JP3802843B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method Download PDF

Info

Publication number
JP3802843B2
JP3802843B2 JP2002174605A JP2002174605A JP3802843B2 JP 3802843 B2 JP3802843 B2 JP 3802843B2 JP 2002174605 A JP2002174605 A JP 2002174605A JP 2002174605 A JP2002174605 A JP 2002174605A JP 3802843 B2 JP3802843 B2 JP 3802843B2
Authority
JP
Japan
Prior art keywords
optical fiber
glass
region
gas
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002174605A
Other languages
Japanese (ja)
Other versions
JP2004020836A (en
Inventor
正隆 中沢
眞二 日下
和正 大薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002174605A priority Critical patent/JP3802843B2/en
Publication of JP2004020836A publication Critical patent/JP2004020836A/en
Application granted granted Critical
Publication of JP3802843B2 publication Critical patent/JP3802843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野において用いられる光ファイバのうち、さらなる大容量な通信を可能とする光ファイバの製造方法に関するものである。
【0002】
【従来の技術】
大容量,高速な通信を可能とする光ファイバは、光通信ネットワークを構築する上で欠くことができないものであるが、近年及び将来の光通信ネットワークにおける光信号の高速化、情報の増大化に伴ってさらなる大容量の光ファイバが要求されており、現在、この要求を満たす新たな光ファイバとして、いわゆるフォトニッククリスタル光ファイバと称される光ファイバが注目されている。
【0003】
このフォトニッククリスタルファイバとは、コアを覆うクラッドとして、ファイバの長手方向に一様な二次元周期構造を持つフォトニック結晶(PC:Photonic Crystal)を用いた光ファイバであり、クラッドに相当する領域にフォトニックバンドギャップ(PBG:Photonic Band Gap)を設け、ブラッグ反射によって光波をコア内に閉じ込めるものである。
【0004】
これまでに提案されているフォトニッククリスタル光ファイバは、例えば、ホーリーファイバ(HF:Holey Fiber)のように、クラッドにファイバの長手方向に途切れることなく連続する空孔を設けてその領域の実効屈折率を下げる方法で実現している。尚、このホーリーファイバはクラッド中の空孔のデザインよって超広帯域単一モード伝送領域、大きな実効コア断面積、高屈折率差(High-△)、大きな構造分散など通常の光ファイバでは達成できない特性を実現可能である。
【0005】
このようなフォトニッククリスタル光ファイバは、例えば図3に示すように、外径約500μmの細径石英棒aと、内径約300μm程度の細径石英管bを長さそれぞれ300mm前後に切断し、その細径石英棒aの周囲を数百本の細径石英管b,b…で囲むように束ね、その束cを内径10〜15mm、外径25mm程度の石英ジャケット管d内に挿入して、プリフォームeを形成した後、このプリフォームeを通常の光ファイバ線引工程によってこれら細径石英棒a及び細径石英管b,b…の束cと石英ジャケット管dを融着一体化させながら、所定のファイバ径である100〜150μmに線引きして得られるようになっている。
【0006】
そして、このようなフォトニッククリスタル光ファイバにあっては、図3に示すように、上記細径石英棒aからなる軸心部分が光を伝播させるコア領域となると共に、その周囲の細径石英管b,b…からなる部分が多数の空孔を有する内部クラッド層となり、さらにその周囲の石英ジャケット管5からなる中実の部分が外部クラッド層となり、コア領域を伝播する光波の殆どを内部クラッド層で反射させてコア領域内に閉じ込めることで効率的に光波を伝播させるようにしたものである。
【0007】
【発明が解決しようとする課題】
ところで、このようにして得られる従来のフォトニッククリスタル光ファイバにあっては、細径石英棒aと細径石英管b,b…とを融着一体化させるときに石英管b径の差による融着残留応力がガラス内に残り、コア領域に異方応力を与え、PMD(偏波モード分散)特性等を悪化させ、内部クラッド層の繊細な屈折率分布制御が困難であるといった問題点がある。
【0008】
そこで、本発明はこのような課題を有効に解決するために案出されたものであり、その目的は、融着残留応力によるコア領域への異方応力の集中がなく、優れたPMD特性を有する新規な光ファイバの製造方法を提供するものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明は、請求項1に示すように、コア領域の周囲にクラッド層を備え、上記クラッド層が内部クラッド層と、内部クラッド層の周囲に設けられた外部クラッド層とからなり、その内部クラッド層にコア領域と同心円の層状の気泡の集合体領域を有する光ファイバの製造方法において、コア領域となるコアガラス母材の周囲にガラススート層を形成し、ガラス中での拡散係数がヘリウムよりも小さい不活性ガスを含むガス雰囲気中で上記ガラススート層を加熱してガラス化し、上記内部クラッド層となる不活性ガスの気泡を有するガラス層を形成するものである
【0010】
これによって従来のファイバのように、融着残留応力によるコア領域への異方応力の集中がなくなるため、優れたPMD特性を発揮し、内部クラッド層の繊細な屈折率分布制御を容易に達成できる。
【0011】
また、請求項に示すように、上記気泡を、直径4μm以下に形成にすれば、上記の作用効果を顕著に発揮することができる。
【0012】
