JPS6065211A - Operating method for lng coldness power generating plant - Google Patents

Operating method for lng coldness power generating plant

Info

Publication number
JPS6065211A
JPS6065211A JP17291783A JP17291783A JPS6065211A JP S6065211 A JPS6065211 A JP S6065211A JP 17291783 A JP17291783 A JP 17291783A JP 17291783 A JP17291783 A JP 17291783A JP S6065211 A JPS6065211 A JP S6065211A
Authority
JP
Japan
Prior art keywords
medium
lng
circulation pump
condenser
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17291783A
Other languages
Japanese (ja)
Inventor
Masaru Matsumoto
勝 松本
Takeo Okada
岡田 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17291783A priority Critical patent/JPS6065211A/en
Publication of JPS6065211A publication Critical patent/JPS6065211A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Abstract

PURPOSE:To prevent breakage of a medium circulation pump in a coldness power generating facility, when it is to be started, by overcooling an overcool coil installed inside the condensate liquid sump of a medium condenser by the use of LNG, and thereby preventing cabitation in the medium circulation pump. CONSTITUTION:An LNG coldness power generating facility of Rankin cycle system is composed chiefly of a medium condenser 1, medium circulation pump 7, medium evaporator 8 and medium turbine 10. When this facility is started, LNG4 is allowed to circulate in an overcool coil 3 installed inside a condensate liquid sump 2, which is furnished in the lower part of the drum of said medium condenser 1, so as to overcool the condensate liquid 6 in the condensate liquid 6 in the condensate liquid sump. Thus generation of cabitation in the medium circulation pump under the decompressive transient period can be prevented, so that breakage of medium circulation pump can be prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、LNG冷熱発電設備の運転方法に係り、特に
ランキンサイクル方式のLNG冷熱発電設備の運転方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of operating an LNG cryogenic power generation facility, and particularly relates to a method of operating a Rankine cycle type LNG cryogenic power generation facility.

〔発明の背景〕[Background of the invention]

ランキンサイクル方式のLNG冷熱発電設備ではランキ
ン媒体としてフロン13 Bl、フロン22、プロパン
等の液化ガスを使用している。
LNG cryogenic power generation equipment using the Rankine cycle system uses liquefied gases such as Freon 13 Bl, Freon 22, and propane as Rankine media.

これらの液化ガスは、媒体凝縮器でLNGと熱交換し、
LNGを気化し、自らは凝縮する。凝縮液は媒体循環ポ
ンプで昇圧し、媒体蒸発器に送液され、ここで気化して
媒体タービンを回転させ・再び媒体凝縮器に戻り、リサ
イクルされている〔ランキンサイクル系の媒体タービン
排気側は媒体タービンでの動力回収を有効にするためか
ら低圧運転としている。例えば大気圧近くの状態で運転
されるのが通常である。ランキン媒体の液化ガスは、通
常運転前の待機状態では常温20℃の飽和圧力を示して
おり、約7〜13に9/cnG程度となっている。
These liquefied gases exchange heat with LNG in a medium condenser,
It vaporizes LNG and condenses it itself. The condensate is pressurized by a medium circulation pump, sent to a medium evaporator, where it is vaporized, rotates a medium turbine, returns to the medium condenser, and is recycled. Low-pressure operation is used to enable power recovery in the media turbine. For example, they are normally operated at near atmospheric pressure. The liquefied gas of the Rankine medium exhibits a saturation pressure at room temperature of 20° C. in a standby state before normal operation, and is about 7 to 13 to 9/cnG.

