JP2004347817A - Dispersed flat fiber - Google Patents

Dispersed flat fiber Download PDF

Info

Publication number
JP2004347817A
JP2004347817A JP2003144111A JP2003144111A JP2004347817A JP 2004347817 A JP2004347817 A JP 2004347817A JP 2003144111 A JP2003144111 A JP 2003144111A JP 2003144111 A JP2003144111 A JP 2003144111A JP 2004347817 A JP2004347817 A JP 2004347817A
Authority
JP
Japan
Prior art keywords
dispersion
group velocity
refractive index
wavelength
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003144111A
Other languages
Japanese (ja)
Other versions
JP3871053B2 (en
Inventor
Hirokazu Kubota
寛和 久保田
Satoki Kawanishi
悟基 川西
Masatoshi Tanaka
正俊 田中
Shinya Yamatori
真也 山取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2003144111A priority Critical patent/JP3871053B2/en
Priority to PCT/JP2004/007122 priority patent/WO2004104659A1/en
Publication of JP2004347817A publication Critical patent/JP2004347817A/en
Application granted granted Critical
Publication of JP3871053B2 publication Critical patent/JP3871053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersed flat fiber having a polarization keeping property, and a low wavelength dependent property in at least one polarization mode group velocity dispersion. <P>SOLUTION: The dispersed flat fiber (10) has a core part consisting of a central high refraction index part (11) and its peripheral low refraction index part (12), and a clad part with many holes (13, 14) formed dispersively and almost uniformly at about regular intervals in the cross section of the optical fiber, and a photonic crystal structure which dispels degradation in the polarization mode by making the hole positions rotationally symmetric about the center of the core part as the symmetry axis with two or less rotations in the cross section of the optical fiber, and has also a structure in which the wavelength dependency of the group velocity dispersion in the operation wavelength is smaller than that of a single mode optical fiber but the group velocity dispersion is a normal dispersion only in the core part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光通信・光信号処理等に用いられる光ファイバに関し、特にクラッド部にフォトニック結晶構造を持ち、群速度分散の波長依存性が少ない分散フラットファイバの構造に関する。
【0002】
【従来の技術】
従来、分散フラットファイバを作製するためにはコアを中心としてファイバの径方向に屈折率差の異なる多層構造としたものが作製されている(非特許文献1,非特許文献2を参照)。
【0003】
また、フォトニック結晶構造を用いて分散フラットファイバを作製する方法も開発されている。
【0004】
【非特許文献1】
Y.LIU 他、”Design and fabrication of locally dispersion−flattened large effective area fibers” ECOC’ 98 pp.37−38 (Madrid,Spain),1998年9月
【0005】
【非特許文献2】
P. Bachmann 他、”Dispersion−flattened single−mode fibers prepared with PCVD: Performance, limitations, design optimization” IEEE J.Lightwave Techno1.Vol.4,No.7,pp.858−863(1986年)
【0006】
【非特許文献3】
William H. Reeves他、”Demonstration of ultra−flattened dispersion in photonic crystal fibers” Optics Express Vo1.10,No.14pp.609−613(2002年)
(http://www .opticsexpress.org/abstract.cfm?URl=OPEX−10−14−609)
【0007】
【発明が解決しようとする課題】
上記の従来の多層構造のファイバにおいては、その屈折率差と各層の厚みを厳密に制御しなくてはならなかった。その設計例を非特許文献1から引用して図8に示す。同図において、Δは上記屈折率差、Rはファイバの中心からの距離を表わす。その設計値からのずれが特性に及ぼす悪影響は、たとえば非特許文献2に述べられている。しかし、多層構造のファイバの屈折率差と各層の厚みを厳密に制御することは実際上容易でない。
【0008】
他方、非特許文献3から引用した図9に示すような従来のフォトニック結晶構造を利用した分散フラットファイバでは、光ファイバの損失が大きいという難点があった。引用文献3では、フォトニック結晶構造を利用した分散フラットファイバにおいて、0.58dB/mというきわめて大きな損失が報告されている。また、フォトニック結晶構造を利用した分散フラットファイバは、零分散で、かつ分散フラットな特性を実現できる構造の許容範囲はきわめて狭いという別の難点もあった。たとえば、フォトニック結晶構造を構成する各空孔の直径がわずか2%変化しただけで、その分散スロープが0.02ps/km/nm程度まで変化し、分散フラットファイバとしての特性を示さなくなる。
【0009】
本発明は、従来技術における上述のような課題に鑑みてなされたもので、その目的は、偏波保持特性をもち、かつ少なくとも一つの偏波モードの群速度分散の波長依存性が小さい特性を有する分散フラットファイバを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の分散フラットファイバは、ガラスもしくはプラスチック、その他使用する波長において透明な媒質のいずれかを材料として形成されている光ファイバであって、上記光ファイバの断面の中心付近において光を導波するコア部と、上記光ファイバの長手方向に沿って形成されかつ該光ファイバの断面において概略一定間隔をおいて概略一様に分散配置された複数の空孔を有し、該複数の空孔はそれぞれ上記光ファイバの長手方向に沿ってその平均的な直径が概略一定値である概略円形、概略楕円形もしくは概略多角形の形状を有し、かつ該空孔の中は真空、もしくは使用する波長において透明かつ上記媒質よりも屈折率の低い気体、液体ないし固体で満たされているクラッド部とを有し、上記光ファイバはその断面において上記空孔の配置を上記コア部の中心を対称軸とする2回以下の回転対称としたフォトニック結晶構造を有し、かつ動作波長における群速度分散の波長依存性が通常の単一モードファイバよりも小さい低分散スロープ性を有し、上記コア部はその中心にその周辺部よりも屈折率の高い高屈折率領域を有し、該コア部のみ群速度分散が正常分散であることを特徴とする。
【0011】
従来、分散フラットを実現するには複雑な多層構造の屈折率分布コアを必要としたが、本発明では群速度分散の波長依存性が大きい単純なステップインデックス構造であっても、クラッドに空孔を付加すると分散フラットが実現できる。また、モードフィールド径を小さくでき、高非線形性が得られる。
【0012】
ここで、好ましくは、上記コア部の屈折率分布が、ステップインデックス型、グレーデッド型、マッチドクラッド型、もしくはW型、三重クラッド型、四重クラッド型等の多層型であるとすることができる。
【0013】
また、好ましくは、少なくともいずれか一つの偏波モードでの上記動作波長における群速度分散の波長依存性が±0.03ps/km/nm以下であるとすることができる。
【0014】
また、好ましくは、少なくともいずれか一つの偏波モードでの上記動作波長における群速度分散の波長依存性が±0.01ps/km/nm以下であるとすることができる。
【0015】
また、好ましくは、少なくともいずれか一つの偏波モードの上記動作波長における群速度分散の値の差の絶対値が0.4ps/km/nm以下であるとすることができる。
【0016】
また、好ましくは、上記光ファイバのモードフィールド径が3μm以下であるとすることができる。
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する.