さらに、請求項に示すように、上記気泡の分布密度を径方向に変化させて、上記気泡の集合体領域の等価屈折率に径方向の分布を持たせたり、請求項に示すように、上記気泡の直径を径方向に変化させて、上記気泡の集合体領域の等価屈折率に径方向の分布を持たせれば、構造分散を制御し、大きな正分散ファイバ、及び負分散・負分散スロープを持つファイバーが得られる。
【0015】
また、請求項に示すように、上記ガス雰囲気を、ガラス中での拡散係数がヘリウムよりも小さい不活性ガスのみで形成したり、請求項に示すように、上記ガス雰囲気を、ヘリウムガスとガラス中での拡散係数がヘリウムよりも小さい不活性ガスとの混合ガスで形成すれば、上記作用効果を顕著に発揮することができる。また、請求項に示すように、上記ガラス中での拡散係数がヘリウムよりも小さい不活性ガスとしては、窒素ガス又はアルゴンガスが好ましい。
【0016】
【発明の実施の形態】
次に、本発明を実施する好適一形態を添付図面を参照しながら説明する。
【0017】
図1は、本発明に係る製造方法によって製造された光ファイバ1の実施の一形態を示したものである。
【0018】
図示するように、この光ファイバ1は、軸心部に位置するコア領域2の周囲に、内部クラッド層3を有すると共に、その内部クラッド層3の周囲に外径が125μm程度の外部クラッド層4を一体的に備えたものである。
【0019】
内部クラッド層3には、直径が4μm以下の独立した気泡5が多数密に集合した領域が形成されており、上記コア領域2の周囲を囲繞するように層状に存在している。
【0020】
そして、このような構造をした本発明の製造方法によって製造された光ファイバ1にあっては、従来のフォトニッククリスタル光ファイバのように細径石英棒aと細径石英管b,b…とを融着一体化させてなるものとは異なり、細径石英管bの融着残留応力によるコア領域への異方応力の集中がなくなるため、優れたPMD特性が発揮され、内部クラッド層3の繊細な屈折率分布制御を容易に達成できる。
【0021】
すなわち、この光ファイバ1は、プリフォームの製造工程中の内部クラッド層3の焼結工程において、焼結ガス(雰囲気ガス)に拡散係数の小さい不活性ガス、例えば窒素ガスやアルゴンガスを使用して焼結させたガラス層内に焼結ガスを残留させ、コア領域の周囲に気泡質層を形成した後、このプリフォームを外径125μm程度まで線引きすることで得られるようになっている。このため、従来のような融着残留応力が発生することはなく、コア領域への異方応力の集中といった事態を招くことがない。尚、この気泡5は、プリフォームの製造工程中においては略球形状であるが、その後の線引きにより、その長手方向に延びた長孔状になる。また、コア領域2と内部クラッド層3との等価比屈折率差を1%とすることにより、分散値の絶対値が大きいファイバを得ることができる。
【0022】
ここで、コア領域2の直径は特に限定しないが、シングルモード伝送を行うには2〜10μmの大きさに設定される。また、内部クラッド層3の層厚は、得ようとする光ファイバの屈折率プロファイル、分散特性などに応じて、その最適厚さが変化するが、概ね5〜30μmの範囲で設定される。さらに、気泡5の直径は、内部クラッド層3の層厚以下であることが絶対条件であるが、内部クラッド層3内に気泡密度の分布を形成することも考慮すると、4μm以下、好ましくは1〜3μmとすることが望ましい。尚、本発明に係る製造方法によって製造された光ファイバ1は、これらの寸法条件に何ら限定されるものではない。
【0023】
は、本発明の他の実施の形態を示したものであり、内部クラッド層3を構成する気泡5の密度をその径方向に変化させて屈折率差分布を制御したものである。すなわち、内部クラッド層3をコア領域2を中心として同心円上に3層の領域に分け、内部クラッド層3側の領域に気泡5を高密度に存在させ(高密度気泡領域)、その外側の領域を低密度にし(低密度気泡領域)、さらにその外側の領域をそれよりも高密度(中密度気泡領域)にしたものである。これによって、図示するように内部クラッド層3内に多段階の、等価比屈折率差Δnを生じさせることができ、構造分散を制御し、大きな正分散ファイバ、及び負分散・負分散スロープを持つファイバーが得られる。また、上記内部クラッド層内の気泡の分布密度を径方向に変化させたり、内部クラッド層3を構成する気泡5の外径を径方向に変化させても、同様に等価屈折率に分布をもたせることが可能となる。
【0024】
ここで、気泡の外径は、次の二つの方法で制御することができる。
一つは、コア母材の周囲に堆積する石英ガラススート層の嵩密度を変化させる方法である。加熱(焼結)によりスートをガラス化する際、スートの嵩密度が高いほどガスが逃げる隙間が小さいため、大きな気泡が残存する割合が高くなり、スートの嵩密度が低いほど小さな気泡が残存する割合が高くなる。
【0025】
他方は、焼結する際の炉内ガス雰囲気中のヘリウムガスと不活性ガスの割合を変える方法である。ヘリウムガスの割合が高いほど気泡は小さくなり易く、ヘリウムガスの割合が低いほど気泡は大きくなり易い。
【0026】
なお、気泡が大きいほど気泡の密度は高くなり、気泡が小さいほど気泡の密度は低くなる傾向にある。よって、石英ガラススート層の嵩密度と、焼結する際の炉内ガス雰囲気中のヘリウムガスと不活性ガスとの割合を調整することにより、気泡の直径及び気泡の密度の双方を制御することができる。
【0027】
また、気泡の大きさ及び形成位置を制御して、気泡の間隔を、伝搬させる信号光の波長の二分の一に調整すれば、本発明の製造方法によって製造された光ファイバにおいても、フオトニックバンドギャップ構造を実現できる。
【0028】
なお、上述した実施の形態においては、コア領域を石英ガラスで構成した場合ついて説明を行ったが、これに限定するものではなく、純粋石英ガラス、屈折率を高めるための周知の不純物(例えばGe、Tiなど)を添加した石英ガラス、又はEr等の希土類元素を添加した石英ガラスのいずれも適用可能である。
【0029】
また、コア領域は中空であってもよく、この場合、上記したコア母材である細径石英捧aに代えて、中空の石英管を用いて製造を行えばよい。なお、この石英管にも、純粋石英ガラス、屈折率を高めるための周知の不純物(例えばGe、Tiなど)を添加した石英ガラス、又はEr等の希土類元素を添加した石英ガラスのいずれも適用可能である。
【0030】
【実施例】
次に、本発明の実施例を説明する。なお、試験1は内部クラッド層に高密度気泡領域1層からなる気泡集合体領域を設けたもの、試験2は内部クラッド層に高密度気泡領域、低密度気泡領域、及び中密度気泡領域の3層からなる気泡集合体領域を設けたものである。
【0031】
<試験1>
まず、コア領域となる透明ガラス母材をVAD法により作製し、外径25mmに延伸した。
【0032】
