファイバ1にあっては、従来のフォトニッククリスタル光ファイバのように細径石英棒aと細径石英管b,b…とを融着一体化させてなるものとは異なり、細径石英管bの融着残留応力によるコア領域への異方応力の集中がなくなるため、優れたPMD特性が発揮され、内部クラッド層3の繊細な屈折率分布制御を容易に達成できる。
【0021】
すなわち、この光ファイバ1は、プリフォームの製造工程中の内部クラッド層3の焼結工程において、焼結ガス(雰囲気ガス)に拡散係数の小さい不活性ガス、例えば窒素ガスやアルゴンガスを使用して焼結させたガラス層内に焼結ガスを残留させ、コア領域の周囲に気泡質層を形成した後、このプリフォームを外径125μm程度まで線引きすることで得られるようになっている。このため、従来のような融着残留応力が発生することはなく、コア領域への異方応力の集中といった事態を招くことがない。尚、この気泡5は、プリフォームの製造工程中においては略球形状であるが、その後の線引きにより、その長手方向に延びた長孔状になる。また、コア領域2と内部クラッド層3との等価比屈折率差を1%とすることにより、分散値の絶対値が大きいファイバを得ることができる。
【0022】
ここで、コア領域2の直径は特に限定しないが、シングルモード伝送を行うには2〜10μmの大きさに設定される。また、内部クラッド層3の層厚は、得ようとする光ファイバの屈折率プロファイル、分散特性などに応じて、その最適厚さが変化するが、概ね5〜30μmの範囲で設定される。さらに、気泡5の直径は、内部クラッド層3の層厚以下であることが絶対条件であるが、内部クラッド層3内に気泡密度の分布を形成することも考慮すると、4μm以下、好ましくは1〜3μmとすることが望ましい。尚、本発明に係る光ファイバ1は、これらの寸法条件に何ら限定されるものではない。
【0023】
図3は、本発明の他の実施の形態を示したものであり、内部クラッド層3を構成する気泡5の密度をその径方向に変化させて屈折率差分布を制御したものである。すなわち、内部クラッド層3をコア領域2を中心として同心円上に3層の領域に分け、内部クラッド層3側の領域に気泡5を高密度に存在させ(高密度領域)、その外側の領域を低密度にし(低密度領域)、さらにその外側の領域をそれよりも高密度(中密度領域)にしたものである。これによって、図示するように内部クラッド層3内に多段階の、等価比屈折率差Δnを生じさせることができ、構造分散を制御し、大きな正分散ファイバ、及び負分散・負分散スロープを持つファイバーが得られる。また、上記内部クラッド層内の気泡の分布密度を径方向に変化させたり、内部クラッド層3を構成する気泡5の外径を径方向に変化させても、同様に等価屈折率に分布をもたせることが可能となる。
【0024】
ここで、気泡の外径は、次の二つの方法で制御することができる。
一つは、コア母材の周囲に堆積する石英ガラススート層の嵩密度を変化させる方法である。加熱(焼結)によりスートをガラス化する際、スートの嵩密度が高いほどガスが逃げる隙間が小さいため、大きな気泡が残存する割合が高くなり、スートの嵩密度が低いほど小さな気泡が残存する割合が高くなる。
【0025】
他方は、焼結する際の炉内ガス雰囲気中のヘリウムガスと不活性ガスの割合を変える方法である。ヘリウムガスの割合が高いほど気泡は小さくなり易く、ヘリウムガスの割合が低いほど気泡は大きくなり易い。
【0026】
なお、気泡が大きいほど気泡の密度は高くなり、気泡が小さいほど気泡の密度は低くなる傾向にある。よって、石英ガラススート層の嵩密度と、焼結する際の炉内ガス雰囲気中のヘリウムガスと不活性ガスとの割合を調整することにより、気泡の直径及び気泡の密度の双方を制御することができる。
【0027】
また、気泡の大きさ及び形成位置を制御して、気泡の間隔を、伝搬させる信号光の波長の二分の一に調整すれば、本発明の光ファイバにおいても、フオトニックバンドギャップ構造を実現できる。
【0028】
なお、上述した実施の形態においては、コア領域を石英ガラスで構成した場合ついて説明を行ったが、これに限定するものではなく、純粋石英ガラス、屈折率を高めるための周知の不純物(例えばGe、Tiなど)を添加した石英ガラス、又はEr等の希土類元素を添加した石英ガラスのいずれも適用可能である。
【0029】
また、コア領域は中空であってもよく、この場合、上記したコア母材である細径石英捧aに代えて、中空の石英管を用いて製造を行えばよい。なお、この石英管にも、純粋石英ガラス、屈折率を高めるための周知の不純物(例えばGe、Tiなど)を添加した石英ガラス、又はEr等の希土類元素を添加した石英ガラスのいずれも適用可能である。
【0030】
【実施例】
次に、本発明の実施例を説明する。なお、試験1は内部クラッド層に高密度気泡領域1層からなる気泡集合体領域を設けたもの、試験2は内部クラッド層に高密度気泡領域、低密度気泡領域、及び中密度気泡領域の3層からなる気泡集合体領域を設けたものである。
【0031】
<試験1>
まず、コア領域となる透明ガラス母材をVAD法により作製し、外径25mmに延伸した。
【0032】
そのコアガラス母材の外周に、CVD法により高密度気泡領域となるスート層を堆積し、外径60mmの外付母材を得た。この母材を、炉内が100%窒素ガス雰囲気中の電気炉にて、温度1600℃で加熱処理した。得られたガラス母材は、外径が45mmで、外周部の独立気泡集合体領域には窒素ガスの気泡が多数残留しているため、半透明状態であった。なお、高密度気泡領域の気泡密度は約0.5であった。
