JPS59119003A - Operation of cryogenic power plant - Google Patents

Operation of cryogenic power plant

Info

Publication number
JPS59119003A
JPS59119003A JP22626782A JP22626782A JPS59119003A JP S59119003 A JPS59119003 A JP S59119003A JP 22626782 A JP22626782 A JP 22626782A JP 22626782 A JP22626782 A JP 22626782A JP S59119003 A JPS59119003 A JP S59119003A
Authority
JP
Japan
Prior art keywords
medium
oil
rankine
evaporator
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22626782A
Other languages
Japanese (ja)
Other versions
JPH0143124B2 (en
Inventor
Yoshio Okabayashi
岡林 芳夫
Shigeo Watanabe
茂雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Sanki Engineering Co Ltd
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Sanki Engineering Co Ltd
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Sanki Engineering Co Ltd, Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Sanki Engineering Co Ltd
Priority to JP22626782A priority Critical patent/JPS59119003A/en
Publication of JPS59119003A publication Critical patent/JPS59119003A/en
Publication of JPH0143124B2 publication Critical patent/JPH0143124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable to continue the operation of a medium turbine with no trouble by a structure wherein an oil separator, in which liquefied Rankine medium mixed with oil is separated into the Rankine medium and the oil, is provided in a Rankine cycle type liquefied natural gas (LNG) cryogenic power plant. CONSTITUTION:LNG cryogenic power generating equipment comprise an LNG evaporator 10, a medium pump 11, a medium evaporator 12, a medium turbine 13, a generator 14 and the like. Liquid medium mixed with oil is drained from the medium evaporator 12 through a conduit 70 to an oil separator 16. The liquid medium is vaporized in the oil separator 16 by using the lubricating oil discharged from the shaft seal of the medium turbine 13 as a heat source. The resultant gas medium is returned to the LNG evaporator by opening a valve 61, while the separated lubricating oil is discharged from a conduit 72 by opening a valve 62. In such a manner as mentioned above, bacause no gas medium supplied to the medium turbine is accompanied with liquid medium, the operation of the medium turbine can be continued with no trouble.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、冷熱発電設備の運転方法に係り、特  。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method of operating a cold power generation facility, and particularly relates to a method of operating a cold power generation facility.

にランキンサイクル式LNG冷熱発電設備を良好かつ、
−長期連続運転するのに好適な冷熱発電設備の運転方法
に関するものである。
Rankine cycle type LNG cold thermal power generation equipment is in good condition and
- This invention relates to a method of operating a cold power generation facility suitable for long-term continuous operation.

〔従来技術〕[Prior art]

LNG気化時の冷熱を動力として回収し発電する冷熱発
電設備としては、従来よりランキンサイクル式LNG冷
熱発電設備が慣用されている。
Rankine cycle type LNG cold power generation equipment has been conventionally used as a cold power generation equipment that recovers the cold heat generated during LNG vaporization as motive power to generate electricity.

ランキンサイクル式LNG冷熱発電設備は、LNGを蒸
発、気化するとともに、ランキン媒体を凝縮、液化する
LNG蒸発器と、LNG蒸発器で凝縮、液化されたラン
キン媒体(以下、液化媒体と略)を媒体蒸発器に圧送す
る媒体ポンプと、液化媒体を海水等の熱源で蒸発、気化
させる媒体蒸発器と、媒体蒸発器で蒸発、気化されたラ
ンキン媒体(以下、気化媒体と略)で駆動される媒体タ
ービンと、媒体タービンに連接された発電機とで構成さ
れ、また、ランキン媒体としては、フロンR−22,フ
ロンR−13B1のようなふっ素化合物、プロパンを主
成分とする炭化水素が循環使用されている。
Rankine cycle type LNG cryothermal power generation equipment includes an LNG evaporator that evaporates and vaporizes LNG and condenses and liquefies Rankine medium, and a Rankine medium (hereinafter abbreviated as liquefied medium) that is condensed and liquefied in the LNG evaporator. A medium pump that pumps pressure to the evaporator, a medium evaporator that evaporates and vaporizes the liquefied medium using a heat source such as seawater, and a medium that is driven by the Rankine medium (hereinafter abbreviated as vaporization medium) that is evaporated and vaporized in the medium evaporator. It consists of a turbine and a generator connected to the medium turbine, and as a Rankine medium, fluorine compounds such as Freon R-22 and Freon R-13B1, and hydrocarbons whose main components are propane are used in circulation. ing.