そのコアガラス母材の外周に、CVD法により高密度気泡領域となるスート層を堆積し、外径60mmの外付母材を得た。この母材を、炉内が100%窒素ガス雰囲気中の電気炉にて、温度1600℃で加熱処理した。得られたガラス母材は、外径が45mmで、外周部の独立気泡集合体領域には窒素ガスの気泡が多数残留しているため、半透明状態であった。なお、高密度気泡領域の気泡密度は約0.5であった。
【0033】
ここで、窒素ガスは透明ガラス化のための加熱処理工程で通常用いるヘリウムガスに比べて拡散係数が格段に小さく、スートがガラス化する際にそのガラス中に残留し易いことから、炉内を100%窒素ガス雰囲気とすることにより、高密度に窒素ガスの気泡を含んだガラス母材を得ることができる。
【0034】
次に、得られた高密度気泡領域を有する内部クラッド層付ガラス母材を外径25mmに延伸し、CVD法により外部クラッド層となるスート層を堆積し、外径120mmの外付母材を得た。この母材を、炉内が100%ヘリウムガス雰囲気中の電気炉にて、温度1600℃で加熱処理し、外径が60mmで、外周部の外部クラッド層が透明なガラス母材を得た。
【0035】
次に、そのガラス母材を通常の線引き方法により外径125μmの光ファイバに線引きした。得られた光フアイバは、コア径が7μm、内部クラッド層の層厚が10μmであり、気泡の外径は1〜3μmであった。
【0036】
<試験2>
まず、コア領域となる透明ガラス母材をVAD法により作製し、外径25mmに延伸した。
【0037】
そのコアガラス母材の外周に、CVD法により高密度気泡領域となるスート層を堆積し、外径60mmの外付母材を得た。この母材を、炉内が100%窒素ガス雰囲気中の電気炉にて、温度1600℃で加熱処理した。ここで、窒素100%雰囲気ガスを用いる理由は、試験1で述べた通りである。このようにして得られたガラス母材は、外径が45mmで、外周部の高密度気泡領域には窒素の気泡が多数残留しているため、半透明状態であった。なお、この高密度気泡領域の気泡密度は約0.5であった。
【0038】
次に、ガラス母材を外径25mmに延伸し、CVD法により低密度気泡領域となるスート層を堆積し、外径60mmの外付母材を得た。この母材を、炉内が窒素ガス20%、ヘリウムガス80%の雰囲気中の電気炉にて、温度1600℃で加熱処理した。ここで、窒素ガスとヘリウムガスとの混合ガスを雰囲気ガスに用いる理由は、ヘリウムガスを混合することで、100%窒素ガス雰囲気に比べ、加熱処理後のガラスの透明度が高くなるから、換言すれば気泡密度が小さいガラス母材が得られるからである。このようにして得られたガラス母材は、外径が45mmで、その外周部の低密度気泡領域には窒素の気泡が僅かに残留しているため、高密度気泡領域に比べれば透明ではあるが、完全に透明ではない状態であった。なお、低密度気泡領域の気泡密度は約0.3であった。
【0039】
次に、得られたガラス母材を外径25mmに延伸し、CVD法により中密度気泡領域となるスート層を堆積し、外径60mmの外付母材を得た。この母材を、炉内が窒素ガス50%、ヘリウムガス50%の雰囲気中の電気炉にて、温度1600℃で加熱処理した。このようにして得られたガラス母材は、外径が45mmで、外周部の中密度気泡領域の透明度は、高密度気泡領域と低密度気泡領域の中間の透明度を持った状態であった。なお、低密度気泡領域の気泡密度は約0.4であった。
【0040】
次に、得られた高密度気泡領域、低密度気泡領域、及び中密度気泡領域からなる内部クラッド層付ガラス母材を外径25mmに延伸し、CVD法により外部クラッド層となるスート層を堆積し、外径120mmの外付母材を得た。この母材を、炉内が100%ヘリウムガス雰囲気中の電気炉にて、温度1600℃で加熱処理を行い、外径が60mmで、外周部の外部クラッド層が透明なガラス母材を得た。
【0041】
次に、そのガラス母材を通常の線引き方法により外径125μmの光ファイバに線引きした。得られた光ファイバは、コア径が4μm、内部クラッド層の層厚が12μm(高密度気泡領域4μm、低密度気泡領域5μm、中密度気泡領域3μm)であり、各領域の気泡の外径は1〜2μmであった。
【0042】
【発明の効果】
以上要するに本発明によれば、コア領域の周囲に気泡の集合体を有するクラッド層を設けたため、従来のフォトニッククリスタル光ファイバのように、融着残留応力によるコア領域への異方応力の集中がなくなり、優れたPMD特性を発揮することができる。この結果、低PMD特性を有し、大きな実効コア断面積,高屈折率差,大きな異常分散(正分散),負分散・負分散スロープファイバ等、通常の光ファイバでは達成できない特性を発揮することが可能となる等といった優れた効果を発揮する。
【図面の簡単な説明】
【図1】 本発明に係る製造方法によって製造された光ファイバの実施の一形態を示す拡大断面図である。
【図2】 本発明に係る製造方法によって製造された光ファイバの他の実施の形態を示す拡大断面図である。
【図3】 従来のフォトニッククリスタル光ファイバを得るためのプリフォームの構造を示した拡大斜視図である。
【符号の説明】
1 光ファイバ
2 コア領域
3 内部クラッド層
4 外部クラッド層
5 気泡
[0001]
BACKGROUND OF THE INVENTION
The present invention, among the optical fiber used in the optical communication field, a method of manufacturing the fiber optic to allow further large capacity communication.
[0002]
[Prior art]
An optical fiber that enables high-capacity and high-speed communication is indispensable for constructing an optical communication network. However, in recent and future optical communication networks, optical signals have been increased in speed and information. Accordingly, an optical fiber having a larger capacity has been demanded. At present, an optical fiber called a so-called photonic crystal optical fiber has been attracting attention as a new optical fiber that satisfies this demand.