【0033】
ここで、窒素ガスは透明ガラス化のための加熱処理工程で通常用いるヘリウムガスに比べて拡散係数が格段に小さく、スートがガラス化する際にそのガラス中に残留し易いことから、炉内を100%窒素ガス雰囲気とすることにより、高密度に窒素ガスの気泡を含んだガラス母材を得ることができる。
【0034】
次に、得られた高密度気泡領域を有する内部クラッド層付ガラス母材を外径25mmに延伸し、CVD法により外部クラッド層となるスート層を堆積し、外径120mmの外付母材を得た。この母材を、炉内が100%ヘリウムガス雰囲気中の電気炉にて、温度1600℃で加熱処理し、外径が60mmで、外周部の外部クラッド層が透明なガラス母材を得た。
【0035】
次に、そのガラス母材を通常の線引き方法により外径125μmの光ファイバに線引きした。得られた光フアイバは、コア径が7μm、内部クラッド層の層厚が10μmであり、気泡の外径は1〜3μmであった。
【0036】
<試験2>
まず、コア領域となる透明ガラス母材をVAD法により作製し、外径25mmに延伸した。
【0037】
そのコアガラス母材の外周に、CVD法により高密度気泡領域となるスート層を堆積し、外径60mmの外付母材を得た。この母材を、炉内が100%窒素ガス雰囲気中の電気炉にて、温度1600℃で加熱処理した。ここで、窒素100%雰囲気ガスを用いる理由は、試験1で述べた通りである。このようにして得られたガラス母材は、外径が45mmで、外周部の高密度気泡領域には窒素の気泡が多数残留しているため、半透明状態であった。なお、この高密度気泡領域の気泡密度は約0.5であった。
【0038】
次に、ガラス母材を外径25mmに延伸し、CVD法により低密度気泡領域となるスート層を堆積し、外径60mmの外付母材を得た。この母材を、炉内が窒素ガス20%、ヘリウムガス80%の雰囲気中の電気炉にて、温度1600℃で加熱処理した。ここで、窒素ガスとヘリウムガスとの混合ガスを雰囲気ガスに用いる理由は、ヘリウムガスを混合することで、100%窒素ガス雰囲気に比べ、加熱処理後のガラスの透明度が高くなるから、換言すれば気泡密度が小さいガラス母材が得られるからである。このようにして得られたガラス母材は、外径が45mmで、その外周部の低密度気泡領域には窒素の気泡が僅かに残留しているため、高密度気泡領域に比べれば透明ではあるが、完全に透明ではない状態であった。なお、低密度気泡領域の気泡密度は約0.3であった。
【0039】
次に、得られたガラス母材を外径25mmに延伸し、CVD法により中密度気泡領域となるスート層を堆積し、外径60mmの外付母材を得た。この母材を、炉内が窒素ガス50%、ヘリウムガス50%の雰囲気中の電気炉にて、温度1600℃で加熱処理した。このようにして得られたガラス母材は、外径が45mmで、外周部の中密度気泡領域の透明度は、高密度気泡領域と低密度気泡領域の中間の透明度を持った状態であった。なお、低密度気泡領域の気泡密度は約0.4であった。
【0040】
次に、得られた高密度気泡領域、低密度気泡領域、及び中密度気泡領域からなる内部クラッド層付ガラス母材を外径25mmに延伸し、CVD法により外部クラッド層となるスート層を堆積し、外径120mmの外付母材を得た。この母材を、炉内が100%ヘリウムガス雰囲気中の電気炉にて、温度1600℃で加熱処理を行い、外径が60mmで、外周部の外部クラッド層が透明なガラス母材を得た。
【0041】
次に、そのガラス母材を通常の線引き方法により外径125μmの光ファイバに線引きした。得られた光ファイバは、コア径が4μm、内部クラッド層の層厚が12μm(高密度気泡領域4μm、低密度気泡領域5μm、中密度気泡領域3μm)であり、各領域の気泡の外径は1〜2μmであった。
【0042】
【発明の効果】
以上要するに本発明によれば、コア領域の周囲に気泡の集合体を有するクラッド層を設けたため、従来のフォトニッククリスタル光ファイバのように、融着残留応力によるコア領域への異方応力の集中がなくなり、優れたPMD特性を発揮することができる。この結果、低PMD特性を有し、大きな実効コア断面積,高屈折率差,大きな異常分散(正分散),負分散・負分散スロープファイバ等、通常の光ファイバでは達成できない特性を発揮することが可能となる等といった優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明に係る光ファイバの実施の一形態を示す拡大断面図である。
【図2】本発明に係る光ファイバの他の実施の形態を示す拡大断面図である。
【図3】従来のフォトニッククリスタル光ファイバを得るためのプリフォームの構造を示した拡大斜視図である。
【符号の説明】
1 光ファイバ
2 コア領域
3 内部クラッド層
4 外部クラッド層
5 気泡
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber used in the field of optical communication, which enables further large-capacity communication, and a method for manufacturing the same.