(第1の実施形態)
図1は、本発明の第1の実施形態における光ファイバの横断面の中心付近を拡大して示す。後述のように分散フラットファイバとして機能するこの光ファイバ10は、例えば、石英ガラスでできているが、石英ガラスの代わりに、PMMA(ポリメタクリル酸メチル)等のプラスチック、もしくは使用する波長において透明な媒質であればそれ以外の材質であってもかまわない。
【0018】
光ファイバ10の光を導く部分であるコア部は、本構造例では、中心の高屈折率部11とその周囲の低屈折率部12からなる。高屈折率部11は光ファイバ10の材質が例えば石英ガラスの場合は、そのガラスにゲルマニウム、リン等の添加物を加えることで実現できる。低屈折率部12は高屈折率部10よりも屈折率が低い部分であり、上記添加物の量を高屈折率部に比較して少なく、あるいは添加しないこと、もしくはフッ素などを添加することで実現できる。
【0019】
コア部の低屈折率部12の周囲の部分はクラッド部であり、クラッド部には第1の空孔13および、これとは内径の異なる第2の空孔14が、概略正三角形を形成するように配列されている。第1の空孔13および第2の空孔14の配列は六方最密構造であるが、配列はこれにかぎらず、概略一様に分布していればよい。本構造例では、第2の空孔14はコアの高屈折率部12を挟んで対向する一組の空孔である。
【0020】
本実施形態の分散フラットファイバは、VAD法(vapor−phase axial deposition process:気相軸付け法)等で作製したガラスファイバ母材に、ドリルなどで穴をあけたのち、溶融延伸する方法、あるいは石英ガラスの棒および石英ガラスの細管を束ねて母材とし、それを溶融延伸する方法などで作製できる。これらの方法により大気中で作製した場合には、空孔の中は空気で満たされる。
【0021】
以下に、図1の構造の本発明の第1の実施形態の分散フラットファイバにおける実際の実施例とその特性を説明する。
[第1の実施例]
第1の実施例では、各空孔13、14の隣接する空孔の中心間の距離Λを4.1μm、第1の空孔13の直径d1と上記距離Λとの比を0.35、高屈折率部11の直径daと上記距離Λとの比を0.7、第2の空孔14の直径d2と上記距離Λとの比を0.9 、石英ガラスに対する比屈折率差Δを高屈折率部11を+1.5%、低屈折率部12を−0.3%とした。本実施例においてコア部11、12のみの群速度分散は、波長1800nm以下において正常分散であり、群速度分散の波長依存性は波長1425nm〜1775nmの範囲において0.03ps/km/nmを超えるが、上記記載のクラッドの空孔の特性により群速度分散の波長依存性を低減することができる。また、コア部の中心を対称軸とする2回以下の回転対称としているので偏波保持特性が得られる。本実施例においてコア部11、12の屈折率分布は、中心から半径方向に向かって、高屈折率部11→石英ガラスよりも低い屈折率の低屈折率部12→クラッド部を形成する無添加の石英ガラスと変化しており、中心部に高屈折率部11を持つ、いわゆるW型の屈折率分布となる。
【0022】
図2に、本実施例の分散フラットファイバの群速度分散の波長依存性を示す。同図の実線の曲線および破線の曲線は、本実施例における直交するそれぞれの偏波モードに対する分散特性を示す。実線の偏波モードの群速度分散の波長依存性が±0.03ps/km/nm以内となる波長域は、波長1425nmから1775nmの範囲である。破線の偏波モードの群速度分散の波長依存性が±0.03ps/km/nm以内となる波長域は、波長1375nmから1860nmの範囲である。
【0023】
より好ましくは、群速度分散の波長依存性が±0.01ps/km/nm以内であり、これは破線のモードにおいて波長1480nmから1770の範囲で実現されている。さらに破線のモードにおいて、波長1550nmから1720nmの範囲では、群速度分散の波長依存性は±0.003ps/km/nm以内と、さらに平坦な特性が実現されている。
【0024】
ちなみに、通常の単一モードファイバの群速度分散の波長依存性は波長1550nmにおいて、およそ0 .07ps/km/nmである。また、破線のモードにおいて、波長1550nmから1720nmの範囲で群速度分散の値は±0.05ps/km/nm以内であり、波長1530nmから1730nmの範囲における群速度分散の値は±0.2ps/km/nm以内であり、それらの差の絶対値は0.4ps/km/nm以内である。
【0025】
図3は本実施例の分散フラットファイバのモードの分布を示す。モードフィールド径(縦×横)は2.81μm×2.97μmである。
【0026】
また、本実施例の偏波保持性能の強さを示す目安として、波長1.55μmにおけるモード複屈折の値を求めると、3.0×10−4となる。この値は、市販されているPANDA型石英系偏波面保存ファイバでのモード複屈折の値と同等である。
【0027】
[第2の実施例]
第2の実施例では、各空孔13、14の隣接する空孔の中心間の距離Λを3.4μm、第1の空孔13の直径d1と上記距離Λとの比を0.35、高屈折率部11の直径d2と上記距離Λとの比を0.8、第2の空孔14の直径d2と上記距離Λとの比を1、石英ガラスに対する比屈折率差Δを高屈折率部11を2%、低屈折率部12を0%とした。本実施例は、上述の第1の実施例の構造パラメータを変えた例である。
【0028】
本実施例において、コア部11、12のみの群速度分散は、波長2390nm以下において正常分散である。また、本実施例において、コア部11、12の屈折率分布は、その中心から半径方向に向かって、高屈折率部11→無添加の石英ガラスと変化しており、いわゆるステップインデックス型の屈折率分布である。
【0029】
図4の(A)は本実施例の分散フラットファイバの群速度分散の波長依存性を示す。図4の(A)に示す実線の曲線および破線の曲線は、本実施例の直交するそれぞれの偏波モードに対する分散特性を示している。
【0030】
本実施例においては、実線の方の偏波モードの群速度分散の波長依存性が±0.03ps/km/nm以内となる波長域は、波長1275nmから1800nmの範囲である。より好ましくは、群速度分散の波長依存性が±0.01ps/km/nm以内であり、これは波長1350nmから1700nmの範囲で実現されている。
【0031】
さらに、波長1425nmから1650nmの範囲では、群速度分散の波長依存性は±0.0035ps/km/nm以内と、さらに平坦な特性が実現されている。波長1365nmから1695nmの範囲で群速度分散の差の絶対値は0.4ps/km/nm以内である。
【0032】
また、図4の(B)は、各空孔の隣接する空孔の中心間の距離Λを3.5μmとしたが、他のパラメータは図4の(A)と同じとしたファイバの群速度分散の波長依存性を示す。図4の(B)に示す実線曲線の方の偏波モードの波長依存性が±0.03ps/km/nm以内となる波長域は、波長1295nmから1820nmの範囲である。波長1400nmから1750nmの範囲で群速度分散の波長依存性は、最大0.01ps/km/nmである。さらに、波長1450nmから1670nmの範囲で群速度分散の波長依存性は、最大±0.003ps/km/nm以内である。波長1410nmから1720nmの範囲で群速度分散の差の絶対値は、0.4ps/km/nm以内である。
【0033】
さらに、各空孔の隣接する空孔の中心間の距離Λを3.46μmとすると、波長1400nmから1710nmの範囲で、群速度分散の値は±0.2ps/km/nm以内であり、その差の絶対値は0.4ps/km/nm以内である。そして、モードフィールド径は2.8×2.4μmである。
【0034】
また、本実施例のファイバの偏波保持性能の強さを示す目安として波長1.55μmにおけるモード複屈折の値を求めると、8.5×10−4となる。この値は、市販されているPANDA型石英系偏波面保存ファイバのモード複屈折の値よりも大きい。
【0035】
なお、上述した構造パラメータda、d1、d2、Λ、Δの組み合わせは、第1の実施例,第2の実施例で述べた値に限られないのは勿論である。
【0036】
(第2の実施形態)
図5は、本発明の第2の実施形態における光ファイバ(分散フラットファイバ)の横断面の中心付近を拡大して示す。本実施形態は、前述の第1の実施形態とは空孔の配置を変えたものである。図5に示す構成要素50〜54は図1の構成要素10〜14と同じである。すなわち、50は光ファイバ(分散フラットファイバ)、51はコア部の高屈折率部、52はコア部の低屈折率部、53はクラッド部に形成した第1の空孔、54はクラッド部に形成した第2の空孔である。また、本実施形態の作製方法も第1の実施形態と同様である。すなわち、コア部の中心に高屈折率部51を有している。
【0037】
以下に、図5の構造の本発明の第2の実施形態の分散フラットファイバにおける実際の実施例とその特性を説明する。
【0038】
[第3の実施例]