スタートアップ時には、この待機状態から通常運転状態
の()〜IKg/CIIQまで減圧し、低温状態にもっ
ていくことになる。減圧運転は媒体凝縮器のL N (
3流量を定格負荷の14〜14とし、タービンバイパス
弁を徐閉しながら冷却していく。減圧冷却運転の過渡状
態においては媒体凝縮器内圧力が低くなっているのに媒
体循環ポンプに吸入される媒体の温度は媒体凝縮器の滞
留部分の時間遅れがあり、媒体凝縮器内圧力の飽和温度
より高々なる。したがって媒体循環ポンプの有効NPS
Hは小さくなる。一般的に有効NPSHは(1)式で示
さハ5、媒体循環ポンプの所要$PSHより大きくなけ
ればならない。
At startup, the pressure is reduced from this standby state to the normal operating state () to IKg/CIIQ, and the temperature is brought to a low temperature state. During depressurization operation, the medium condenser L N (
3 flow rate is set to 14 to 14 of the rated load, and cooling is performed while gradually closing the turbine bypass valve. In the transient state of vacuum cooling operation, although the pressure inside the medium condenser is low, the temperature of the medium sucked into the medium circulation pump has a time delay in the retention part of the medium condenser, and the pressure inside the medium condenser is saturated. Higher than temperature. Therefore, the effective NPS of the media circulation pump
H becomes smaller. Generally, the effective NPSH shown in equation (1) must be larger than the required $PSH of the medium circulation pump.

有効N P S H= HpT+HHtoss −Hp
v>所要NPSH・・・・・・・・・・・・・・・・・
・・・・・・・・・・・ (1)HPT:容器内圧力(
液柱m) H:液の水頭 (液柱m) Hシoss ’流路の圧力損失(液柱m)Hpv :ポ
ンプ入口部の液の飽和蒸気圧力(液柱m) ジョンがうと生じ、さらには媒体循環ポンプの破損につ
ながる。また、有効NFSHな当初から大きくしようと
すると媒体凝縮器を高い位置に設置する必要力≦あり、
架構、据伺費用が多大となる。
Effective N P S H = HpT + HHtoss - Hp
v>Required NPSH・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・ (1) HPT: Container internal pressure (
Liquid column m) H: Water head of liquid (Liquid column m) H oss 'Pressure loss in flow path (Liquid column m) Hpv: Saturated vapor pressure of liquid at pump inlet (Liquid column m) can lead to damage to the media circulation pump. Also, if you try to increase the effective NFSH from the beginning, there will be a need to install the medium condenser at a high position.
The cost of construction and construction will be significant.

〔発明の目的〕[Purpose of the invention]

本発明は、有効NP8Hを常に所要NPSHより大きく
保持することで、媒体循環ポンプでのキャビテーション
の発生を防止し、その破損を防止できるLNG冷熱発電
設備の運転方法を提供することにある。
An object of the present invention is to provide a method of operating an LNG cold-thermal power generation facility that can prevent cavitation from occurring in a medium circulation pump and prevent its damage by always maintaining effective NP8H greater than required NPSH.

〔発明の概要〕[Summary of the invention]

本発明は、設備の起動時に媒体凝縮器の胴体下部に設け
られた凝縮液留部iこ内設された過冷却コイルにLNG
を流通させて凝縮液留部の凝縮液を過冷却することを特
徴とするもので、有効NPSH′5!:常に所要N P
 S Hより大きく保持しようとするものである。
The present invention provides a method for supplying LNG to a supercooling coil installed in a condensate reservoir installed in the lower body of a medium condenser at the time of startup of equipment.
This system is characterized by supercooling the condensate in the condensate reservoir by passing through the condensate, and the effective NPSH'5! : Always required NP
It is intended to be held larger than S H.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described with reference to the drawings.

)疑未\ 図面で媒体凝縮器1の胴体最下部に設けた過希I液留部
2に過冷却コイル3が内設されている。
) In the drawing, a supercooling coil 3 is installed in a superdilute I liquid storage section 2 provided at the lowest part of the body of the medium condenser 1.

媒体凝縮器1の伝熱管群を流通するLNGの冷熱により
媒体が凝縮し凝縮液6とtrる、一方LNG4は媒体凝
縮器1で熱交換して気化しNGガス5となり、燃料とし
て使用される。凝縮液6は媒体循環ポンプ7で昇圧され
媒体蒸発器8に供給される。媒体蒸発器8では海水9に
より凝縮液6が気化され、通常は媒体タービン10に供
給される。媒体タービン10で電力が回収され、膨張し
て低圧となった媒体は再び媒体凝縮器1にリサイクルさ
れる、 起動時は媒体凝縮器1の器内圧力は凝縮液6が常温であ
るため、約7〜13にり/cIIOを示してい壓す る。媒体凝声器1の器内圧力を通常運転圧力の0−IK
q/crlGまで減圧する場合、■、NG4’&一定の
低負荷で流しておき、媒体をタービンバイパス弁11を
使用して循環させながらタービンバイパス弁11を徐閉
する。タービンバイパス弁11は通常運転中は全閉であ
り、媒体タービンlOの保護制御装置として圧力調節装
置12の機能を備えている713は媒体凝縮器10)液
位調節3414で、通常運転中は媒体凝縮器1の伝熱管
群に凝縮液6が浸って、熱交換性能が落ちないように低
液位で制御している。
The medium is condensed by the cold heat of LNG flowing through the heat transfer tube group of the medium condenser 1 and becomes a condensate 6, while the LNG 4 undergoes heat exchange in the medium condenser 1 and is vaporized to become NG gas 5, which is used as fuel. . The condensate 6 is pressurized by a medium circulation pump 7 and supplied to a medium evaporator 8 . In the medium evaporator 8 , the condensate 6 is vaporized by seawater 9 and is normally supplied to a medium turbine 10 . Electric power is recovered by the medium turbine 10, and the expanded and low-pressure medium is recycled again to the medium condenser 1. At startup, the internal pressure of the medium condenser 1 is approximately 100% because the condensate 6 is at room temperature. 7 to 13/cIIO is shown. The internal pressure of the medium condenser 1 is set to the normal operating pressure of 0-IK.
When the pressure is reduced to q/crlG, the flow is continued at a constant low load, and the turbine bypass valve 11 is gradually closed while the medium is circulated using the turbine bypass valve 11. The turbine bypass valve 11 is fully closed during normal operation, and 713 is a medium condenser 10) liquid level adjustment 3414, which has the function of the pressure regulator 12 as a protection control device for the medium turbine IO. The liquid level is controlled at a low level so that the condensate 6 does not enter the heat exchanger tube group of the condenser 1 and degrade heat exchange performance.

14はLNG4のバイパス管で、設備起動時の減圧操作
運転時には、過冷却コイル3にL N G 4を流通さ
せて凝縮液6を過冷却して、媒体循環ポンプ7のキャビ
テーション発生を防止している。
Reference numeral 14 denotes a bypass pipe for LNG 4, which allows LNG 4 to flow through the supercooling coil 3 to supercool the condensate 6 to prevent cavitation from occurring in the medium circulation pump 7 during depressurization operation when starting up the equipment. There is.

本実施例のような運転方法では、次のような効果が得ら
ハ、る。
The operating method of this embodiment provides the following effects.

(1) 設備の起動時には、過冷却コイルのLNGによ
り、媒体循環ポンプに吸入される媒体を過冷却して、媒
体凝縮器内圧力の飽和温度近(まで冷却させることによ
り、企効NPSHな常に所要NPSHより大き“く保持
させることができるため、媒体循環ポンプでのキャビテ
ーションの発生を防止でき、その破損を防止できる。
(1) When starting up the equipment, the medium sucked into the medium circulation pump is subcooled by LNG from the supercooling coil, and the medium is cooled to a temperature close to the saturation temperature of the pressure inside the medium condenser. Since the NPSH can be maintained larger than the required NPSH, cavitation in the medium circulation pump can be prevented, and damage to the medium circulation pump can be prevented.

(2)凝縮液留部を媒体凝縮器の下部に設けたことで、
凝縮ゾーンと過冷却ゾーンを区分することにより、凝縮
ゾーンの伝熱面積をフルに有効となり、減圧操作運転時
間を短縮し、起動時間を短かくすることができる。
(2) By providing the condensate reservoir at the bottom of the medium condenser,
By separating the condensation zone and the subcooling zone, the heat transfer area of the condensation zone can be fully utilized, reducing the depressurization operation time and the start-up time.

(3) 凝縮液留部に凝縮液を留める構造のため、胴部
の伝熱管群下部と胴体の隙間のスペースが小さくてよい
ことから、媒体凝縮器の本体胴径を従来のものより小さ
く、コンパクトにすることができる。
(3) Since the structure retains the condensate in the condensate reservoir, the space between the lower part of the heat transfer tube group in the body and the body is small, so the diameter of the body of the medium condenser is smaller than that of conventional ones. Can be made compact.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ランキンサイクル式のLNG冷熱発電
設備の起動時において、媒体凝縮器の凝縮液留部で、凝
縮液をLNGで過冷却し、減圧過渡期の媒体循環ポンプ
でのキャビテーションの発生を防止することができるの
で、媒体循環ポンプの破損を防止できる効果がある。
According to the present invention, when starting up a Rankine cycle type LNG cryothermal power generation facility, the condensate is supercooled with LNG in the condensate reservoir section of the medium condenser, and cavitation occurs in the medium circulation pump during the transition period of pressure reduction. This has the effect of preventing damage to the medium circulation pump.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明を実施したランキンサイクル式LNG冷
熱発電設備の一例を示す系統図である。
The drawing is a system diagram showing an example of a Rankine cycle LNG cold-thermal power generation facility in which the present invention is implemented.

Claims (1)

【特許請求の範囲】[Claims] 1、媒体凝縮器と、媒体循環ポンプと、媒体蒸発器と、
媒体タービンとを主体として成るランキンサイクル方式
のLNG冷熱発電設備において、前記設備の起動時に前
記媒体凝縮器の胴体下部に設けられた凝縮液留部に内設
された過冷却コイルにL N Gを流通させて凝縮液留
部の凝縮液を過冷却することを特徴とするLNG冷熱発
電設備の運転方法。
1. A medium condenser, a medium circulation pump, a medium evaporator,
In a Rankine cycle type LNG cryogenic power generation facility mainly consisting of a medium turbine, when the facility is started up, LNG is supplied to a supercooling coil installed in a condensate reservoir provided at the bottom of the body of the medium condenser. A method for operating an LNG cryogenic power generation facility, which comprises supercooling condensate in a condensate reservoir by circulating it.
JP17291783A 1983-09-21 1983-09-21 Operating method for lng coldness power generating plant Pending JPS6065211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17291783A JPS6065211A (en) 1983-09-21 1983-09-21 Operating method for lng coldness power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17291783A JPS6065211A (en) 1983-09-21 1983-09-21 Operating method for lng coldness power generating plant

Publications (1)

Publication Number Publication Date
JPS6065211A true JPS6065211A (en) 1985-04-15

Family

ID=15950742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17291783A Pending JPS6065211A (en) 1983-09-21 1983-09-21 Operating method for lng coldness power generating plant

Country Status (1)

Country Link
JP (1) JPS6065211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513201A (en) * 2013-02-05 2016-05-12 ヒート ソース エナジー コーポレイション Improved organic Rankine cycle vacuum heat engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513201A (en) * 2013-02-05 2016-05-12 ヒート ソース エナジー コーポレイション Improved organic Rankine cycle vacuum heat engine
US10400635B2 (en) 2013-02-05 2019-09-03 Heat Source Energy Corp. Organic rankine cycle decompression heat engine

Similar Documents

Publication Publication Date Title
JP2006170606A (en) Cryogenic cooling system having backup low-temperature storage device and method
KR102005157B1 (en) Apparatus for cooling working fluid and Power generation plant using the same
JP2001081484A (en) Liquefied-gas evaporation apparatus with cold-heat generation function
JPH10223442A (en) Transforming apparatus cooling system and operation method thereof
JPS6065211A (en) Operating method for lng coldness power generating plant
JP3520927B2 (en) Power generator
JPS6062610A (en) Control method of lng cold heat power generating plant
JPH11117766A (en) Air cooling system and method for gas turbine
Arnold et al. ESS cryogenic system process design
JP3113990B2 (en) Helium liquefaction refrigeration apparatus and operating method thereof
KR102533384B1 (en) Multi-Purpose Thermal Energy Storage and Discharge System
JPS6118164Y2 (en)
JPS59119003A (en) Operation of cryogenic power plant
JPH0579718A (en) Helium liquefaction refrigerator
JPH01142219A (en) Cooling method and device for gas turbine intake air
JPH0130563Y2 (en)
JPH05312056A (en) Intake air cooling system of gas turbine
JPS5816137A (en) Water cooling device for air conditioner
JPH0774019A (en) Cryogenic cooling system
JP2602982B2 (en) Cooling system
JPS586229Y2 (en) absorption refrigerator
JPS58175767A (en) Absorption type heat pump device
JPS627979Y2 (en)
WO2017164201A1 (en) Cooling system, and method for controlling cooling system
JPH06283769A (en) Superconducting magnet refrigerating system