[0002]
[Prior art]
Optical fibers that enable high-capacity and high-speed communication are indispensable for constructing optical communication networks. However, in recent and future optical communication networks, optical fibers have become faster and more information is required. Accordingly, an optical fiber having a larger capacity has been demanded, and an optical fiber called a so-called photonic crystal optical fiber has attracted attention as a new optical fiber satisfying this demand.
[0003]
The photonic crystal fiber is an optical fiber using a photonic crystal (PC) having a uniform two-dimensional periodic structure in the longitudinal direction of the fiber as a cladding covering the core, and a region corresponding to the cladding. A photonic band gap (PBG: Photonic Band Gap) is provided in the core, and a light wave is confined in the core by Bragg reflection.
[0004]
In the photonic crystal optical fiber proposed so far, for example, like a holey fiber (HF), a continuous hole is provided in the cladding without interruption in the longitudinal direction of the fiber, and the effective refraction in that region is provided. This is achieved by reducing the rate. The holey fiber has characteristics that cannot be achieved with ordinary optical fibers, such as an ultra-wide band single mode transmission region, a large effective core area, a high refractive index difference (High- △), and a large structural dispersion, depending on the design of the holes in the cladding. Is feasible.
[0005]
For example, as shown in FIG. 3, such a photonic crystal optical fiber is obtained by cutting a small-diameter quartz rod a having an outer diameter of about 500 μm and a small-diameter quartz tube b having an inner diameter of about 300 μm to about 300 mm in length, The small diameter quartz rod a is bundled so as to be surrounded by several hundred small diameter quartz tubes b, b, and the bundle c is inserted into a quartz jacket tube d having an inner diameter of about 10 to 15 mm and an outer diameter of about 25 mm. After forming the preform e, the preform e is fused and integrated with the bundle c of the small diameter quartz rods a and the small diameter quartz tubes b, b, and the quartz jacket tube d by a normal optical fiber drawing process. While drawing, a predetermined fiber diameter of 100 to 150 μm is drawn.
[0006]
In such a photonic crystal optical fiber, as shown in FIG. 3, an axial center portion composed of the small-diameter quartz rod a serves as a core region for transmitting light, and a small-diameter quartz surrounding the core region. The portion consisting of the tubes b, b,... Becomes an inner cladding layer having a large number of holes, and the surrounding solid portion consisting of the quartz jacket tube 5 becomes an outer cladding layer. The light wave is efficiently propagated by being reflected by the cladding layer and confined in the core region.
[0007]
[Problems to be solved by the invention]
By the way, in the conventional photonic crystal optical fiber obtained in this way, when the small-diameter quartz rod a and the small-diameter quartz tubes b, b. Residual fusion stress remains in the glass, giving anisotropic stress to the core region, deteriorating PMD (Polarization Mode Dispersion) characteristics, etc., and making it difficult to delicately control the refractive index distribution of the inner cladding layer. is there.
[0008]
Therefore, the present invention has been devised in order to effectively solve such a problem, and an object of the present invention is to prevent anisotropic stress from concentrating on a core region due to fusion residual stress and to provide excellent PMD characteristics. The present invention provides a novel optical fiber having the same and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an optical fiber having a cladding layer around a core region, wherein an aggregate region of bubbles is formed in the cladding layer. Specifically, the aggregate region of the bubbles is formed in a layer shape concentric with the core region, as described in claim 2, and the clad layer is formed of an inner clad and an inner clad as defined in claim 3. And an outer cladding provided around the periphery of the airbag, and the aggregate region of the bubbles is formed in the inner cladding.
[0010]
This eliminates the concentration of the anisotropic stress in the core region due to the fusion residual stress unlike the conventional fiber, so that excellent PMD characteristics can be exhibited and delicate refractive index distribution control of the inner cladding layer can be easily achieved. .