第3の実施例は図5の構造において、各空孔53、54の隣接する空孔の中心間の距離Λを2.43μm、第1の空孔53の直径d1と上記距離Λとの比を0.35、高屈折率部51の直径d2と上記距離Λとの比を0.8、第2の空孔54の直径d2と上記距離Λとの比を0.8、石英ガラスに対する比屈折率差Δを高屈折率部51を1.5%、低屈折率部52を−0.3%とした本実施例において、コア部51、52のみの群速度分散は、1590nm以下において正常分散である。また、本実施例において、コア部51、52の屈折率分布は、中心から半径方向に向かって高屈折率部51→石英ガラスよりも低い低屈折率部52→無添加の石英ガラスと変化しており、中心部に高屈折率部51を持つ、いわゆるW型の屈折率分布である。
【0039】
図6は本実施例の分散フラットファイバの群速度分散の波長依存性を示す。図6に示す実線の曲線および破線の曲線は、本実施例の直交するそれぞれの偏波モードに対する分散特性を示している。群速度分散の波長依存性は±0.03ps/km/nm以下が波長1225nmから1675nmの範囲で実現されている。ここで、好適な波長範囲は、波長1225nmから1590nmの範囲である。
【0040】
より好ましくは、群速度分散の波長依存性は±0.01ps/km/nm以下であり、これは実線の方の偏波モードの波長1300nmから1600nmの範囲実現されている。ここで、好適な波長範囲は、波長1300nmから1590nmの範囲である。
【0041】
また、波長1470nmから1590nmの範囲で群速度分散の値は±0.2ps/km/nm以内であり、その差の絶対値は0.4ps/km/nm以内である。モードフィールド径は2×2.3μmである。
【0042】
[第4の実施例]
第4の実施例では、図5の構造において、各空孔53、54の隣接する空孔の中心間の距離Λを2.3μm、第1の空孔53の直径d1と上記距離Λとの比を0.35、高屈折率部51の直径daと上記距離Λとの比を0.8、第2の空孔54の直径d2と上記距離Λとの比を0.8、石英ガラスに対する比屈折率差Δを高屈折率部を2%、低屈折率部を0%とした。
【0043】
本実施例において、コア部51、52のみの群速度分散は、波長1860nm以下において正常分散である。本実施例において、コア部51、52の屈折率分布は中心から半径方向に向かって、高屈折率部51→無添加の石英ガラスと変化しており、いわゆるステップインデックス型の屈折率分布である。
【0044】
図7は本実施例の分散フラットファイバの群速度分散の波長依存性を示す。図7に示す実線の曲線および破線の曲線は、本実施例の直交するそれぞれの偏波モードに対する分散特性を示している。実線の方の偏波モードでは、波長1210nmから1725nmの範囲において群速度分散の波長依存性は±0.03ps/km/nm以内である。また、波長1300nmから1600nmの範囲で群速度分散の波長依存性は±0.01ps/km/nm以内である。また、波長1470nmから1590nmの範囲で群速度分散の値は±0.2ps/km/nm内であり、その差の絶対値は0.4ps/km/nm以内である。モードフィールド径は2×2.3μmである。
【0045】
なお、構造パラメータda、d1、d2、Δの組み合わせは、第3の実施例,第4の実施例4で述べた値に限られないのは勿論である。
【0046】
(その他の実施形態)
本発明の実施形態とその実施例を説明したが、本発明に係わる空孔の配置、屈折率分布等は上述した実施形態に限らない。特許請求の範囲の記載の範囲内であれば、その変更、修正、置換等は本発明の実施形態に含まれる。
【0047】
【発明の効果】
以上説明したように、本発明によれば、高屈折率部と低屈折率部からなるコア部と、光ファイバの断面において概略一定間隔をおいて概略一様に分散配置された複数の空孔が形成されたクラッド部とを有し、その空孔の配置を光ファイバの断面においてコアの中心を対称軸とする2回以下の回転対称としたので、偏波保持特性をもち、その少なくとも一つの偏波モードの群速度分散の波長依存性が小さい分散フラットファイバが得られる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における分散フラットファイバの中心付近の構造を拡大して示す断面図である。
【図2】本発明の第1実施形態の構造での第1の実施例の分散フラットファイバの群速度分散の分散特性を示すグラフである。
【図3】上記第1の実施例の分散フラットファイバのモード分布を示す図である。
【図4】本発明の第1実施形態の構造での第2の実施例の分散フラットファイバの群速度分散の分散特性を示すグラフである。
【図5】本発明の第2実施形態における分散フラットファイバの中心付近の構造を拡大して示す断面図である。
【図6】本発明の第2実施形態の構造での第3の実施例の分散フラットファイバの群速度分散の分散特性を示すグラフである。
【図7】本発明の第2実施形態の構造での第4の実施例の分散フラットファイバの群速度分散の分散特性を示すグラフである。
【図8】従来の分散フラットファイバの設計例を示し、縦軸は比屈折率差(%)、横軸は半径方向の距離(μm)を表わすグラフである。
【図9】従来の分散フラットファイバの構造例を示す拡大断面図である。
【符号の説明】
10、50 光ファイバ(分散フラットファイバ)
11、51 コア部の高屈折率部
12、52 コア部の低屈折率部
13、53 クラッド部に形成された第1の空孔
14、54 クラッド部に形成された径の異なる第2の空孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber used for optical communication, optical signal processing, and the like, and particularly to a structure of a dispersion flat fiber having a photonic crystal structure in a cladding part and having a small wavelength dependence of group velocity dispersion.
[0002]
[Prior art]
Conventionally, in order to fabricate a dispersion flat fiber, a multilayer structure having a refractive index difference in the radial direction of the fiber centering on a core has been fabricated (see Non-Patent Documents 1 and 2).
[0003]
Further, a method of manufacturing a dispersion flat fiber using a photonic crystal structure has been developed.
[0004]
[Non-patent document 1]
Y. LIU et al., "Design and Fabrication of Locally Dispersion-Flattened Large Effect Effective Areas," ECOC '98 pp. 37-38 (Madrid, Spain), September 1998.
[Non-patent document 2]
P. Bachmann et al., "Dispersion-flattened single-fiber fibers prepared with PCVD: Performance, limitations, design optimization," IEEE J.C. Lightwave Techno1. Vol. 4, No. 7, pp. 858-863 (1986)
[0006]
[Non-Patent Document 3]
William H. Reeves et al., "Demonstration of ultra-flattened dispersion in photonic crystal fibers", Optics Express Vol 1.10, No. 5, pp. 1-64. 14 pp. 609-613 (2002)
(Http://www.opticspress.org/abstract.cfm?URl=OPEX-10-14-609)
[0007]
[Problems to be solved by the invention]