このような冷熱発電設備では、気化媒体が媒体タービン
の軸封部から大気中に漏洩するのを防止するため、軸封
部には、オイルフィルムシールやメカニカルシールのよ
うな軸シール機構が一般に採用されている。このような
軸シール機構の採用により気化媒体の大気中への漏洩は
防止できるが、その反面、運転を継続するに従い軸封部
で使用されてい〆潤滑油が気化媒体に微量ながら混入す
ることは避けられず、また、軸シール機構の破損等のト
ラブルにより一時的に多量の潤滑油が気化媒体に混入す
ることもある。この潤滑油は、その低流 い蒸気圧のために媒体蒸発器での美化媒体の蒸発。
In such cold-heat power generation equipment, a shaft seal mechanism such as an oil film seal or a mechanical seal is generally adopted for the shaft seal in order to prevent the vaporized medium from leaking into the atmosphere from the shaft seal of the medium turbine. has been done. By adopting such a shaft seal mechanism, it is possible to prevent the vaporized medium from leaking into the atmosphere, but on the other hand, as the operation continues, it is possible for the lubricating oil used in the shaft seal to mix into the vaporized medium in small amounts. Unavoidably, a large amount of lubricating oil may temporarily become mixed into the vaporized medium due to trouble such as damage to the shaft seal mechanism. This lubricating oil evaporates the beautifying medium in the medium evaporator due to its low flow vapor pressure.

気化時においても蒸発、気化せず、そのほとんどは液化
媒体中に蓄積される。このようにして媒体蒸発器では、
液化媒体中の潤滑油濃度が次第に高まる。。
Even during vaporization, it does not evaporate or vaporize, and most of it accumulates in the liquefied medium. In this way, in the medium evaporator,
The lubricant concentration in the liquefied medium gradually increases. .

このように媒体蒸発器での液化媒体中の潤滑油濃度が高
まると、液化媒体の沸騰時に泡沫が生じ、その高さは潤
滑油濃度が高まるに従い高(なる。
When the lubricating oil concentration in the liquefied medium in the medium evaporator increases in this way, foam is generated when the liquefied medium boils, and the height of the foam increases as the lubricating oil concentration increases.

二の沸騰面泡沫高さが高くなり泡沫が、媒体蒸発器に内
股されたデミスタ−の下面に達するようになれば、媒体
タービンに供給される気化媒体に液化媒体が同伴される
ようになる。この同伴される液化媒体の量は、液化媒体
中の潤滑油濃度が高まるに従って多くなる。このため、
媒体タービンに振動や異音が発生し媒体タービンを良好
に運転できなくなる。なお、このような事態は、潤滑油
の他に低い蒸気圧を有する油が混入した場合でも生じる
When the height of the second boiling surface foam increases and the foam reaches the lower surface of the demister housed in the medium evaporator, the liquefied medium will be entrained in the vaporized medium supplied to the medium turbine. The amount of entrained liquefied medium increases as the lubricating oil concentration in the liquefied medium increases. For this reason,
Vibrations and abnormal noises occur in the media turbine, making it impossible to operate the media turbine properly. Note that such a situation occurs even when oil having a low vapor pressure is mixed in with the lubricating oil.

従来、このような事態が生じた場合は、運転を一旦停止
してランキン媒体を新規なランキン媒体と交換し対処さ
れており、したがって、冷熱発電設備を良好、かつ、長
期的に連続運転できな炙なるとともに、多量のランキン
媒体が必要となりランキン媒体費が増大するといった欠
点があった。
Conventionally, when such a situation occurs, it has been dealt with by temporarily stopping the operation and replacing the Rankine medium with a new Rankine medium, which has prevented the continuous operation of the cold power generation equipment for a long period of time. There is a drawback that a large amount of Rankine medium is required and the cost of Rankine medium increases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、冷熱発電設備大良好、かつ、長期的に
連続運転できる冷熱発電設備の運転方法を提供すること
にある。
An object of the present invention is to provide a method for operating a cold power generation facility that is highly efficient and capable of continuous operation over a long period of time.