[0011]
In addition, as described in claim 4, when the bubbles are formed to have a diameter of 4 μm or less, the above-mentioned effects can be remarkably exhibited.
[0012]
Further, as described in claim 5, the distribution density of the bubbles is changed in the radial direction so that the equivalent refractive index of the aggregate region of the bubbles has a distribution in the radial direction. If the diameter of the bubble is changed in the radial direction and the equivalent refractive index of the aggregate region of the bubble has a radial distribution, the structural dispersion is controlled, and a large positive dispersion fiber and a negative dispersion / negative dispersion are controlled. A fiber with a slope is obtained.
[0013]
On the other hand, the present invention provides a method for manufacturing an optical fiber in which a clad layer is formed around a core region, wherein a glass soot layer is formed around a core glass preform that becomes a core region, The glass soot layer is heated and vitrified in a gas atmosphere containing an inert gas whose diffusion coefficient is smaller than that of helium, thereby forming a glass layer having bubbles of the inert gas.
[0014]
Thereby, the above-described optical fiber of the present invention can be obtained.
[0015]
Specifically, as described in claim 8, the gas atmosphere is formed only of an inert gas whose diffusion coefficient in glass is smaller than helium. If the gas is formed of a mixed gas of helium gas and an inert gas having a diffusion coefficient smaller than that of helium in the glass, the above effect can be remarkably exhibited. As the inert gas having a diffusion coefficient smaller than that of helium in the glass, a nitrogen gas or an argon gas is preferable.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
[0017]
FIG. 1 shows an embodiment of an optical fiber 1 according to the present invention.
[0018]
As shown in the figure, the optical fiber 1 has an inner cladding layer 3 around a core region 2 located at an axial center, and an outer cladding layer 4 having an outer diameter of about 125 μm around the inner cladding layer 3. Are integrally provided.
[0019]
The inner clad layer 3 is formed with a region in which a large number of independent bubbles 5 having a diameter of 4 μm or less are densely gathered, and exists in a layer so as to surround the core region 2.
[0020]
In the optical fiber 1 of the present invention having such a structure, the small-diameter quartz rod a and the small-diameter quartz tubes b are fused and integrated like a conventional photonic crystal optical fiber. Unlike the conventional one, since the anisotropic stress is not concentrated on the core region due to the fusion residual stress of the small-diameter quartz tube b, excellent PMD characteristics are exhibited, and delicate refractive index distribution control of the inner cladding layer 3 is performed. Can be easily achieved.
[0021]
That is, the optical fiber 1 uses an inert gas having a small diffusion coefficient, for example, a nitrogen gas or an argon gas as a sintering gas (atmosphere gas) in a sintering process of the inner cladding layer 3 in a preform manufacturing process. After the sintering gas is left in the sintered glass layer to form a cellular layer around the core region, the preform is drawn to an outer diameter of about 125 μm. For this reason, the conventional fusion residual stress does not occur, and a situation such as concentration of anisotropic stress in the core region does not occur. The bubbles 5 have a substantially spherical shape during the preform manufacturing process, but are drawn into a long hole extending in the longitudinal direction by subsequent drawing. Further, by setting the equivalent relative refractive index difference between the core region 2 and the inner cladding layer 3 to 1%, a fiber having a large absolute value of the dispersion value can be obtained.
[0022]
Here, the diameter of the core region 2 is not particularly limited, but is set to a size of 2 to 10 μm for performing single mode transmission. The thickness of the inner cladding layer 3 varies depending on the refractive index profile, dispersion characteristics, and the like of the optical fiber to be obtained, but is generally set in the range of 5 to 30 μm. Further, it is an absolute condition that the diameter of the bubble 5 is equal to or less than the thickness of the inner cladding layer 3. However, in consideration of forming a bubble density distribution in the inner cladding layer 3, the diameter is 4 μm or less, preferably 1 μm or less. It is desirable that the thickness be 3 μm. The optical fiber 1 according to the present invention is not limited to these dimensional conditions at all.
[0023]
FIG. 3 shows another embodiment of the present invention, in which the refractive index difference distribution is controlled by changing the density of bubbles 5 constituting the inner cladding layer 3 in the radial direction. That is, the inner cladding layer 3 is divided into three layers on the concentric circle centering on the core region 2, the bubbles 5 are present in the region on the inner cladding layer 3 side at a high density (high-density region), and the outer region is formed. The low density (low density region) is obtained, and the outer region is further densified (medium density region). As a result, a multi-step equivalent relative refractive index difference Δn can be generated in the inner cladding layer 3 as shown in the figure, controlling the structural dispersion, and having a large positive dispersion fiber and a negative dispersion / negative dispersion slope. Fiber is obtained. Even if the distribution density of the bubbles in the inner cladding layer is changed in the radial direction, or the outer diameter of the bubbles 5 forming the inner cladding layer 3 is changed in the radial direction, the equivalent refractive index is similarly distributed. It becomes possible.
[0024]
Here, the outer diameter of the bubble can be controlled by the following two methods.
One method is to change the bulk density of the quartz glass soot layer deposited around the core base material. When the soot is vitrified by heating (sintering), the higher the bulk density of the soot, the smaller the gap through which the gas escapes, so the proportion of large bubbles remaining increases, and the lower the bulk density of the soot, the smaller bubbles remain. The percentage increases.
[0025]
The other is a method of changing the ratio of helium gas and inert gas in the gas atmosphere in the furnace during sintering. The higher the proportion of helium gas, the smaller the bubbles tend to be, and the lower the proportion of helium gas, the larger the bubbles tend to be.
[0026]
Note that the larger the bubble, the higher the density of the bubble, and the smaller the bubble, the lower the density of the bubble. Therefore, by controlling the bulk density of the quartz glass soot layer and the ratio of the helium gas and the inert gas in the furnace gas atmosphere during sintering, both the bubble diameter and the bubble density can be controlled. Can be.
[0027]
Further, by controlling the size and position of the bubble and adjusting the distance between the bubbles to one half of the wavelength of the signal light to be propagated, a photonic band gap structure can be realized in the optical fiber of the present invention. .
[0028]
In the above-described embodiment, the case where the core region is made of quartz glass has been described. However, the present invention is not limited to this. Pure quartz glass, a well-known impurity for increasing the refractive index (eg, Ge) , Ti) or a quartz glass to which a rare earth element such as Er is added.
[0029]
Further, the core region may be hollow. In this case, a hollow quartz tube may be used in place of the above-described core base material, that is, the small-diameter quartz tube a. The quartz tube can be made of either pure quartz glass, quartz glass to which a known impurity (for example, Ge or Ti) for increasing the refractive index is added, or quartz glass to which a rare earth element such as Er is added. It is.
[0030]
【Example】
Next, examples of the present invention will be described. In test 1, a bubble aggregate region consisting of one high-density bubble region was provided in the inner cladding layer, and in test 2, three types of high-density bubble region, low-density bubble region, and medium-density bubble region were formed in the inner cladding layer. This is provided with a bubble aggregate region composed of a layer.
[0031]
<Test 1>
First, a transparent glass base material serving as a core region was prepared by a VAD method and stretched to an outer diameter of 25 mm.
[0032]
A soot layer serving as a high-density bubble region was deposited on the outer periphery of the core glass base material by a CVD method to obtain an external base material having an outer diameter of 60 mm. This base material was heat-treated at 1600 ° C. in an electric furnace in a 100% nitrogen gas atmosphere. The obtained glass preform had an outer diameter of 45 mm, and was in a translucent state because many bubbles of nitrogen gas remained in the closed cell aggregate region on the outer peripheral portion. Note that the bubble density in the high-density bubble region was about 0.5.
[0033]
Here, the diffusion coefficient of nitrogen gas is much smaller than that of helium gas usually used in the heat treatment step for vitrification, and soot tends to remain in the glass when soot is vitrified. By using a 100% nitrogen gas atmosphere, a glass base material containing bubbles of nitrogen gas at high density can be obtained.
[0034]
Next, the obtained glass base material with an inner clad layer having a high-density bubble region is stretched to an outer diameter of 25 mm, a soot layer serving as an outer clad layer is deposited by a CVD method, and an outer base material having an outer diameter of 120 mm is formed. Obtained. This base material was subjected to a heat treatment in an electric furnace in a 100% helium gas atmosphere at a temperature of 1600 ° C. to obtain a glass base material having an outer diameter of 60 mm and a transparent outer cladding layer at the outer peripheral portion.
[0035]
Next, the glass base material was drawn into an optical fiber having an outer diameter of 125 μm by an ordinary drawing method. The obtained optical fiber had a core diameter of 7 μm, a layer thickness of the inner cladding layer of 10 μm, and an outer diameter of bubbles of 1 to 3 μm.
[0036]
<Test 2>
First, a transparent glass base material serving as a core region was prepared by a VAD method and stretched to an outer diameter of 25 mm.
[0037]
A soot layer serving as a high-density bubble region was deposited on the outer periphery of the core glass base material by a CVD method to obtain an external base material having an outer diameter of 60 mm. This base material was heat-treated at 1600 ° C. in an electric furnace in a 100% nitrogen gas atmosphere. Here, the reason for using a 100% nitrogen atmosphere gas is as described in Test 1. The glass base material thus obtained had an outer diameter of 45 mm, and was in a translucent state because many nitrogen bubbles remained in the high-density bubble region on the outer periphery. The high-density bubble region had a bubble density of about 0.5.