In the above-mentioned conventional fiber having a multilayer structure, the difference in the refractive index and the thickness of each layer must be strictly controlled. FIG. 8 shows an example of the design from Non-Patent Document 1. In the figure, Δ represents the difference in refractive index, and R represents the distance from the center of the fiber. The adverse effect of the deviation from the design value on the characteristics is described in Non-Patent Document 2, for example. However, it is practically not easy to strictly control the refractive index difference and the thickness of each layer of the multi-layered fiber.
[0008]
On the other hand, the conventional dispersion flat fiber using the photonic crystal structure as shown in FIG. 9 quoted from Non-Patent Document 3 has a disadvantage that the loss of the optical fiber is large. Reference 3 reports a very large loss of 0.58 dB / m in a dispersion flat fiber using a photonic crystal structure. Further, the dispersion flat fiber using the photonic crystal structure has another disadvantage that an allowable range of a structure capable of realizing zero dispersion and dispersion flat characteristics is extremely narrow. For example, if the diameter of each hole constituting the photonic crystal structure changes by only 2%, the dispersion slope changes to about 0.02 ps / km / nm 2 , and the characteristic as a dispersion flat fiber is not exhibited.
[0009]
The present invention has been made in view of the above-described problems in the related art, and an object of the present invention is to provide a polarization maintaining characteristic and a characteristic that the wavelength dependence of group velocity dispersion of at least one polarization mode is small. To provide a dispersion flat fiber having the same.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the dispersion flat fiber of the present invention is an optical fiber formed of glass or plastic, or any other medium transparent at the wavelength to be used, and the center of the cross section of the optical fiber. A core portion that guides light in the vicinity, and a plurality of holes that are formed along the longitudinal direction of the optical fiber and are substantially uniformly dispersed and arranged at substantially constant intervals in a cross section of the optical fiber. Each of the plurality of holes has a substantially circular, substantially elliptical or substantially polygonal shape having an average diameter of a substantially constant value along the longitudinal direction of the optical fiber, and The optical fiber has a cladding portion filled with a gas, a liquid or a solid, which is transparent at a wavelength to be used and has a lower refractive index than the medium. The cross-section has a photonic crystal structure in which the arrangement of the holes is not more than twice rotationally symmetric about the center of the core portion as the axis of symmetry, and the wavelength dependence of the group velocity dispersion at the operating wavelength is generally a single value. It has a low dispersion slope smaller than that of the mode fiber, and the core has a high refractive index region having a higher refractive index at the center than its peripheral portion, and only the core has normal dispersion in group velocity dispersion. It is characterized by.
[0011]
Conventionally, a refractive index distribution core having a complicated multilayer structure was required to realize dispersion flat.However, in the present invention, even if a simple step index structure in which the wavelength dependence of group velocity dispersion is large, holes are formed in the cladding. , A dispersion flat can be realized. Further, the mode field diameter can be reduced, and high nonlinearity can be obtained.
[0012]
Here, preferably, the refractive index distribution of the core portion may be a step index type, a graded type, a matched clad type, or a multilayer type such as a W type, a triple clad type, and a quadruple clad type. .
[0013]
Preferably, the wavelength dependence of the group velocity dispersion at the operating wavelength in at least one of the polarization modes is ± 0.03 ps / km / nm 2 or less.
