JPS6065580A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS6065580A
JPS6065580A JP58173474A JP17347483A JPS6065580A JP S6065580 A JPS6065580 A JP S6065580A JP 58173474 A JP58173474 A JP 58173474A JP 17347483 A JP17347483 A JP 17347483A JP S6065580 A JPS6065580 A JP S6065580A
Authority
JP
Japan
Prior art keywords
layer
type
inp
back surface
ingaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58173474A
Other languages
Japanese (ja)
Inventor
Yoshimasa Sugimoto
喜正 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58173474A priority Critical patent/JPS6065580A/en
Publication of JPS6065580A publication Critical patent/JPS6065580A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain preferable characteristics and high reliability by forming a semidconductor photodetector made of the first conductive type semiconductor layer and a semiconductor layer of the second conductive type opposite to the first conductive type in a recess of conical trapezoid formed in a semi-insulating substrate. CONSTITUTION:In case of an InP-InGaAs APD, an N<+> type InP buffer layer 22, an N type InGaAs photoabsorbing layer 23, an N type InP layer 24, and a P<+>-InP layer 25 are formed in a recess of conical trapezoid or a mesa-shaped recess formed on a semi-insulating substrate 21, the substrate 21 is then formed with an N type side electrode 28 on the back surface side, a P type electrode is formed from above the layer 25, a surface protective film 26 is formed to complete an element. For example, the back surface of the growing wafer is formed in a thickness of 150-200mum, the back surface is photolithographically and chemically etched until reaching the layer 22, an AuGeNi is deposited on the entire back surface in contact with the layer 22 to form an N type side electrode 28.

Description

【発明の詳細な説明】 本発明は半導体受光素子に関するものである1゜光通信
システムの実用化を月相して、低損失光ファイバーの開
発が進められているが、光源としての半導体レーザ(以
下LI)という)及び半導体発光素子(以下LEDとい
う)と半導体光検出器としてのフォトダイオード(以下
PDという)及びアバランシフォトダイオード(以下A
PDという)の開発が精力的に行なわれている。これら
LD及びLED の発光波長は、0.8 am 〜1.
61tm域のもの、例えばGaAs−GaAtAs 素
あるいはInF−InGaAsF系糸のものが主流とな
っている。この中で光ファイバーの伝送損失の低い1.
1μm〜1.6μm波長域においては光源としてはI 
nP −InGaAsF系のものが主流であり、この光
を検出するためにはGe−APDが用いられている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light-receiving element.Along with the practical application of 1° optical communication systems, development of low-loss optical fibers is progressing. A semiconductor light emitting device (hereinafter referred to as LED), a photodiode (hereinafter referred to as PD) as a semiconductor photodetector, and an avalanche photodiode (hereinafter referred to as A
(referred to as PD) is being actively developed. The emission wavelength of these LDs and LEDs is 0.8 am to 1.5 am.
Threads in the 61 tm range, for example, GaAs-GaAtAs threads or InF-InGaAsF threads, are the mainstream. Among these, optical fiber has low transmission loss 1.
In the 1 μm to 1.6 μm wavelength range, I
The nP-InGaAsF type is the mainstream, and Ge-APD is used to detect this light.

しかし、とのGe−APD は暗電流と過剰雑音が大き
く、また混層特性も良くないため必ずしも光通信用光信
号検出器としては最適でなく、これに代わる■−v族化
合物半導体材料によるPDあるいはAPDの研究開発が
進め−られている。
However, the Ge-APD has a large dark current and excessive noise, and also has poor mixed layer characteristics, so it is not necessarily optimal as an optical signal detector for optical communications. Research and development of APD is progressing.

現在、半導体受光素子の構造としては、プレーナ型が主
流となっている。この構造は、信頼性に優れ、量産性に
向くという利点をもっているが、不純物拡散によりPN
接合を形成するため、A、りDにした場合拡散エツジで
異常増倍を生ずる等の問題も持っている。これに対して
メサ型受光素子は、素子構造が単純であり、PN界面が
平坦であること諷ら均一増倍することが容易であるが、
接合端面が蕗出していることから信頼性の面で問題があ
る。
Currently, the planar type is the mainstream structure for semiconductor light-receiving elements. This structure has the advantage of being highly reliable and suitable for mass production, but due to impurity diffusion, PN
In order to form a junction, if A or D is used, there are also problems such as abnormal multiplication occurring at the diffusion edge. On the other hand, mesa-type photodetectors have a simple device structure and a flat PN interface, which makes it easy to achieve uniform multiplication.
There is a problem in terms of reliability because the joint end surface is protruding.