〔発明の概要〕[Summary of the invention]

本発明は、油が混入した液化媒体を媒体蒸発器から油分
離器に抜出した後に、系内で生じた熱源によりランキン
媒体と油とに分離し、分離されたすることなしに媒体蒸
発器での液化媒体中の油濃度を、液化媒体沸騰時に生じ
る泡沫がデミスタ−の下面に達しない濃度に調節するよ
うにしたものである。
In the present invention, after a liquefied medium mixed with oil is extracted from a medium evaporator to an oil separator, it is separated into a Rankine medium and oil by a heat source generated within the system, and the oil is transferred to the medium evaporator without being separated. The oil concentration in the liquefied medium is adjusted to such a level that the foam generated when the liquefied medium boils does not reach the lower surface of the demister.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described with reference to the drawings.

図面で、LNG蒸発器10と媒体ポンプ11とは、導管
(9)で、媒体ポンプ11と媒体蒸発器化とは、導管4
で、媒体蒸発器化と媒体タービン13とは、導管nで、
媒体タービン13とL N Gli、発器1oトハ、導
管nで閉サイクルをなしてそれぞれ連結され、また、媒
体タービン13には、発電機14が連接されている。
In the drawing, the LNG evaporator 10 and the medium pump 11 are connected to the conduit (9), and the medium pump 11 and the medium evaporator are connected to the conduit 4.
The medium evaporator and the medium turbine 13 are connected by a conduit n,
The medium turbine 13 is connected to the L N Gli, the generator 1 and the conduit n in a closed cycle, and the medium turbine 13 is connected to a generator 14 .

LNG蒸発器10と媒体蒸発器化とには、それぞれ伝熱
管間、31が内設されている。伝熱管(資)の人口jこ
は、例えば、LNG貯槽(図示省略)に連結されるとと
もにLNGポンプ(図示省略)が設けられた導管40が
連結され、また、出口には、伝熱管32炉内設されたN
G加熱器15に連結された導管41が連結されている。
The LNG evaporator 10 and the medium evaporator are respectively provided with heat exchanger tubes 31 inside. For example, a conduit 40 connected to an LNG storage tank (not shown) and provided with an LNG pump (not shown) is connected to the heat exchanger tube 32, and the outlet of the heat exchanger tube 32 is connected to a furnace. Built-in N
A conduit 41 connected to the G heater 15 is connected.

伝熱管32の入口と出口とに+lt− は、導管50.51がそれぞれ連結さ〆、NG加熱器1
5は別途使用先、例えば、燃焼ボイラ(図示省略)に連
結された導管42が連結されている。また、伝熱管31
の入口と出口とには、導管52.53がそれぞれ連結さ
れ、媒体蒸発器化には、その上方の位置でテ゛ミスタ−
(図示省略)が内設されている。
Conduits 50 and 51 are connected to the inlet and outlet of the heat transfer tube 32, respectively, and the NG heater 1
5 is connected to a conduit 42 which is connected to a separate use place, for example, a combustion boiler (not shown). In addition, the heat exchanger tube 31
Conduits 52 and 53 are connected to the inlet and outlet of the medium, respectively, and for forming a medium evaporator, a temperature mister is connected at a position above the conduits 52 and 53.
(not shown) is installed inside.

媒体蒸発器化と、例えば、これより低位置に設置された
油分離器16とは、弁ωが設けられた導管70で連結さ
れている。油分離器16と、例えば、LNG蒸発器10
とは、弁61が設けられた導管71で連結されている。
The medium evaporator and, for example, an oil separator 16 installed at a lower position are connected by a conduit 70 provided with a valve ω. An oil separator 16 and, for example, an LNG evaporator 10
and are connected by a conduit 71 provided with a valve 61.