[0014]
Preferably, the wavelength dependence of the group velocity dispersion at the operating wavelength in at least one of the polarization modes is ± 0.01 ps / km / nm 2 or less.
[0015]
Preferably, the absolute value of the difference between the group velocity dispersion values at the operating wavelength of at least one of the polarization modes is 0.4 ps / km / nm or less.
[0016]
Preferably, the mode field diameter of the optical fiber is 3 μm or less.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1st Embodiment)
FIG. 1 is an enlarged view of the vicinity of the center of the cross section of the optical fiber according to the first embodiment of the present invention. The optical fiber 10, which functions as a dispersion flat fiber as described later, is made of, for example, quartz glass. Instead of quartz glass, a plastic such as PMMA (polymethyl methacrylate) or a transparent material at the wavelength to be used is used. Any other material may be used as long as it is a medium.
[0018]
In the present structural example, the core portion that guides light of the optical fiber 10 includes a high refractive index portion 11 at the center and a low refractive index portion 12 around the central portion. When the material of the optical fiber 10 is, for example, quartz glass, the high refractive index portion 11 can be realized by adding an additive such as germanium or phosphorus to the glass. The low-refractive-index portion 12 is a portion having a lower refractive index than the high-refractive-index portion 10. The amount of the additive is smaller than that of the high-refractive-index portion, or is not added, or by adding fluorine or the like. realizable.
[0019]
A portion around the low refractive index portion 12 of the core portion is a clad portion, in which a first hole 13 and a second hole 14 having an inner diameter different from the first hole 13 form a substantially equilateral triangle. It is arranged as follows. The arrangement of the first holes 13 and the second holes 14 is a hexagonal close-packed structure. However, the arrangement is not limited to this, and it is sufficient that the arrangement is substantially uniform. In the present structural example, the second holes 14 are a pair of holes facing each other across the high refractive index portion 12 of the core.
[0020]
The dispersion flat fiber of the present embodiment is formed by drilling holes in a glass fiber preform prepared by a VAD method (vapor-phase axial deposition process) or the like, and then performing melt drawing. It can be manufactured by a method of bundling a quartz glass rod and a thin tube of quartz glass as a base material, and melt-drawing the base material. When produced in the atmosphere by these methods, the pores are filled with air.
[0021]
Hereinafter, an actual example of the dispersion flat fiber of the first embodiment of the present invention having the structure shown in FIG. 1 and its characteristics will be described.
[First Embodiment]
In the first embodiment, the distance 中心 between the centers of the adjacent holes of the holes 13 and 14 is 4.1 μm, the ratio between the diameter d1 of the first hole 13 and the distance 0.3 is 0.35, The ratio of the diameter da of the high refractive index portion 11 to the distance Λ is 0.7, the ratio of the diameter d2 of the second hole 14 to the distance Λ is 0.9, and the relative refractive index difference Δ with respect to quartz glass is The high refractive index portion 11 was + 1.5%, and the low refractive index portion 12 was -0.3%. In this embodiment, the group velocity dispersion of only the core portions 11 and 12 is a normal dispersion at a wavelength of 1800 nm or less, and the wavelength dependence of the group velocity dispersion exceeds 0.03 ps / km / nm 2 in a wavelength range of 1425 nm to 1775 nm. However, the wavelength dependence of group velocity dispersion can be reduced by the above-described characteristics of the holes of the cladding. In addition, since the center of the core portion has a rotational symmetry of not more than twice with respect to the axis of symmetry, a polarization maintaining characteristic can be obtained. In this embodiment, the refractive index distribution of the core portions 11 and 12 is such that, from the center in the radial direction, the high refractive index portion 11 → the low refractive index portion 12 having a refractive index lower than that of the quartz glass → the additive-free formation of the cladding portion. And a so-called W-shaped refractive index distribution having a high refractive index portion 11 at the center.
[0022]
FIG. 2 shows the wavelength dependence of the group velocity dispersion of the dispersion flat fiber of the present embodiment. The solid line curve and the broken line curve in the same figure show the dispersion characteristics for each orthogonal polarization mode in this embodiment. The wavelength range in which the wavelength dependence of the group velocity dispersion of the polarization mode of the solid line is within ± 0.03 ps / km / nm 2 is a wavelength range of 1425 nm to 1775 nm. The wavelength range where the wavelength dependence of the group velocity dispersion of the polarization mode indicated by the broken line is within ± 0.03 ps / km / nm 2 is a wavelength range of 1375 nm to 1860 nm.
[0023]
More preferably, the wavelength dependence of the group velocity dispersion is within ± 0.01 ps / km / nm 2 , which is realized in the mode indicated by the broken line in the wavelength range of 1480 nm to 1770. Further, in the mode indicated by the dashed line, in the wavelength range of 1550 nm to 1720 nm, the wavelength dependence of the group velocity dispersion is within ± 0.003 ps / km / nm 2 , and further flat characteristics are realized.
[0024]
Incidentally, the wavelength dependence of the group velocity dispersion of a normal single-mode fiber is about 0.2 at a wavelength of 1550 nm. 07 ps / km / nm 2 . In the mode indicated by the broken line, the value of the group velocity dispersion is within ± 0.05 ps / km / nm in the wavelength range of 1550 nm to 1720 nm, and the value of the group velocity dispersion in the wavelength range of 1530 nm to 1730 nm is ± 0.2 ps / km. km / nm, and the absolute value of the difference is within 0.4 ps / km / nm.
[0025]
FIG. 3 shows a mode distribution of the dispersion flat fiber of the present embodiment. The mode field diameter (length × width) is 2.81 μm × 2.97 μm.
[0026]
When the value of the mode birefringence at a wavelength of 1.55 μm is determined as a measure of the strength of the polarization maintaining performance of the present embodiment, the value is 3.0 × 10 −4 . This value is equivalent to the value of the mode birefringence of a commercially available PANDA-type quartz polarization maintaining fiber.
[0027]
[Second embodiment]
In the second embodiment, the distance 中心 between the centers of the adjacent holes of the holes 13 and 14 is 3.4 μm, the ratio between the diameter d1 of the first hole 13 and the distance 0.3 is 0.35, The ratio between the diameter d2 of the high refractive index portion 11 and the distance Λ is 0.8, the ratio between the diameter d2 of the second hole 14 and the distance Λ is 1, and the relative refractive index difference Δ with respect to quartz glass is high. The index portion 11 was 2%, and the low refractive index portion 12 was 0%. This embodiment is an example in which the structural parameters of the first embodiment are changed.