[0003]
The photonic crystal fiber is an optical fiber using a photonic crystal (PC) having a uniform two-dimensional periodic structure in the longitudinal direction of the fiber as a clad covering the core, and a region corresponding to the clad. Is provided with a photonic band gap (PBG) and the light wave is confined in the core by Bragg reflection.
[0004]
The photonic crystal optical fiber proposed so far is, for example, a hole that is continuous in the longitudinal direction of the fiber in the cladding, such as a holey fiber (HF), and the effective refraction in that region. This is achieved by reducing the rate. This holey fiber has characteristics that cannot be achieved with ordinary optical fiber, such as ultra-wideband single-mode transmission region, large effective core area, high refractive index difference (High- △), and large structural dispersion due to the hole design in the cladding. Is feasible.
[0005]
For example, as shown in FIG. 3, such a photonic crystal optical fiber is obtained by cutting a small-diameter quartz rod a having an outer diameter of about 500 μm and a small-diameter quartz tube b having an inner diameter of about 300 μm to a length of about 300 mm. The small diameter quartz rod a is bundled so as to be surrounded by several hundred small diameter quartz tubes b, b... And the bundle c is inserted into a quartz jacket tube d having an inner diameter of 10 to 15 mm and an outer diameter of about 25 mm. After the preform e is formed, the preform e is fused and integrated with the bundle c of the fine quartz rod a and the fine quartz tubes b, b... And the quartz jacket tube d by a normal optical fiber drawing process. In this way, it is obtained by drawing to a predetermined fiber diameter of 100 to 150 μm.
[0006]
And in such a photonic crystal optical fiber, as shown in FIG. 3, the axial center part which consists of the said small diameter quartz rod a becomes a core area | region which propagates light, and the surrounding small diameter quartz A portion made of the tubes b, b... Becomes an inner clad layer having a large number of holes, and a solid portion made of the surrounding quartz jacket tube 5 becomes an outer clad layer, and most of the light waves propagating through the core region are contained in the inner portion. The light wave is efficiently propagated by being reflected by the cladding layer and confined in the core region.
[0007]
[Problems to be solved by the invention]
By the way, in the conventional photonic crystal optical fiber obtained as described above, when the thin quartz rod a and the fine quartz tubes b, b. Residual fusion stress remains in the glass, anisotropic stress is applied to the core region, PMD (polarization mode dispersion) characteristics and the like are deteriorated, and the delicate refractive index distribution control of the inner cladding layer is difficult. is there.