また、油分離器16には、弁62が設けられた導管72
が連結されるとともに、伝熱管お炉内設されている。伝
熱管あの入口と媒体タービン13の軸封部とは、導管7
3で連結され、伝熱管羽の出口とオイルタンク17とは
、導管74で連結されている。オイルタンク17とオイ
ルポンプ1Bとは、導管πで、オイルポンプ18と冷却
器19とは、導V76で、冷却器19と媒体タービン1
3の軸封部とは、導管nでそれぞれ連結されている。
The oil separator 16 also includes a conduit 72 provided with a valve 62.
are connected, and a heat transfer tube is installed inside the furnace. The inlet of the heat transfer tube and the shaft sealing part of the medium turbine 13 are connected to the conduit 7.
3, and the outlet of the heat transfer tube vane and the oil tank 17 are connected by a conduit 74. The oil tank 17 and the oil pump 1B are connected by a conduit π, and the oil pump 18 and the cooler 19 are connected by a conduit V76, and the cooler 19 and the medium turbine 1 are connected by a conduit V76.
The shaft seal portions No. 3 and 3 are connected to each other through conduits n.

LNG蒸発器10で気化媒体は、伝熱管(資)を流通す
るLNGの冷熱により凝縮、液化される。一方、気化媒
体を凝縮、液化することで蒸発、気化したLNGは、N
G加熱器15で加熱された後に、別途使用先へ送給され
る。
In the LNG evaporator 10, the vaporized medium is condensed and liquefied by the cold heat of the LNG flowing through the heat exchanger tube. On the other hand, LNG that has been evaporated and vaporized by condensing and liquefying the vaporization medium is N
After being heated by the G heater 15, it is separately sent to the user.

L N G蒸発器10の底部に溜った液化媒体は、媒体
ポンプ11により媒体蒸発器12に供給される。媒体蒸
発器化で液化媒体は伝熱管31を流通する海水等の熱源
により蒸発気化される。この気化媒体は、デミスタ−を
通過した後に、媒体タービン13に供給され、これを協
動する。
The liquefied medium accumulated at the bottom of the LNG evaporator 10 is supplied to the medium evaporator 12 by a medium pump 11. In the medium evaporator, the liquefied medium is evaporated by a heat source such as seawater flowing through the heat transfer tube 31. After passing through the demister, this vaporized medium is fed to the medium turbine 13 and cooperates with it.

媒体タービン13の駆動により発電fi14が駆動され
、その結果、LNGの冷熱は電気エネルギに変換されて
回収される。一方、媒体タービン13を駆動することで
、温度、圧力共に低下した気化媒体は、LNG蒸発器1
0に循環供給され、ここで、LNGの冷熱により再び凝
縮、液化される。
The power generation fi14 is driven by the drive of the medium turbine 13, and as a result, the cold heat of the LNG is converted into electrical energy and recovered. On the other hand, by driving the medium turbine 13, the vaporized medium whose temperature and pressure have decreased is transferred to the LNG evaporator 1.
0, where it is condensed and liquefied again by the cold heat of LNG.

このような運転の継続に従い、媒体タービン13の軸封
部で使用されている潤滑油が微量ながら気化媒体に混入
する。気化媒体に混入した潤滑油は、LNG蒸発器10
から液化媒体に混入したまま、媒体蒸発器セに供給され
る。媒体蒸発器12では、液化媒体は蒸発、気化するも
のの潤滑油は、その低い蒸気圧のために蒸発、気化せず
、媒体蒸発器化に一旦滞留している液化媒体中に蓄積さ
れる。このようにして媒体蒸発器セでは、液化媒体中の
潤滑油濃度が次第に高まる。
As such operation continues, a small amount of lubricating oil used in the shaft seal of the medium turbine 13 mixes into the vaporizing medium. The lubricating oil mixed into the vaporization medium is transferred to the LNG evaporator 10.
It is supplied to the medium evaporator while being mixed with the liquefied medium. In the medium evaporator 12, although the liquefied medium is evaporated or vaporized, the lubricating oil is not evaporated or vaporized due to its low vapor pressure, but is accumulated in the liquefied medium that is temporarily retained in the medium evaporator. In this manner, the lubricating oil concentration in the liquefied medium gradually increases in the medium evaporator.