[0028]
In this embodiment, the group velocity dispersion of only the core portions 11 and 12 is normal dispersion at a wavelength of 2390 nm or less. Further, in the present embodiment, the refractive index distribution of the core portions 11 and 12 changes from the center to the high refractive index portion 11 → non-added quartz glass in the radial direction from the center thereof. It is a rate distribution.
[0029]
FIG. 4A shows the wavelength dependence of the group velocity dispersion of the dispersion flat fiber of this embodiment. A solid curve and a broken curve shown in FIG. 4A show dispersion characteristics of the present embodiment with respect to each orthogonal polarization mode.
[0030]
In the present embodiment, the wavelength range where the wavelength dependence of the group velocity dispersion of the polarization mode of the solid line is within ± 0.03 ps / km / nm 2 is in the range of wavelengths from 1275 nm to 1800 nm. More preferably, the wavelength dependence of group velocity dispersion is within ± 0.01 ps / km / nm 2 , which is realized in the wavelength range of 1350 nm to 1700 nm.
[0031]
Further, in the wavelength range from 1425 nm to 1650 nm, the wavelength dependence of the group velocity dispersion is within ± 0.0035 ps / km / nm 2 , which realizes a flatter characteristic. The absolute value of the difference in group velocity dispersion in the wavelength range of 1365 nm to 1695 nm is within 0.4 ps / km / nm.
[0032]
In FIG. 4B, the distance 間 の between the centers of adjacent holes is 3.5 μm, but the other parameters are the same as those in FIG. 4A. 4 shows the wavelength dependence of dispersion. The wavelength range where the wavelength dependence of the polarization mode of the solid curve shown in FIG. 4B is within ± 0.03 ps / km / nm 2 is in the range of wavelengths from 1295 nm to 1820 nm. The wavelength dependence of group velocity dispersion in the wavelength range of 1400 nm to 1750 nm is 0.01 ps / km / nm 2 at the maximum. Further, the wavelength dependence of the group velocity dispersion in a wavelength range of 1450 nm to 1670 nm is within ± 0.003 ps / km / nm 2 at the maximum. The absolute value of the difference in group velocity dispersion in the wavelength range from 1410 nm to 1720 nm is within 0.4 ps / km / nm.
[0033]
Further, assuming that the distance Λ between the centers of adjacent holes of each hole is 3.46 μm, the value of group velocity dispersion is within ± 0.2 ps / km / nm in a wavelength range of 1400 nm to 1710 nm. The absolute value of the difference is within 0.4 ps / km / nm. The mode field diameter is 2.8 × 2.4 μm.
[0034]
When the value of the mode birefringence at a wavelength of 1.55 μm is determined as a measure of the strength of the polarization maintaining performance of the fiber of the present embodiment, it is 8.5 × 10 −4 . This value is larger than the mode birefringence value of a commercially available PANDA-type silica polarization-maintaining fiber.
[0035]
It should be noted that the combination of the above-described structural parameters da, d1, d2, Λ, and Δ is not limited to the values described in the first and second embodiments.
[0036]
(Second embodiment)
FIG. 5 is an enlarged view of the vicinity of the center of the cross section of the optical fiber (dispersion flat fiber) according to the second embodiment of the present invention. This embodiment differs from the first embodiment in the arrangement of the holes. Components 50 to 54 shown in FIG. 5 are the same as components 10 to 14 in FIG. That is, 50 is an optical fiber (dispersion flat fiber), 51 is a high refractive index portion of a core portion, 52 is a low refractive index portion of a core portion, 53 is a first hole formed in a cladding portion, and 54 is a cladding portion. This is the second hole formed. Further, the manufacturing method of this embodiment is the same as that of the first embodiment. That is, the high refractive index portion 51 is provided at the center of the core portion.
[0037]
Hereinafter, an actual example of the dispersion flat fiber according to the second embodiment of the present invention having the structure of FIG. 5 and its characteristics will be described.
[0038]
[Third embodiment]
In the third embodiment, in the structure of FIG. 5, the distance Λ between the centers of the adjacent holes 53 and 54 is 2.43 μm, and the ratio of the diameter d1 of the first hole 53 to the distance Λ. 0.35, the ratio of the diameter d2 of the high refractive index portion 51 to the distance Λ is 0.8, the ratio of the diameter d2 of the second hole 54 to the distance Λ is 0.8, and the ratio to the quartz glass. In this embodiment in which the refractive index difference Δ is 1.5% for the high refractive index portion 51 and −0.3% for the low refractive index portion 52, the group velocity dispersion of only the core portions 51 and 52 is normal at 1590 nm or less. It is dispersion. Further, in the present embodiment, the refractive index distribution of the core portions 51 and 52 changes from the center in the radial direction from the high refractive index portion 51 → the low refractive index portion 52 lower than the quartz glass → the non-added quartz glass. This is a so-called W-type refractive index distribution having a high refractive index portion 51 at the center.
[0039]
FIG. 6 shows the wavelength dependence of the group velocity dispersion of the dispersion flat fiber of this embodiment. The solid curve and the broken curve shown in FIG. 6 show the dispersion characteristics of the present embodiment for each orthogonal polarization mode. The wavelength dependence of the group velocity dispersion is ± 0.03 ps / km / nm 2 or less in the wavelength range of 1225 nm to 1675 nm. Here, a suitable wavelength range is a wavelength range of 1225 nm to 1590 nm.
[0040]
More preferably, the wavelength dependence of the group velocity dispersion is ± 0.01 ps / km / nm 2 or less, which is realized in the polarization mode of the solid line in the wavelength range of 1300 nm to 1600 nm. Here, a suitable wavelength range is a wavelength range of 1300 nm to 1590 nm.
[0041]
Further, the value of the group velocity dispersion is within ± 0.2 ps / km / nm in the wavelength range of 1470 nm to 1590 nm, and the absolute value of the difference is within 0.4 ps / km / nm. The mode field diameter is 2 × 2.3 μm.
[0042]
[Fourth embodiment]
In the fourth embodiment, in the structure shown in FIG. 5, the distance 中心 between the centers of the adjacent holes of the holes 53 and 54 is 2.3 μm, and the diameter d1 of the first hole 53 and the distance Λ The ratio is 0.35, the ratio between the diameter da of the high refractive index portion 51 and the distance Λ is 0.8, the ratio between the diameter d2 of the second hole 54 and the distance Λ is 0.8, The relative refractive index difference Δ was set to 2% for the high refractive index portion and 0% for the low refractive index portion.