[0008]
Therefore, the present invention has been devised in order to effectively solve such problems, and the purpose thereof is that there is no concentration of anisotropic stress in the core region due to fusion residual stress, and excellent PMD characteristics are obtained. there is provided a novel process for producing fiber-optic with.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a clad layer around a core region, the clad layer being provided around the inner clad layer and the inner clad layer. And forming a glass soot layer around the core glass base material that becomes the core region in the method of manufacturing an optical fiber having an inner cladding layer having a concentric layered bubble region concentric with the core region. diffusion coefficient vitrified by heating the glass soot layer in a gas atmosphere containing a small inert gas than helium, is to form a glass layer having a bubble of the inert gas to be the inner cladding layer at .
[0010]
This eliminates the concentration of anisotropic stress in the core region due to fusion residual stress as in the case of conventional fibers, so that it exhibits excellent PMD characteristics and can easily achieve delicate refractive index distribution control of the inner cladding layer. .
[0011]
In addition, as shown in claim 2 , when the bubbles are formed to have a diameter of 4 μm or less, the above-described effects can be remarkably exhibited.
[0012]
Furthermore, as shown in claim 3, by changing the distribution density of the bubbles in the radial direction, or to have a radial distribution of the equivalent refractive index of the aggregate area of the bubble, as shown in claim 4 If the bubble diameter is changed in the radial direction and the equivalent refractive index of the bubble aggregate region has a radial distribution, the structural dispersion is controlled, and a large positive dispersion fiber and negative dispersion / negative dispersion are controlled. A fiber with a slope is obtained.
[0015]
Further , as shown in claim 5 , the gas atmosphere is formed only of an inert gas whose diffusion coefficient in glass is smaller than that of helium, or as shown in claim 6 , the gas atmosphere is made of helium gas. And a mixture gas of an inert gas whose diffusion coefficient in glass is smaller than that of helium, the above-mentioned effects can be remarkably exhibited. Moreover, as shown in claim 7 , as the inert gas whose diffusion coefficient in the glass is smaller than that of helium, nitrogen gas or argon gas is preferable.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment for carrying out the present invention will be described with reference to the accompanying drawings.
[0017]
FIG. 1 shows an embodiment of an optical fiber 1 manufactured by the manufacturing method according to the present invention.
[0018]
As shown in the figure, this optical fiber 1 has an inner cladding layer 3 around a core region 2 located at the axial center, and an outer cladding layer 4 having an outer diameter of about 125 μm around the inner cladding layer 3. Are integrated.
[0019]
The inner cladding layer 3 is formed with a region in which a large number of independent bubbles 5 having a diameter of 4 μm or less are densely gathered, and is present in a layered manner so as to surround the core region 2.
[0020]
In the optical fiber 1 having the structure as described above and manufactured by the manufacturing method of the present invention, the small-diameter quartz rod a and the small-diameter quartz tubes b, b,... Like the conventional photonic crystal optical fiber. Unlike the case where the two are fused and integrated, the concentration of anisotropic stress in the core region due to the fusion residual stress of the thin quartz tube b is eliminated, so that excellent PMD characteristics are exhibited and the inner cladding layer 3 The fine refractive index distribution control can be easily achieved.
[0021]
That is, the optical fiber 1 uses an inert gas having a small diffusion coefficient, such as nitrogen gas or argon gas, as the sintering gas (atmosphere gas) in the sintering process of the inner cladding layer 3 during the preform manufacturing process. The sintered gas is left in the sintered glass layer to form a cellular layer around the core region, and the preform is drawn to an outer diameter of about 125 μm. For this reason, the conventional fusion residual stress does not occur, and a situation such as concentration of anisotropic stress in the core region does not occur. The bubble 5 has a substantially spherical shape during the preform manufacturing process, but becomes a long hole extending in the longitudinal direction by subsequent drawing. Further, by setting the equivalent relative refractive index difference between the core region 2 and the inner cladding layer 3 to 1%, a fiber having a large absolute value of dispersion can be obtained.
[0022]
Here, the diameter of the core region 2 is not particularly limited, but is set to a size of 2 to 10 μm in order to perform single mode transmission. The optimum thickness of the inner cladding layer 3 varies depending on the refractive index profile, dispersion characteristics, etc. of the optical fiber to be obtained, but is generally set in the range of 5 to 30 μm. Further, the absolute condition that the diameter of the bubbles 5 is equal to or less than the layer thickness of the inner cladding layer 3 is 4 μm or less, preferably 1 in consideration of the formation of the bubble density distribution in the inner cladding layer 3. It is desirable that the thickness be ˜3 μm. The optical fiber 1 manufactured by the manufacturing method according to the present invention is not limited to these dimensional conditions.
[0023]
FIG. 2 shows another embodiment of the present invention, in which the refractive index difference distribution is controlled by changing the density of the bubbles 5 constituting the inner cladding layer 3 in the radial direction. That is, the inner cladding layer 3 is divided into three layers on a concentric circle with the core region 2 as the center, and the bubbles 5 are present at a high density in the region on the inner cladding layer 3 side (high density bubble region), and the region outside the region. Is made to have a low density (low density bubble region), and the outer region thereof has a higher density (medium density bubble region). As a result, a multi-step equivalent relative refractive index difference Δn can be generated in the inner cladding layer 3 as shown in the figure, the structural dispersion is controlled, and a large positive dispersion fiber and negative dispersion / negative dispersion slope are provided. Fiber is obtained. Further, even if the distribution density of the bubbles in the inner cladding layer 3 is changed in the radial direction or the outer diameter of the bubbles 5 constituting the inner cladding layer 3 is changed in the radial direction, the distribution in the equivalent refractive index is similarly achieved. It is possible to give it.
[0024]
Here, the outer diameter of the bubbles can be controlled by the following two methods.
One is a method of changing the bulk density of the quartz glass soot layer deposited around the core base material. When soot is vitrified by heating (sintering), the higher the soot bulk density, the smaller the gap through which gas escapes, so the larger bubbles remain, and the lower the soot bulk density, the smaller bubbles remain. The ratio is high.
[0025]
The other is a method of changing the ratio of helium gas and inert gas in the furnace gas atmosphere during sintering. The higher the helium gas ratio, the smaller the bubbles, and the lower the helium gas ratio, the larger the bubbles.
[0026]
Note that the larger the bubbles, the higher the density of the bubbles, and the smaller the bubbles, the lower the density of the bubbles. Therefore, both the bubble diameter and bubble density are controlled by adjusting the bulk density of the quartz glass soot layer and the ratio of helium gas and inert gas in the furnace gas atmosphere during sintering. Can do.
[0027]
Also, if the bubble size and the formation position are controlled so that the interval between the bubbles is adjusted to one half of the wavelength of the signal light to be propagated, even in the optical fiber manufactured by the manufacturing method of the present invention, A band gap structure can be realized.
[0028]
In the embodiment described above, although the core region has been described about the case where the configuration of quartz glass, not limited thereto, the pure silica glass, known impurity for increasing the refractive index (e.g. Either quartz glass to which Ge, Ti, or the like) is added, or quartz glass to which a rare earth element such as Er is added is applicable.
[0029]
Further, the core region may be hollow, and in this case, a hollow quartz tube may be used instead of the above-described core quartz, which is a small-diameter quartz. For this quartz tube, either pure quartz glass, quartz glass to which a known impurity (such as Ge or Ti) for increasing the refractive index is added, or quartz glass to which a rare earth element such as Er is added can be applied. It is.
[0030]
【Example】
Next, examples of the present invention will be described. In Test 1, a bubble aggregate region consisting of one layer of high density bubble region was provided in the inner cladding layer, and in Test 2, three layers of a high density bubble region, a low density bubble region, and a medium density bubble region were formed in the inner cladding layer. A bubble aggregate region composed of layers is provided.
[0031]
<Test 1>
First, the transparent glass base material used as a core area | region was produced by VAD method, and was extended | stretched to the outer diameter of 25 mm.
[0032]
A soot layer that becomes a high-density bubble region was deposited on the outer periphery of the core glass base material by a CVD method to obtain an external base material having an outer diameter of 60 mm. This base material was heat-treated at a temperature of 1600 ° C. in an electric furnace in which the inside of the furnace was in a 100% nitrogen gas atmosphere. The obtained glass base material had a translucent state because the outer diameter was 45 mm and a large number of nitrogen gas bubbles remained in the closed cell assembly region at the outer periphery. The cell density in the high-density cell region was about 0.5.
[0033]
Here, nitrogen gas has a much smaller diffusion coefficient than the helium gas normally used in the heat treatment step for transparent vitrification, and it tends to remain in the glass when soot is vitrified. By setting the atmosphere to 100% nitrogen gas, it is possible to obtain a glass base material containing nitrogen gas bubbles at high density.
[0034]
Next, the obtained glass base material with an inner cladding layer having a high density bubble region is stretched to an outer diameter of 25 mm, a soot layer to be an outer cladding layer is deposited by a CVD method, and an outer base material with an outer diameter of 120 mm is formed. Obtained. This base material was heat-treated at a temperature of 1600 ° C. in an electric furnace in which the inside of the furnace was in a 100% helium gas atmosphere to obtain a glass base material having an outer diameter of 60 mm and a transparent outer cladding layer on the outer periphery.
[0035]
Next, the glass preform was drawn into an optical fiber having an outer diameter of 125 μm by a normal drawing method. The obtained optical fiber had a core diameter of 7 μm, an inner cladding layer thickness of 10 μm, and an outer diameter of bubbles of 1 to 3 μm.
[0036]
<Test 2>
First, the transparent glass base material used as a core area | region was produced by VAD method, and was extended | stretched to the outer diameter of 25 mm.
[0037]
A soot layer that becomes a high-density bubble region was deposited on the outer periphery of the core glass base material by a CVD method to obtain an external base material having an outer diameter of 60 mm. This base material was heat-treated at a temperature of 1600 ° C. in an electric furnace in which the inside of the furnace was in a 100% nitrogen gas atmosphere. Here, the reason for using 100% nitrogen atmosphere gas is as described in Test 1. The glass base material thus obtained was translucent because it had an outer diameter of 45 mm and a large number of nitrogen bubbles remained in the high-density bubble region at the outer periphery. The cell density of this high-density cell region was about 0.5.
[0038]
Next, the glass base material was stretched to an outer diameter of 25 mm, and a soot layer serving as a low-density bubble region was deposited by a CVD method to obtain an external base material having an outer diameter of 60 mm. This base material was heat-treated at a temperature of 1600 ° C. in an electric furnace in an atmosphere containing 20% nitrogen gas and 80% helium gas. Here, the reason why the mixed gas of nitrogen gas and helium gas is used as the atmosphere gas is that the transparency of the glass after the heat treatment becomes higher by mixing the helium gas than in the 100% nitrogen gas atmosphere. This is because a glass base material having a low bubble density can be obtained. The glass base material obtained in this way has an outer diameter of 45 mm, and a slight amount of nitrogen bubbles remain in the low density bubble region on the outer periphery thereof, so that it is more transparent than the high density bubble region. However, it was not completely transparent. The bubble density in the low density bubble region was about 0.3.
[0039]
Next, the obtained glass base material was stretched to an outer diameter of 25 mm, and a soot layer serving as a medium density bubble region was deposited by a CVD method to obtain an external base material having an outer diameter of 60 mm. This base material was heat-treated at a temperature of 1600 ° C. in an electric furnace in an atmosphere of nitrogen gas 50% and helium gas 50%. The glass base material thus obtained had an outer diameter of 45 mm, and the transparency of the medium density bubble region in the outer peripheral portion was in a state having transparency between the high density bubble region and the low density bubble region. The bubble density in the low density bubble region was about 0.4.
[0040]
Next, the obtained glass base material with an inner cladding layer composed of a high density bubble region, a low density bubble region, and a medium density bubble region is stretched to an outer diameter of 25 mm, and a soot layer serving as an outer cladding layer is deposited by a CVD method. Thus, an external base material having an outer diameter of 120 mm was obtained. This base material was heat-treated at a temperature of 1600 ° C. in an electric furnace in a 100% helium gas atmosphere to obtain a glass base material having an outer diameter of 60 mm and a transparent outer cladding layer on the outer periphery. .
[0041]
Next, the glass preform was drawn into an optical fiber having an outer diameter of 125 μm by a normal drawing method. The obtained optical fiber has a core diameter of 4 μm and an inner cladding layer thickness of 12 μm (high density bubble region 4 μm, low density bubble region 5 μm, medium density bubble region 3 μm), and the outer diameter of the bubbles in each region is It was 1-2 μm.
[0042]
【The invention's effect】
In short, according to the present invention, since the cladding layer having an aggregate of bubbles is provided around the core region, concentration of anisotropic stress in the core region due to fusion residual stress as in the conventional photonic crystal optical fiber. And excellent PMD characteristics can be exhibited. As a result, it has low PMD characteristics and exhibits characteristics that cannot be achieved with ordinary optical fibers, such as large effective core area, high refractive index difference, large anomalous dispersion (positive dispersion), negative dispersion / negative dispersion slope fiber, etc. Exhibits excellent effects such as
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view showing an embodiment of an optical fiber manufactured by a manufacturing method according to the present invention.
FIG. 2 is an enlarged sectional view showing another embodiment of an optical fiber manufactured by the manufacturing method according to the present invention .
FIG. 3 is an enlarged perspective view showing the structure of a preform for obtaining a conventional photonic crystal optical fiber.
[Explanation of symbols]
1 optical fiber 2 core region 3 inner cladding layer 4 outer cladding layer 5 bubble

Claims (7)

コア領域の周囲にクラッド層を備え、上記クラッド層が内部クラッド層と、内部クラッド層の周囲に設けられた外部クラッド層とからなり、その内部クラッド層にコア領域と同心円の層状の気泡の集合体領域を有する光ファイバの製造方法において、コア領域となるコアガラス母材の周囲にガラススート層を形成し、ガラス中での拡散係数がヘリウムよりも小さい不活性ガスを含むガス雰囲気中で上記ガラススート層を加熱してガラス化し、上記内部クラッド層となる不活性ガスの気泡を有するガラス層を形成することを特徴とする光ファイバの製造方法。A clad layer is provided around the core region, and the clad layer is composed of an inner clad layer and an outer clad layer provided around the inner clad layer. The inner clad layer is a collection of layered bubbles concentric with the core region. In the method for manufacturing an optical fiber having a body region, a glass soot layer is formed around a core glass base material to be a core region, and the above is performed in a gas atmosphere containing an inert gas whose diffusion coefficient in glass is smaller than that of helium. A method for producing an optical fiber, wherein the glass soot layer is heated to vitrify to form a glass layer having bubbles of an inert gas serving as the inner cladding layer . 上記気泡を、直径4μm以下に形成したことを特徴とする請求項1に記載の光ファイバの製造方法The bubble method of manufacturing an optical fiber mounting serial to claim 1, characterized in that formed below the diameter 4 [mu] m. 上記気泡の分布密度を径方向に変化させて、上記気泡の集合体領域の等価屈折率に径方向の分布を持たせたことを特徴とする請求項1又は2に記載の光ファイバの製造方法 3. The method of manufacturing an optical fiber according to claim 1, wherein a distribution density of the bubbles is changed in a radial direction so that an equivalent refractive index of the aggregate region of the bubbles has a radial distribution. . 上記気泡の直径を径方向に変化させて、上記気泡の集合体領域の等価屈折率に径方向の分布を持たせたことを特徴とする請求項1からいずれかに記載の光ファイバの製造方法The optical fiber manufacturing method according to any one of claims 1 to 3 , wherein the bubble diameter is changed in the radial direction so that the equivalent refractive index of the bubble aggregate region has a radial distribution. Way . 上記ガス雰囲気を、ガラス中での拡散係数がヘリウムよりも小さい不活性ガスのみで形成したことを特徴とする請求項1から4いずれかに記載の光ファイバの製造方法。The gas atmosphere, an optical fiber manufacturing method according to claims 1 to 4 or, wherein the diffusion coefficient in the glass to form only a small inert gas than helium. 上記ガス雰囲気を、ヘリウムガスとガラス中での拡散係数がヘリウムよりも小さい不活性ガスとの混合ガスで形成したことを特徴とする請求項1から5いずれかに記載の光ファイバの製造方法。The gas atmosphere, an optical fiber manufacturing method according to claims 1 to 5 or the diffusion coefficient of helium gas and the glass is characterized in that it is formed with a mixed gas of small inert gas than helium. 上記ガラス中での拡散係数がヘリウムよりも小さい不活性ガスが、窒素ガス又はアルゴンガスであることを特徴とする請求項からいずれかに記載の光ファイバの製造方法。The method for producing an optical fiber according to any one of claims 1 to 6 , wherein the inert gas whose diffusion coefficient in the glass is smaller than that of helium is nitrogen gas or argon gas.
JP2002174605A 2002-06-14 2002-06-14 Optical fiber manufacturing method Expired - Lifetime JP3802843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174605A JP3802843B2 (en) 2002-06-14 2002-06-14 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174605A JP3802843B2 (en) 2002-06-14 2002-06-14 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2004020836A JP2004020836A (en) 2004-01-22
JP3802843B2 true JP3802843B2 (en) 2006-07-26

Family

ID=31173526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174605A Expired - Lifetime JP3802843B2 (en) 2002-06-14 2002-06-14 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP3802843B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100617713B1 (en) 2004-02-12 2006-08-28 삼성전자주식회사 Method for fabricating holey fiber
KR100703108B1 (en) * 2005-10-17 2007-04-06 한국과학기술연구원 Optical fiber
US7450806B2 (en) * 2005-11-08 2008-11-11 Corning Incorporated Microstructured optical fibers and methods
US7787731B2 (en) * 2007-01-08 2010-08-31 Corning Incorporated Bend resistant multimode optical fiber
US8464556B2 (en) * 2007-05-08 2013-06-18 Corning Incorporated Microstructured optical fibers and methods
JP4567716B2 (en) * 2007-09-11 2010-10-20 日本電信電話株式会社 Optical fiber manufacturing method
JP4490465B2 (en) * 2007-09-11 2010-06-23 日本電信電話株式会社 Optical fiber manufacturing method
US20110100061A1 (en) * 2009-10-30 2011-05-05 James Fleming Formation of microstructured fiber preforms using porous glass deposition
US9851500B2 (en) * 2015-02-06 2017-12-26 Corning Incorporated Light-diffusing optical elements having cladding with scattering centers
US9684125B2 (en) * 2015-05-14 2017-06-20 Coherent, Inc. Transport of polarized laser-radiation using a hollow-core fiber
EP3559715A4 (en) 2016-12-23 2019-12-11 Magic Leap, Inc. Microstructured fiber optic oscillator and waveguide for fiber scanner
DE102018214319A1 (en) * 2018-08-24 2020-02-27 Schott Ag Bodies, in particular lamp bodies, and methods for producing a hermetic seal

Also Published As

Publication number Publication date
JP2004020836A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4465527B2 (en) Microstructured optical fiber, preform, and manufacturing method of microstructured optical fiber
US3884550A (en) Germania containing optical waveguide
JP2004506937A (en) Optical fiber with hole made of non-quartz glass
US20040033043A1 (en) Dispersion tailoring in optical fibres
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
JP3802843B2 (en) Optical fiber manufacturing method
JP2007536580A (en) Long wavelength pure silica core single mode fiber and method of forming the fiber
JP2007536580A5 (en)
CN103323908B (en) Single mode fiber and manufacturing method thereof
CN111443419B (en) Large-mode-field bending-resistant multi-core few-mode optical fiber
WO2020210208A1 (en) Infrared-transmitting, polarization-maintaining optical fiber and method for making
CN112230329A (en) Single-polarization low-loss hollow negative-curvature optical fiber
US6530244B1 (en) Optical fiber preform having OH barrier and fabrication method thereof
JP5457089B2 (en) Photonic band gap fiber manufacturing method and photonic band gap fiber manufacturing method
WO2003093884A2 (en) A method and apparatus relating to optical fibres
WO2004053550A1 (en) Improvements relating to photonic crystal fibres
EP1584958A1 (en) Photonic crystal fiber capable of single-mode transmission and preform thereof
JP2004347817A (en) Dispersed flat fiber
JP3802875B2 (en) High stress-resistant optical fiber
JP2616087B2 (en) Manufacturing method of elliptical core type polarization maintaining optical fiber
KR100660148B1 (en) Manufacturing Method for Optical Fiber Having Air-Holes
JP2004226541A (en) High anti-stress optical fiber
JP3909397B2 (en) Single mode optical fiber
JPS6367168B2 (en)
JP3668804B2 (en) Manufacturing method of fiber core rod for optical attenuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3802843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term