次にI nP −InGaAs系APDを例にしテメサ
型受光素子の構造について説明する。
Next, the structure of a Temesa type light receiving element will be explained using an InP-InGaAs APD as an example.

第1図はInp −InGaAsメサ型APDの模式断
面図を示している。n型Inp基板11上に、n−In
1’ バー)77層12、n −I nGaAs 光吸
収層13、n−InPn五層、P+−InP層15が形
成され、これをメサ形状に成形するため化学エツチング
し、この後p側電極16を形成して素子を完成している
。これらn −InPn五層とP+−InP層 15と
−の界面がメサ端部で露出していること示第1図から明
らかである。
FIG. 1 shows a schematic cross-sectional view of an Inp-InGaAs mesa type APD. On the n-type Inp substrate 11, n-In
1' bar) 77 layer 12, n-InGaAs light absorption layer 13, n-InPn five layers, and P+-InP layer 15 are formed, which are chemically etched to form a mesa shape, and then the p-side electrode 16 is formed. is formed to complete the device. It is clear from FIG. 1 that the interface between these five n-InPn layers and the P+-InP layers 15 and - is exposed at the mesa end.

この様にPN接合が端部で蕗出していると、その露出個
所から素子の劣化を生じたり、安定動作をしなくなる欠
点がある。このため、メサを形成した後、合成樹脂で埋
め込んだり、あるいはSin。
If the PN junction protrudes at the end in this way, there are drawbacks such as deterioration of the element from the exposed portion and unstable operation. For this reason, after forming the mesa, it is filled with synthetic resin or sin.

やSiN膜で表面をコーティングする方法等が試みられ
ているが、外気などの影曽により特性に不安定さかある
欠点があった。
Attempts have been made to coat the surface with SiN film or SiN film, but these methods have the drawback of unstable characteristics due to the influence of external air.

本発明の目的は、これらの問題点を解決し、メサ型受光
素子の端面保護を工夫して特性が良好で信頼性の高い半
導体受光素子を提供するものである。
An object of the present invention is to solve these problems and provide a semiconductor light-receiving element with good characteristics and high reliability by devising end face protection of a mesa-type light-receiving element.

本発明の半導体受光素子の構成は、第1の導電型の半導
体層と、この第一の導電型と反対の導電型である第二の
導電型を示す半導体層からなる半導体受光部を、半絶縁
性基板中に形成された錐台形状の凹部に形成したことを
特徴とする。
The structure of the semiconductor light-receiving element of the present invention is such that the semiconductor light-receiving section is made up of a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type which is an opposite conductivity type to the first conductivity type. It is characterized by being formed in a truncated cone-shaped recess formed in an insulating substrate.

本発明の半導体受光素子は、メサ形状に作られた半絶縁
性基板中にメサ型受光素子を形成することによりメサ端
部をその半絶縁性基板で覆うことを特徴とする。
The semiconductor light-receiving device of the present invention is characterized in that a mesa-type light-receiving device is formed in a semi-insulating substrate formed in a mesa shape, and the mesa end portion is covered with the semi-insulating substrate.

次に本発明を図面により詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第2図は本発明の実施例の断面図で、InP −InG
aAs系APDに適用した場合を示している。
FIG. 2 is a cross-sectional view of an embodiment of the present invention.
The case is shown when applied to an aAs-based APD.

この実施例は、半絶縁性基板21に形成された錐台形状
の凹部すなわちメサ形状の凹部に、n+−InPバッフ
ァ層22 、n −InGaAs光吸収層23、n−I
nP層24、p+−InP層2層上5成した後、基板2
1を加工して裏面にn側電極28を設け、またP −I
n2層25上からP電極27を形成し、表面保護膜26
を形成して素子を完成している。
In this embodiment, an n+-InP buffer layer 22, an n-InGaAs light absorption layer 23, an n-I
After forming the nP layer 24 and the p+-InP layer 2, the substrate 2
1 to provide an n-side electrode 28 on the back surface, and
A P electrode 27 is formed on the n2 layer 25, and a surface protective film 26 is formed.
is formed to complete the device.

次にこの実施例の素子製法についで説明する。Next, the device manufacturing method of this example will be explained.

まず半絶縁性InP基板21 にフォトリングラフィと
化学エツチングで円錐台状あるいは四角錐台状の凹部を
形成する。この基板21を用いてハイドライドVPB法
で各層22,23,24,25を連続成長する。n型層
23.24はアンドープ、1層25はジエチル亜鉛(D
EZr)でZnを、n+層(22)はH2SでSをドー
ピングしている。光吸収層となるInGaAs 層23
のキャリア濃度は3 X 10”cm”、n−InP層
24のキャリア温度は約8X10”cm”、P+−In
P層2層上52x10 cm %n InP層22はl
Xl0”cm ”程度である。各層の層厚はn −I 
nGaAs層23 は3μm程度、n −InP層24
は約1 μm程度、P −InP層2層上5μm程度と
なっている。これら各層成長後、受光部の埋め込み層板
外の部分はフォトリングラフィと化学エツチングを用い
て除去する。また、p側電極27はTi7’Pt/Au
を用いており、表面保護膜26はプラズマCVD法によ
るSiN膜を用いている。
First, a concave portion in the shape of a truncated cone or a truncated quadrangular pyramid is formed in the semi-insulating InP substrate 21 by photolithography and chemical etching. Using this substrate 21, layers 22, 23, 24, and 25 are successively grown using the hydride VPB method. The n-type layers 23 and 24 are undoped, and the first layer 25 is diethylzinc (D
The n+ layer (22) is doped with S using H2S. InGaAs layer 23 serving as a light absorption layer
The carrier concentration of the n-InP layer 24 is about 8 x 10"cm, and the carrier temperature of the n-InP layer 24 is about 8 x 10"cm.
52x10 cm on top of P layer 2 %n InP layer 22 is l
It is about Xl0"cm". The layer thickness of each layer is n − I
The nGaAs layer 23 is about 3 μm thick, and the n-InP layer 24 is about 3 μm thick.
is about 1 μm, and about 5 μm above the two P-InP layers. After each of these layers is grown, the portion of the light-receiving portion outside the buried layer plate is removed using photolithography and chemical etching. Moreover, the p-side electrode 27 is made of Ti7'Pt/Au
The surface protection film 26 is a SiN film produced by plasma CVD.

この後成長ウェハー裏面を150μm〜200μmの厚
さに加工し、さらにこの裏面に電極を設けるため、フォ
トリングラフィと化学エツチングとを用いて裏面をn+
−InP層22に達するまでエツチングし、このn+−
InP層22に接触してこの裏面全面にAuGeNiを
蒸着しn側電極28を形成している。
After this, the back side of the growth wafer is processed to a thickness of 150 μm to 200 μm, and in order to provide electrodes on this back side, the back side is etched using photolithography and chemical etching.
- InP layer 22 is etched until it reaches this n+-
AuGeNi is vapor-deposited on the entire back surface in contact with the InP layer 22 to form an n-side electrode 28.

以上の様に製作された素子の特性は、ブレイクダウン電
圧が約100■、09vBにおける暗電流は数10 n
A程度であった。また、最大増倍率約50倍程度が得ら
れ、受光面全面に渡って均一な増倍率を得ている。また
本発明の構造は半絶縁性基板の結晶中に受光部が埋込ま
れるので、メサ型に見られる様な特性の不安定さが見ら
れず、良好な素子特性を示した。
The characteristics of the device manufactured as described above are that the breakdown voltage is approximately 100μ, and the dark current at 09vB is several tens of nanometers.
It was grade A. Further, a maximum multiplication factor of approximately 50 times is obtained, and a uniform multiplication factor is obtained over the entire light-receiving surface. Furthermore, in the structure of the present invention, since the light-receiving portion is embedded in the crystal of the semi-insulating substrate, instability of characteristics as seen in the mesa type was not observed, and good device characteristics were exhibited.

以上、この実施例はInP −InGaAs系APDに
ついて詳述したが、本発明は他の化合物半導体にも適用
できることは明らかである。
Although this embodiment has been described in detail with respect to an InP-InGaAs-based APD, it is clear that the present invention can also be applied to other compound semiconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のメサ型InP−InGaAs系APDの
模式的断面図、第2図は本発明の実施例のInP−In
GaAs系APDの模式的断面図である。図において、 11・・・・・・n−InP基板、12・・・・・・n
−InPバッファ層、13 、 23 ・・== n 
−I nGaAs光吸収層、14. 24−− n −
InP層、15.25−・・= P+−InP層、16
. 27−=−p側電極、17゜28・・・・・・n側
電極、21・−・・・・半絶縁性InP基板、22・・
・・・・n”−InP層、26・・・・・・表面保護膜
である。
FIG. 1 is a schematic cross-sectional view of a conventional mesa-type InP-InGaAs APD, and FIG. 2 is a schematic cross-sectional view of a conventional mesa-type InP-InGaAs APD.
FIG. 2 is a schematic cross-sectional view of a GaAs-based APD. In the figure, 11...n-InP substrate, 12...n
-InP buffer layer, 13, 23...==n
-InGaAs light absorption layer, 14. 24--n-
InP layer, 15.25-...=P+-InP layer, 16
.. 27-=-p-side electrode, 17°28...n-side electrode, 21...semi-insulating InP substrate, 22...
. . . n”-InP layer, 26 . . . surface protective film.

Claims (1)

【特許請求の範囲】[Claims] 第一の導電型の半導体層と、この第一の導電型と反一対
の導電型である第二の導電型の半導体層とからなる半導
体受光部を、半絶縁性基板中に形成された錐台形状の凹
部に形成したことを特徴とする半導体受光素子。
A semiconductor light-receiving section consisting of a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type, which is a conductivity type opposite to the first conductivity type, is connected to a cone formed in a semi-insulating substrate. A semiconductor light-receiving element characterized by being formed in a trapezoidal recess.
JP58173474A 1983-09-20 1983-09-20 Semiconductor photodetector Pending JPS6065580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173474A JPS6065580A (en) 1983-09-20 1983-09-20 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173474A JPS6065580A (en) 1983-09-20 1983-09-20 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS6065580A true JPS6065580A (en) 1985-04-15

Family

ID=15961151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173474A Pending JPS6065580A (en) 1983-09-20 1983-09-20 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS6065580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289872A (en) * 2020-10-29 2021-01-29 上海微波技术研究所(中国电子科技集团公司第五十研究所) Impurity-blocking band detector with inverted trapezoidal groove surface structure and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289872A (en) * 2020-10-29 2021-01-29 上海微波技术研究所(中国电子科技集团公司第五十研究所) Impurity-blocking band detector with inverted trapezoidal groove surface structure and preparation method thereof

Similar Documents

Publication Publication Date Title
US6104047A (en) Avalanche photodiode with thin built-in depletion region
JP4220688B2 (en) Avalanche photodiode
JPH04252079A (en) Materialization method of integrated light guide/detector structure
CN106098836A (en) Communication avalanche photodide and preparation method thereof
JP3675223B2 (en) Avalanche photodiode and manufacturing method thereof
JP4861388B2 (en) Avalanche photodiode
KR100303471B1 (en) Avalanche photodetector device and method for manufacturing the same
US7368750B2 (en) Semiconductor light-receiving device
US4894703A (en) Restricted contact, planar photodiode
JPS6244709B2 (en)
US20050161695A1 (en) Systems and methods having a metal-semiconductor-metal (MSM) photodetector with buried oxide layer
US4990989A (en) Restricted contact planar photodiode
JPH08274366A (en) Semiconductor light receiving device
JPS6065580A (en) Semiconductor photodetector
JPS61229371A (en) Photo diode
JPH04263475A (en) Semiconductor photodetector and manufacture thereof
JPS639987A (en) Semiconductor photodetector
RU221645U1 (en) Semiconductor Photodiode for Infrared Radiation
JPS59149070A (en) Photodetector
JP2638445B2 (en) Semiconductor light receiving element
JPH01196182A (en) Photodiode
JPH0316275A (en) Manufacture of semiconductor photodetector
JPS639986A (en) Semiconductor photodetector
JPS6320398B2 (en)
JPH041740Y2 (en)