[0043]
In this embodiment, the group velocity dispersion of only the core portions 51 and 52 is normal dispersion at a wavelength of 1860 nm or less. In the present embodiment, the refractive index distribution of the core portions 51 and 52 changes from the center toward the radial direction from the high refractive index portion 51 to the quartz glass without addition, which is a so-called step index type refractive index distribution. .
[0044]
FIG. 7 shows the wavelength dependence of the group velocity dispersion of the dispersion flat fiber of this embodiment. The solid curve and the broken curve shown in FIG. 7 show the dispersion characteristics of the present embodiment for each orthogonal polarization mode. In the polarization mode indicated by the solid line, the wavelength dependence of group velocity dispersion is within ± 0.03 ps / km / nm 2 in the wavelength range of 1210 nm to 1725 nm. In addition, the wavelength dependence of group velocity dispersion is within ± 0.01 ps / km / nm 2 in the wavelength range of 1300 nm to 1600 nm. Further, the value of group velocity dispersion is within ± 0.2 ps / km / nm 2 in the wavelength range of 1470 nm to 1590 nm, and the absolute value of the difference is within 0.4 ps / km / nm. The mode field diameter is 2 × 2.3 μm.
[0045]
The combination of the structural parameters da, d1, d2, and Δ is not limited to the values described in the third and fourth embodiments.
[0046]
(Other embodiments)
Although the embodiments and examples of the present invention have been described, the arrangement of the holes, the refractive index distribution, and the like according to the present invention are not limited to the above-described embodiments. Changes, modifications, replacements, and the like within the scope of the claims are included in the embodiments of the present invention.
[0047]
【The invention's effect】
As described above, according to the present invention, a core portion including a high refractive index portion and a low refractive index portion, and a plurality of holes distributed approximately uniformly at substantially constant intervals in the cross section of the optical fiber. Is formed, and the holes are arranged in two or less rotational symmetry with the center of the core as the axis of symmetry in the cross section of the optical fiber, so that the polarization maintaining property is at least one. A dispersion flat fiber having a small wavelength dependence of the group velocity dispersion of the two polarization modes is obtained.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view showing a structure near the center of a dispersion flat fiber according to a first embodiment of the present invention.
FIG. 2 is a graph showing dispersion characteristics of group velocity dispersion of the dispersion flat fiber of the first example in the structure of the first embodiment of the present invention.
FIG. 3 is a diagram showing a mode distribution of the dispersion flat fiber of the first embodiment.
FIG. 4 is a graph showing dispersion characteristics of group velocity dispersion of the dispersion flat fiber of the second example with the structure of the first embodiment of the present invention.
FIG. 5 is an enlarged cross-sectional view showing a structure near the center of a dispersion flat fiber according to a second embodiment of the present invention.
FIG. 6 is a graph showing dispersion characteristics of group velocity dispersion of the dispersion flat fiber of the third example with the structure of the second embodiment of the present invention.
FIG. 7 is a graph showing a dispersion characteristic of group velocity dispersion of the dispersion flat fiber of the fourth example in the structure of the second embodiment of the present invention.
FIG. 8 is a graph showing a design example of a conventional dispersion flat fiber, in which the vertical axis represents relative refractive index difference (%), and the horizontal axis represents radial distance (μm).
FIG. 9 is an enlarged cross-sectional view showing a structural example of a conventional dispersion flat fiber.
[Explanation of symbols]
10, 50 Optical fiber (dispersion flat fiber)
11, 51 High refractive index portion 12 of the core portion, 52 Low refractive index portion 13 of the core portion, 53 First holes 14 formed in the cladding portion, 54 Second cavities formed in the cladding portion having different diameters. Hole

Claims (6)

ガラスもしくはプラスチック、その他使用する波長において透明な媒質のいずれかを材料として形成されている光ファイバであって、
前記光ファイバの断面の中心付近において光を導波するコア部と、
前記光ファイバの長手方向に沿って形成されかつ該光ファイバの断面において概略一定間隔をおいて概略一様に分散配置された複数の空孔を有し、該複数の空孔はそれぞれ前記光ファイバの長手方向に沿ってその平均的な直径が概略一定値である概略円形、概略楕円形もしくは概略多角形の形状を有し、かつ該空孔の中は真空、もしくは使用する波長において透明かつ前記媒質よりも屈折率の低い気体、液体ないし固体で満たされているクラッド部とを有し、
前記光ファイバはその断面において前記空孔の配置を前記コア部の中心を対称軸とする2回以下の回転対称としたフォトニック結晶構造を有し、かつ動作波長における群速度分散の波長依存性が通常の単一モードファイバよりも小さい低分散スロープ性を有し、
前記コア部はその中心にその周辺部よりも屈折率の高い高屈折率領域を有し、該コア部のみ群速度分散が正常分散であることを特徴とする分散フラットファイバ。
An optical fiber formed of glass or plastic, or any other material that is transparent at the wavelength used,
A core portion for guiding light near the center of the cross section of the optical fiber,
A plurality of holes formed along the longitudinal direction of the optical fiber and substantially uniformly dispersed and arranged at substantially constant intervals in a cross section of the optical fiber, wherein each of the plurality of holes is the optical fiber. Has a substantially circular, roughly elliptical or roughly polygonal shape whose average diameter along the longitudinal direction is a substantially constant value, and the pores are transparent under vacuum or at the wavelength used, and Gas having a lower refractive index than the medium, having a clad portion filled with a liquid or solid,
The optical fiber has a photonic crystal structure in which the arrangement of the holes in the cross section is not more than twice rotationally symmetric about the center of the core portion as the axis of symmetry, and the wavelength dependence of the group velocity dispersion at the operating wavelength. Has a lower dispersion slope than a normal single mode fiber,
The dispersion flat fiber, wherein the core has a high refractive index region at the center thereof having a higher refractive index than the periphery thereof, and only the core has normal group velocity dispersion.