[0038]
Next, the glass base material was stretched to an outer diameter of 25 mm, and a soot layer serving as a low-density bubble region was deposited by a CVD method to obtain an external base material having an outer diameter of 60 mm. This base material was heat-treated at a temperature of 1600 ° C. in an electric furnace in an atmosphere of 20% nitrogen gas and 80% helium gas inside the furnace. Here, the reason that a mixed gas of nitrogen gas and helium gas is used as the atmosphere gas is that the transparency of the glass after the heat treatment becomes higher by mixing the helium gas than in the 100% nitrogen gas atmosphere. This is because a glass base material having a low bubble density can be obtained. The glass base material thus obtained has an outer diameter of 45 mm, and is slightly transparent to nitrogen bubbles in the low-density bubble region on the outer periphery thereof, as compared with the high-density bubble region. However, it was not completely transparent. Note that the bubble density in the low-density bubble region was about 0.3.
[0039]
Next, the obtained glass base material was stretched to an outer diameter of 25 mm, and a soot layer serving as a medium density bubble region was deposited by a CVD method to obtain an external base material having an outer diameter of 60 mm. This base material was heat-treated at 1600 ° C. in an electric furnace in an atmosphere of 50% nitrogen gas and 50% helium gas in the furnace. The glass base material thus obtained had an outer diameter of 45 mm, and the transparency of the medium density bubble region on the outer peripheral portion was intermediate between the high density bubble region and the low density bubble region. The bubble density in the low-density bubble region was about 0.4.
[0040]
Next, the obtained glass base material with an inner cladding layer including the high-density bubble region, the low-density bubble region, and the medium-density bubble region is stretched to an outer diameter of 25 mm, and a soot layer serving as an outer cladding layer is deposited by a CVD method. Then, an external base material having an outer diameter of 120 mm was obtained. This base material was heated in an electric furnace in a 100% helium gas atmosphere at a temperature of 1600 ° C. to obtain a glass base material having an outer diameter of 60 mm and a transparent outer cladding layer at the outer peripheral portion. .
[0041]
Next, the glass base material was drawn into an optical fiber having an outer diameter of 125 μm by an ordinary drawing method. The obtained optical fiber has a core diameter of 4 μm, a layer thickness of the inner cladding layer of 12 μm (high-density bubble region 4 μm, low-density bubble region 5 μm, medium-density bubble region 3 μm), and the outer diameter of the bubbles in each region is 1-2 μm.
[0042]
【The invention's effect】
In short, according to the present invention, since the clad layer having the aggregate of bubbles is provided around the core region, the concentration of the anisotropic stress in the core region due to the fusion residual stress as in the conventional photonic crystal optical fiber. , And excellent PMD characteristics can be exhibited. As a result, it has low PMD characteristics and exhibits characteristics that cannot be achieved with ordinary optical fibers, such as large effective core area, high refractive index difference, large anomalous dispersion (positive dispersion), negative dispersion and negative dispersion slope fiber. It has excellent effects such as being able to perform.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view showing an embodiment of an optical fiber according to the present invention.
FIG. 2 is an enlarged sectional view showing another embodiment of the optical fiber according to the present invention.
FIG. 3 is an enlarged perspective view showing a structure of a preform for obtaining a conventional photonic crystal optical fiber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical fiber 2 Core area 3 Inner cladding layer 4 Outer cladding layer 5 Bubbles

Claims (10)

コア領域の周囲にクラッド層を備えた光ファイバにおいて、上記クラッド層内に気泡の集合体領域を形成したことを特徴とする光ファイバ。An optical fiber having a cladding layer around a core region, wherein an aggregate region of bubbles is formed in the cladding layer. 上記気泡の集合体領域を、コア領域と同心円の層状に形成したことを特徴とする請求項1に記載の光ファイバ。2. The optical fiber according to claim 1, wherein the aggregate region of the bubbles is formed in a layer shape concentric with the core region. 上記クラッド層が、内部クラッドと、内部クラッドの周囲に設けられた外部クラッドとからなり、その内部クラッドに上記気泡の集合体領域を形成したことを特徴とする請求項1又は2に記載の光ファイバ。3. The light according to claim 1, wherein the cladding layer includes an inner cladding and an outer cladding provided around the inner cladding, and the aggregate region of the bubbles is formed in the inner cladding. fiber. 上記気泡を、直径4μm以下に形成したことを特徴とする請求項1から3いずれかに記載の光ファイバ。The optical fiber according to any one of claims 1 to 3, wherein the bubble has a diameter of 4 µm or less. 上記気泡の分布密度を径方向に変化させて、上記気泡の集合体領域の等価屈折率に径方向の分布を持たせたことを特徴とする請求項1から4いずれかに記載の光ファイバ。The optical fiber according to any one of claims 1 to 4, wherein the distribution density of the bubbles is changed in the radial direction so that the equivalent refractive index of the aggregate region of the bubbles has a distribution in the radial direction. 上記気泡の直径を径方向に変化させて、上記気泡の集合体領域の等価屈折率に径方向の分布を持たせたことを特徴とする請求項1から5いずれかに記載の光ファイバ。The optical fiber according to any one of claims 1 to 5, wherein the diameter of the bubble is changed in the radial direction so that the equivalent refractive index of the aggregate region of the bubble has a radial distribution. コア領域の周囲にクラッド層を形成する光ファイバの製造方法において、コア領域となるコアガラス母材の周囲にガラススート層を形成し、ガラス中での拡散係数がヘリウムよりも小さい不活性ガスを含むガス雰囲気中で上記ガラススート層を加熱してガラス化し、不活性ガスの気泡を有するガラス層を形成することを特徴とする光ファイバの製造方法。In a method for manufacturing an optical fiber in which a cladding layer is formed around a core region, a glass soot layer is formed around a core glass preform that becomes a core region, and an inert gas whose diffusion coefficient in glass is smaller than helium is A method for producing an optical fiber, characterized in that the glass soot layer is heated and vitrified in a gas atmosphere containing the gas so as to form a glass layer having bubbles of an inert gas. 上記ガス雰囲気を、ガラス中での拡散係数がヘリウムよりも小さい不活性ガスのみで形成したことを特徴とする請求項7に記載の光ファイバの製造方法。The method for manufacturing an optical fiber according to claim 7, wherein the gas atmosphere is formed only of an inert gas whose diffusion coefficient in glass is smaller than that of helium. 上記ガス雰囲気を、ヘリウムガスとガラス中での拡散係数がヘリウムよりも小さい不活性ガスとの混合ガスで形成したことを特徴とする請求項7に記載の光ファイバの製造方法。The method according to claim 7, wherein the gas atmosphere is formed of a mixed gas of helium gas and an inert gas whose diffusion coefficient in glass is smaller than helium. 上記ガラス中での拡散係数がヘリウムよりも小さい不活性ガスが、窒素ガス又はアルゴンガスであることを特徴とする請求項7から9いずれかに記載の光ファイバの製造方法。10. The method of manufacturing an optical fiber according to claim 7, wherein the inert gas whose diffusion coefficient in the glass is smaller than that of helium is nitrogen gas or argon gas.
JP2002174605A 2002-06-14 2002-06-14 Optical fiber manufacturing method Expired - Lifetime JP3802843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174605A JP3802843B2 (en) 2002-06-14 2002-06-14 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174605A JP3802843B2 (en) 2002-06-14 2002-06-14 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2004020836A true JP2004020836A (en) 2004-01-22
JP3802843B2 JP3802843B2 (en) 2006-07-26

Family

ID=31173526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174605A Expired - Lifetime JP3802843B2 (en) 2002-06-14 2002-06-14 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP3802843B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100617713B1 (en) 2004-02-12 2006-08-28 삼성전자주식회사 Method for fabricating holey fiber
KR100703108B1 (en) * 2005-10-17 2007-04-06 한국과학기술연구원 Optical fiber
JP2009069237A (en) * 2007-09-11 2009-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing same
JP2009069238A (en) * 2007-09-11 2009-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing same
JP2009515217A (en) * 2005-11-08 2009-04-09 コーニング インコーポレイテッド Microstructured optical fiber and manufacturing method thereof
JP2010515949A (en) * 2007-01-08 2010-05-13 コーニング インコーポレイテッド Bending resistant multimode optical fiber
JP2010526756A (en) * 2007-05-08 2010-08-05 コーニング インコーポレイテッド Method for manufacturing a microstructured optical fiber including a cavity
JP2011093795A (en) * 2009-10-30 2011-05-12 Ofs Fitel Llc Formation of microstructured fiber preform using porous glass deposition
KR20180006921A (en) * 2015-05-14 2018-01-19 코히어런트, 인크. Transmission of Polarized Laser Radiation with Cavity Fiber
JP2018512605A (en) * 2015-02-06 2018-05-17 コーニング インコーポレイテッド Light diffusing optical element having cladding including scattering center
JP2020502581A (en) * 2016-12-23 2020-01-23 マジック リープ, インコーポレイテッドMagic Leap,Inc. Microstructured fiber optic oscillator and waveguide for fiber scanner
CN110858533A (en) * 2018-08-24 2020-03-03 肖特股份有限公司 Body, in particular a lamp body, and method for forming a gastight seal

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100617713B1 (en) 2004-02-12 2006-08-28 삼성전자주식회사 Method for fabricating holey fiber
KR100703108B1 (en) * 2005-10-17 2007-04-06 한국과학기술연구원 Optical fiber
JP2009515217A (en) * 2005-11-08 2009-04-09 コーニング インコーポレイテッド Microstructured optical fiber and manufacturing method thereof
JP2010515949A (en) * 2007-01-08 2010-05-13 コーニング インコーポレイテッド Bending resistant multimode optical fiber
JP2010526756A (en) * 2007-05-08 2010-08-05 コーニング インコーポレイテッド Method for manufacturing a microstructured optical fiber including a cavity
JP2009069237A (en) * 2007-09-11 2009-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing same
JP2009069238A (en) * 2007-09-11 2009-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing same
JP4490465B2 (en) * 2007-09-11 2010-06-23 日本電信電話株式会社 Optical fiber manufacturing method
JP4567716B2 (en) * 2007-09-11 2010-10-20 日本電信電話株式会社 Optical fiber manufacturing method
JP2011093795A (en) * 2009-10-30 2011-05-12 Ofs Fitel Llc Formation of microstructured fiber preform using porous glass deposition
JP2018512605A (en) * 2015-02-06 2018-05-17 コーニング インコーポレイテッド Light diffusing optical element having cladding including scattering center
JP2021177241A (en) * 2015-02-06 2021-11-11 コーニング インコーポレイテッド Light diffusion optical element having clad containing scattering center
KR20180006921A (en) * 2015-05-14 2018-01-19 코히어런트, 인크. Transmission of Polarized Laser Radiation with Cavity Fiber
CN107636503A (en) * 2015-05-14 2018-01-26 相干公司 Polarised laser emission is transmitted using hollow-core fiber
KR102669900B1 (en) 2015-05-14 2024-05-29 코히어런트, 인크. Transmission of polarized laser radiation using hollow fibers
JP2020502581A (en) * 2016-12-23 2020-01-23 マジック リープ, インコーポレイテッドMagic Leap,Inc. Microstructured fiber optic oscillator and waveguide for fiber scanner
US10976540B2 (en) 2016-12-23 2021-04-13 Magic Leap, Inc. Microstructured fiber optic oscillator and waveguide for fiber scanner
JP2022003407A (en) * 2016-12-23 2022-01-11 マジック リープ, インコーポレイテッドMagic Leap, Inc. Microstructured fiber optic oscillator and waveguide for fiber scanner
US11556001B2 (en) 2016-12-23 2023-01-17 Magic Leap, Inc. Microstructured fiber optic oscillator and waveguide for fiber scanner
JP7344260B2 (en) 2016-12-23 2023-09-13 マジック リープ, インコーポレイテッド Microstructured fiber optic oscillators and waveguides for fiber scanners
CN110858533A (en) * 2018-08-24 2020-03-03 肖特股份有限公司 Body, in particular a lamp body, and method for forming a gastight seal

Also Published As

Publication number Publication date
JP3802843B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP4465527B2 (en) Microstructured optical fiber, preform, and manufacturing method of microstructured optical fiber
JP2004506937A (en) Optical fiber with hole made of non-quartz glass
US20100104869A1 (en) Photonic Crystal Fibers and Methods for Manufacturing the Same
US20040033043A1 (en) Dispersion tailoring in optical fibres
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
JP2004522201A (en) Plastic photonic crystal fiber for terahertz wave transmission and method of manufacturing the same
US4283213A (en) Method of fabrication of single mode optical fibers or waveguides
JP2007536580A (en) Long wavelength pure silica core single mode fiber and method of forming the fiber
JPH06174957A (en) Polarization-plane preserving lightguide fiber and manufacture thereof
JP2007536580A5 (en)
JP3802843B2 (en) Optical fiber manufacturing method
WO2020210208A1 (en) Infrared-transmitting, polarization-maintaining optical fiber and method for making
US6530244B1 (en) Optical fiber preform having OH barrier and fabrication method thereof
CN111443419A (en) Large-mode-field bending-resistant multi-core few-mode optical fiber
CN109696723B (en) Double-refraction photonic crystal fiber and preparation method thereof
JP5457089B2 (en) Photonic band gap fiber manufacturing method and photonic band gap fiber manufacturing method
WO2003093884A2 (en) A method and apparatus relating to optical fibres
JP5539594B2 (en) Fiber and fiber manufacturing method
WO2004053550A1 (en) Improvements relating to photonic crystal fibres
US20050220432A1 (en) Photonic crystal fiber capable of single-mode transmission and preform thereof
JP2004347817A (en) Dispersed flat fiber
JP2616087B2 (en) Manufacturing method of elliptical core type polarization maintaining optical fiber
JP3923282B2 (en) Manufacturing method of optical fiber for mode field conversion
JP4447528B2 (en) Photonic band gap fiber and manufacturing method thereof
JP3668804B2 (en) Manufacturing method of fiber core rod for optical attenuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3802843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term