液化媒体中の潤滑油濃度が高まるにつれ、液化媒体沸騰
時に泡沫が生じ始め、この高さは、液化媒体中の潤滑油
濃度に比例して高くなる。この泡沫がデミスタ−の下面
に達するようになれば、媒体タービン13に供給される
気化媒体に液化媒体が同伴されるようになり、その結果
媒体タービン13の運転に支障が生じる。
As the lubricating oil concentration in the liquefied medium increases, foam begins to form upon boiling of the liquefied medium, the height of which increases in proportion to the lubricating oil concentration in the liquefied medium. If this foam reaches the lower surface of the demister, the liquefied medium will be entrained in the vaporized medium supplied to the medium turbine 13, resulting in trouble in the operation of the medium turbine 13.

そこで、この場合は、泡沫がデミスタ−の下面に達する
前に、媒体蒸発器化から潤滑油が混入した液化媒体を所
定量、弁ωを開弁し導管70を経て油分離器16に抜出
す。油分離器16では、媒体タービン13の軸封部で使
用され温度50〜80℃となり排出された伝熱管おを流
通する潤滑油を熱源として液化媒体が蒸発、気化する。
Therefore, in this case, before the foam reaches the lower surface of the demister, a predetermined amount of the liquefied medium mixed with lubricating oil is discharged from the medium evaporator through the conduit 70 to the oil separator 16 by opening the valve ω. . In the oil separator 16, the liquefied medium is evaporated and vaporized using the lubricating oil used in the shaft seal of the medium turbine 13 and flowing through the heat transfer tubes, which is discharged at a temperature of 50 to 80° C., as a heat source.

この気化媒体は、弁61を開弁することで導管71を経
てLNG蒸発器10に戻され、LNGの冷熱により再び
凝縮、液化される。また、分離された潤滑油は、弁62
を開弁することで導管72より抜出される。また、液化
媒体を蒸発、気化し油と分離することで温度が低下した
潤滑油はオイルタンク17に供給され、ここで一旦貯蔵
された後にオイルポンプ1Bで抜出され冷却器19で所
定温度まで冷却された後に媒体タービン13の軸封部に
循環供給されて使用される。
This vaporized medium is returned to the LNG evaporator 10 via the conduit 71 by opening the valve 61, and is condensed and liquefied again by the cold heat of the LNG. Furthermore, the separated lubricating oil is transferred to the valve 62.
By opening the valve, it is extracted from the conduit 72. Furthermore, the lubricating oil whose temperature has been lowered by evaporating and vaporizing the liquefied medium and separating it from the oil is supplied to the oil tank 17, where it is temporarily stored and then extracted by the oil pump 1B and cooled to a predetermined temperature by the cooler 19. After being cooled, it is circulated and supplied to the shaft seal of the medium turbine 13 for use.

本実施例のような冷熱発電設備の運転方法では、次のよ
うな効果が得られる。
The method of operating a cold power generation facility as in this embodiment provides the following effects.

器 (1)媒体蒸発!での液化媒体S騰時に生じる泡沫がデ
ミスタ−の下面に達することがないので、媒体タービン
に供給される気化媒体に液化媒体が同伴されることがな
くなり、媒体タービンの運転を支障なしに継続できる。
Vessel (1) Medium evaporation! Since the foam generated when the liquefied medium S rises does not reach the lower surface of the demister, the liquefied medium is not entrained in the vaporized medium supplied to the medium turbine, allowing the medium turbine to continue operating without any hindrance. .

(2)媒体タービンの運転を支障なしに継続できるので
、冷熱発電設備を良好、かつ長期的に連続運転すること
ができる。
(2) Since the operation of the medium turbine can be continued without any trouble, the cold thermal power generation equipment can be operated continuously for a long period of time.

(3)潤滑油を分離するとともに、潤滑油が分離された
ランキン媒体をランキンサイクルに戻すようにしている
ので、ランキン媒体の交換並びに補給の必要がなくなり
、したがって、ランキン媒体費の増大を防止できる。
(3) Since the lubricating oil is separated and the Rankine medium from which the lubricating oil has been separated is returned to the Rankine cycle, there is no need to replace or replenish the Rankine medium, thus preventing an increase in Rankine medium costs. .

(4)媒体タービンの軸封部で使用され排出された潤滑
油を熱源としてランキン媒体と潤滑油とを分離している
ので、特別に熱源発生装置を設置する必要がなく、した
がって、運転費並びに設備費を低減できる。
(4) Since the lubricating oil used and discharged from the shaft seal of the media turbine is used as a heat source to separate the Rankine medium and the lubricating oil, there is no need to install a special heat source generator, which reduces operating costs and Equipment costs can be reduced.

(5)媒体タービンの軸封部で使用され排出された潤滑
油を、ランキン媒体と潤滑油とを分離することで冷却で
きるので、冷却器の容量を小さくできる。
(5) Since the lubricating oil used and discharged from the shaft seal of the medium turbine can be cooled by separating the Rankine medium and the lubricating oil, the capacity of the cooler can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、油が混入した液化媒体
を媒体蒸発器から油分離器に抜出した後に、系内で生じ
た熱源によりランキン媒体と油とに分離し、分離された
ランキン媒体をランキンサイクルに戻すことで、ランキ
ン媒体を交換並びに補給することなしに媒体タービンの
運転を支障なく継続できるので、冷熱発電設備を良好、
かつ、長期的に連続運転できるという効果がある。
As explained above, the present invention is characterized in that after a liquefied medium mixed with oil is extracted from a medium evaporator to an oil separator, it is separated into a Rankine medium and oil by a heat source generated within the system, and the separated Rankine medium is separated into a Rankine medium and oil. By returning to the Rankine cycle, the medium turbine can continue to operate without any problems without replacing or replenishing the Rankine medium, so the cold power generation equipment can be maintained in good condition.
Moreover, it has the effect of being able to operate continuously for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明を実施したランキンサイクル式LNG冷
熱発電設備の系統図である。 10・・・・・・LNG蒸発器、11・・・・・・媒体
ポンプ、認・・・媒体蒸発器、13・・・・・・媒体タ
ービン、14・叩・発電機、16・・・・・・油分離器
The drawing is a system diagram of a Rankine cycle LNG cryogenic power generation facility in which the present invention is implemented. 10...LNG evaporator, 11...medium pump, recognition...medium evaporator, 13...medium turbine, 14. blower/generator, 16... ...Oil separator

Claims (1)

【特許請求の範囲】 1、 ランキンサイクル式LNG冷熱発電設備において
、油が混入した液化ランキン媒体を媒体蒸発器から油分
離器に抜出した後に、系内で生じた熱源によりランキン
媒体と油とに分離し、分離されたランキン媒体をランキ
ンサイクルに戻すことを特徴とする冷熱発電設備の運転
方法。 2、 前記媒体蒸発器での前記液化ランキン媒体沸騰時
に生じる泡沫が、媒体蒸発器に内設されたデミスタ−の
下面に達する前に、油が混入した液化ランキン媒体を媒
体蒸発器から前記油分離器に抜出す特許請求の範囲第1
項記載の冷熱発電設備の運転方法。 3、 前記熱源として媒体タービンの軸封部から排出さ
れた潤滑油な胛いる特許請求の範囲第1項記載の冷熱発
電設備の運転方法。
[Claims] 1. In a Rankine cycle type LNG cryothermal power generation facility, after the liquefied Rankine medium mixed with oil is extracted from the medium evaporator to the oil separator, the Rankine medium and oil are separated by a heat source generated within the system. A method of operating a cold power generation facility, characterized by separating the Rankine medium and returning the separated Rankine medium to the Rankine cycle. 2. Before the foam generated during boiling of the liquefied Rankine medium in the medium evaporator reaches the lower surface of a demister installed in the medium evaporator, the liquefied Rankine medium mixed with oil is separated from the oil from the medium evaporator. Claim 1 to be extracted into a container
How to operate the cold power generation equipment described in Section 1. 3. The method of operating a cold power generation facility according to claim 1, wherein the heat source is lubricating oil discharged from a shaft seal of a medium turbine.
JP22626782A 1982-12-24 1982-12-24 Operation of cryogenic power plant Granted JPS59119003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22626782A JPS59119003A (en) 1982-12-24 1982-12-24 Operation of cryogenic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22626782A JPS59119003A (en) 1982-12-24 1982-12-24 Operation of cryogenic power plant

Publications (2)

Publication Number Publication Date
JPS59119003A true JPS59119003A (en) 1984-07-10
JPH0143124B2 JPH0143124B2 (en) 1989-09-19

Family

ID=16842522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22626782A Granted JPS59119003A (en) 1982-12-24 1982-12-24 Operation of cryogenic power plant

Country Status (1)

Country Link
JP (1) JPS59119003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163608A (en) * 2013-02-26 2014-09-08 Kobe Steel Ltd Binary power generation device and operation method of binary power generation device
ITBS20130143A1 (en) * 2013-10-11 2015-04-12 Turboden Srl OIL SEPARATOR FROM A WORK FLUID FOR ORC PLANT
KR20150066265A (en) * 2013-12-06 2015-06-16 현대중공업 주식회사 Lubricating oil separator and treatment system of liquefied gas with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597713A (en) * 1982-07-05 1984-01-14 Hitachi Ltd Thermal power equipment
JPS5939908A (en) * 1982-08-27 1984-03-05 Hitachi Ltd Operation of cold-heat power generation equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597713A (en) * 1982-07-05 1984-01-14 Hitachi Ltd Thermal power equipment
JPS5939908A (en) * 1982-08-27 1984-03-05 Hitachi Ltd Operation of cold-heat power generation equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163608A (en) * 2013-02-26 2014-09-08 Kobe Steel Ltd Binary power generation device and operation method of binary power generation device
ITBS20130143A1 (en) * 2013-10-11 2015-04-12 Turboden Srl OIL SEPARATOR FROM A WORK FLUID FOR ORC PLANT
WO2015052652A1 (en) * 2013-10-11 2015-04-16 Turboden Srl Device for oil separation and removal from an organic working fluid
JP2016540914A (en) * 2013-10-11 2016-12-28 ターボデン・ソチエタ・ア・レスポンサビリタ・リミタータTURBODEN Srl Device for separating and removing oil from organic working fluids
US10058813B2 (en) 2013-10-11 2018-08-28 Turboden Srl Device for oil separation and removal from an organic working fluid
RU2675987C2 (en) * 2013-10-11 2018-12-25 Турбоден Срл Device for oil separation and removal from organic working liquid
KR20150066265A (en) * 2013-12-06 2015-06-16 현대중공업 주식회사 Lubricating oil separator and treatment system of liquefied gas with the same

Also Published As

Publication number Publication date
JPH0143124B2 (en) 1989-09-19

Similar Documents

Publication Publication Date Title
US4191021A (en) Small power plant utilizing waste heat
JP2898092B2 (en) Power generation from LNG
US5946916A (en) Vapor forced engine
US5600967A (en) Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller
RU2140545C1 (en) Modular power plant
US3869351A (en) Evaporation system as for the conversion of salt water
JP7251225B2 (en) power generation system
PT97981A (en) MECHANICAL REFRIGERATION AND COOLING APPARATUS AND COMBINED ABSORPTION COOLING
JP2512095B2 (en) Cold heat generation method
JPH10288047A (en) Liquefied natural gas evaporating power generating device
KR20190100391A (en) Natural Gas Combined Cycle Power Generation System and Natural Gas Combined Cycle Power Generation Method
JPS5930887B2 (en) Intermediate heat medium type liquefied natural gas cold power generation system
US3228189A (en) Binary cycle engine heat recovery system
JP2001081484A (en) Liquefied-gas evaporation apparatus with cold-heat generation function
JPS59119003A (en) Operation of cryogenic power plant
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
US3166914A (en) Process of refrigeration
JPS55142916A (en) Recovery device of waste heat from electrical equipment
JPS5939908A (en) Operation of cold-heat power generation equipment
JP3987245B2 (en) Liquefied gas vaporizer with cold heat generation function
JPH09151707A (en) Cryogenic power generating device using liquid natural gas
JPS59115407A (en) Cold heat power generating equipment
JPS6035105A (en) Lng based generating equipment by rankine cycle
RU2078950C1 (en) Rankine-cycle power plant and its operation
JPH08200017A (en) Rankine cycle of thermal power plant