前記コア部の屈折率分布が、ステップインデックス型、グレーデッド型、マッチドクラッド型、もしくはW型、三重クラッド型、四重クラッド型等の多層型であることを特徴とする請求項1に記載の分散フラットファイバ。2. The refractive index distribution of the core portion is a step index type, a graded type, a matched clad type, or a multilayer type such as a W type, a triple clad type, a quadruple clad type, or the like. Dispersion flat fiber. 少なくともいずれか一つの偏波モードでの前記動作波長における群速度分散の波長依存性が±0.03ps/km/nm以下であることを特徴とする請求項1または2に記載の分散フラットファイバ。3. The dispersion flat fiber according to claim 1, wherein the wavelength dependence of the group velocity dispersion at the operating wavelength in at least one polarization mode is ± 0.03 ps / km / nm 2 or less. . 少なくともいずれか一つの偏波モードでの前記動作波長における群速度分散の波長依存性が±0.01ps/km/nm以下であることを特徴とする請求項1または2に記載の分散フラットファイバ。The dispersion flat fiber according to claim 1, wherein the wavelength dependence of group velocity dispersion at the operating wavelength in at least one polarization mode is ± 0.01 ps / km / nm 2 or less. . 少なくともいずれか一つの偏波モードの前記動作波長における群速度分散の値の差の絶対値が0.4ps/km/nm以下であることを特徴とする請求項3または4に記載の分散フラットファイバ。5. The dispersion flat fiber according to claim 3, wherein an absolute value of a difference between values of group velocity dispersion at the operation wavelength of at least one polarization mode is 0.4 ps / km / nm or less. . 前記光ファイバのモードフィールド径が3μm以下であることを特徴とする請求項3または4に記載の分散フラットファイバ。The dispersion flat fiber according to claim 3, wherein a mode field diameter of the optical fiber is 3 μm or less.
JP2003144111A 2003-05-21 2003-05-21 Dispersion flat fiber Expired - Fee Related JP3871053B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003144111A JP3871053B2 (en) 2003-05-21 2003-05-21 Dispersion flat fiber
PCT/JP2004/007122 WO2004104659A1 (en) 2003-05-21 2004-05-19 Dispersion flat fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144111A JP3871053B2 (en) 2003-05-21 2003-05-21 Dispersion flat fiber

Publications (2)

Publication Number Publication Date
JP2004347817A true JP2004347817A (en) 2004-12-09
JP3871053B2 JP3871053B2 (en) 2007-01-24

Family

ID=33475154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144111A Expired - Fee Related JP3871053B2 (en) 2003-05-21 2003-05-21 Dispersion flat fiber

Country Status (2)

Country Link
JP (1) JP3871053B2 (en)
WO (1) WO2004104659A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007102157A (en) * 2005-09-06 2007-04-19 Furukawa Electric Co Ltd:The Cpf pulse formation machine
KR100878294B1 (en) * 2006-11-07 2009-01-13 주식회사 옵토매직 Polarization Maintaining Fiber and the Method therof
CN101825742A (en) * 2010-05-11 2010-09-08 中国计量学院 Method for realizing polarizing of photonic crystal optical fiber
KR101088010B1 (en) 2010-01-28 2011-12-01 한국과학기술연구원 Single-polarization single-mode photonic crystal fiber and optical transmission method using the same
JP5065008B2 (en) * 2005-03-18 2012-10-31 古河電気工業株式会社 Optical fiber and waveguide
JP5065007B2 (en) * 2005-03-18 2012-10-31 古河電気工業株式会社 Optical fiber and waveguide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL227732B1 (en) * 2013-12-04 2018-01-31 Polskie Centrum Fotoniki I Swiatlowodów Microstructural optical fibre with selectively enlarged areas with decreased refractive index, preferably for generation of non-linear effects and measuring of stresses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60005486T3 (en) * 1999-02-19 2007-07-12 Crystal Fibre A/S DOUBLE BREAKING PHOTONIC CRYSTAL FIBERS AND METHODS OF PREPARING THEM
JP3746687B2 (en) * 2001-05-07 2006-02-15 三菱電線工業株式会社 Photonic crystal fiber manufacturing method
JP2003114348A (en) * 2001-10-05 2003-04-18 Mitsubishi Cable Ind Ltd Dispersion flat optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065008B2 (en) * 2005-03-18 2012-10-31 古河電気工業株式会社 Optical fiber and waveguide
JP5065007B2 (en) * 2005-03-18 2012-10-31 古河電気工業株式会社 Optical fiber and waveguide
JP2007102157A (en) * 2005-09-06 2007-04-19 Furukawa Electric Co Ltd:The Cpf pulse formation machine
KR100878294B1 (en) * 2006-11-07 2009-01-13 주식회사 옵토매직 Polarization Maintaining Fiber and the Method therof
KR101088010B1 (en) 2010-01-28 2011-12-01 한국과학기술연구원 Single-polarization single-mode photonic crystal fiber and optical transmission method using the same
CN101825742A (en) * 2010-05-11 2010-09-08 中国计量学院 Method for realizing polarizing of photonic crystal optical fiber

Also Published As

Publication number Publication date
JP3871053B2 (en) 2007-01-24
WO2004104659A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3854627B2 (en) Single-mode optical fiber with holes
JP4465527B2 (en) Microstructured optical fiber, preform, and manufacturing method of microstructured optical fiber
US7668428B2 (en) Optical fiber and optical device
JP4904241B2 (en) Holey fiber
US20050238307A1 (en) Nonlinear optical fibre method of its production and use thereof
WO2010073822A1 (en) Multicore optical fiber
JP3786010B2 (en) Optical fiber
JPWO2010073821A1 (en) Multi-core optical fiber
JP2007536580A5 (en)
WO2014199922A1 (en) Optical fiber
EP2056135B1 (en) Optical fiber and light guide
EP2071369A1 (en) Holey fiber
US7903919B2 (en) Holey fiber
JP4137515B2 (en) Dispersion-shifted optical fiber
JP3871053B2 (en) Dispersion flat fiber
CN107490820B (en) All-solid-state large-mode-area near-zero dispersion flat microstructure optical fiber
JP2004101565A (en) Dispersion compensation fiber
JP2004352607A (en) Photonic crystal optical fiber preform, and photonic crystal optical fiber obtained by utilizing the same
WO2004053550A1 (en) Improvements relating to photonic crystal fibres
Fakhruldeen et al. An overview of photonic crystal fiber (PCF)
JP2006317692A (en) Optical fiber
US20030136154A1 (en) Method for manufacturing optical fiber using ultrasonic drill
US20050220432A1 (en) Photonic crystal fiber capable of single-mode transmission and preform thereof
JP5356466B2 (en) Holey fiber
Seraji et al. A review on the designed low–loss single–mode optical fiber used in fiber–to–the–home networks

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees